V. Avitabile, M. Herold, M. Henry, and C. Schmullius, Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda, Carbon Balance and Management, vol.6, pp.1-14, 2011.

A. Baccini, S. J. Goetz, W. S. Walker, N. T. Laporte, M. Sun et al., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature Climate Change, vol.2, pp.182-185, 2012.

D. Barthélémy and Y. Caraglio, Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny, Ann. Bot, vol.99, pp.375-407, 2007.

G. L. Baskerville, Use of Logarithmic Regression in the Estimation of Plant Biomass, Can. J. Forest Res, vol.2, pp.49-53, 1972.

J. Bastin, N. Barbier, M. Réjou-méchain, A. Fayolle, S. Gourlet-fleury et al., Seeing Central African forests through their largest trees, Scientific Reports, vol.5, p.13156, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01892195

A. Beygelzimer, S. Kakadet, J. Langford, S. Arya, D. Mount et al., FNN: fast nearest neighbor search algorithms and applications, 2013.

S. Brown, A. J. Gillespie, and A. E. Lugo, Biomass estimation methods for tropical forests with applications to forest inventory data, For. Sci, vol.35, pp.881-902, 1989.

K. Calders, G. Newnham, A. Burt, S. Murphy, P. Raumonen et al., Nondestructive estimates of aboveground biomass using terrestrial laser scanning, Methods in Ecology and Evolution, vol.6, pp.198-208, 2015.

M. G. Cannell, J. Q. Chambers, J. Santos, R. J. Ribeiro, and N. Higuchi, Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest, Woody biomass of forest stands, vol.8, pp.73-84, 1984.

J. Chave, C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers et al., Tree allometry and improved estimation of carbon stocks and balance in tropical forests, Oecologia, vol.145, pp.87-99, 2005.

J. Chave, D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson et al., Towards a worldwide wood economics spectrum, Ecol. Lett, vol.12, pp.351-366, 2009.
DOI : 10.1111/j.1461-0248.2009.01285.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-0248.2009.01285.x

J. Chave, M. Réjou-méchain, A. Búrquez, E. Chidumayo, M. S. Colgan et al., Improved allometric models to estimate the aboveground biomass of tropical trees, Glob. Change Biol, vol.20, pp.3177-3190, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02063299

Q. Chen, G. Vaglio-laurin, and R. Valentini, Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels, Remote Sens. Environ, vol.160, pp.134-143, 2015.

G. B. Chuyong, R. Condit, D. Kenfack, E. Losos, M. Sainge et al., Forest diversity and dynamism: findings from a large-scale plot network, pp.506-516, 2004.

D. B. Clark and D. A. Clark, Abundance, growth and mortality of very large trees in neotropical lowland rain forest, Forest Ecol. Manag, vol.80, pp.235-244, 1996.

D. B. Clark and J. R. Kellner, Tropical forest biomass estimation and the fallacy of misplaced concreteness, J. Veg. Sci, vol.23, pp.1191-1196, 2012.
DOI : 10.1111/j.1654-1103.2012.01471.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1654-1103.2012.01471.x

W. S. Cleveland, E. Grosse, and W. M. Shyu, Local regression models, Stat. Model, vol.8, pp.309-376, 1992.

H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, T. et al., IPCC guidelines for national greenhouse gas inventories, Inst. Glob. Environ. Strateg. Hayama Jpn, 2006.

P. Ploton, Closing a gap in tropical forest biomass estimation Eloy, C.: Leonardo's rule, self-similarity and windinduced stresses in trees, Phys. Rev. Lett, vol.107, p.258101, 2011.

B. J. Enquist, Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems, Tree Physiol, vol.22, pp.1045-1064, 2002.

A. Fayolle, J. Doucet, J. Gillet, N. Bourland, L. et al., Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks, Forest Ecol. Manag, vol.305, pp.29-37, 2013.

B. Freedman, P. N. Duinker, H. Barclay, R. Morash, U. Prager et al., Data from: The importance of crown dimensions to improve tropical tree biomass estimates, Inf. Rep. Marit. For. Res. Cent. Can, p.126, 1982.

R. C. Goodman, O. L. Phillips, and T. R. Baker, The importance of crown dimensions to improve tropical tree biomass estimates, Ecol. Appl, vol.24, pp.680-698, 2014.

M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova et al., High-resolution global maps of 21st-century forest cover change, Science, vol.342, pp.850-853, 2013.

N. L. Harris, S. Brown, S. C. Hagen, S. S. Saatchi, S. Petrova et al., Baseline map of carbon emissions from deforestation in tropical regions, Science, vol.336, pp.1573-1576, 2012.

H. Hasenauer and R. A. Monserud, A crown ratio model for Austrian forests, Forest Ecol. Manag, vol.84, issue.96, pp.3768-3769, 1996.
DOI : 10.1016/0378-1127(96)03768-1

M. Henry, A. Besnard, W. A. Asante, J. Eshun, S. Adu-bredu et al., Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa, Forest Ecol. Manag, vol.260, pp.1375-1388, 2010.

M. R. Holdaway, Modeling Tree Crown Ratio, Forest Chron, vol.62, pp.451-455, 1986.
DOI : 10.5558/tfc62451-5

J. C. Jenkins, D. C. Chojnacky, L. S. Heath, R. A. Birdsey, D. King et al., National-Scale Biomass Estimators for United States Tree Species, The theory of tree bole and branch form, vol.49, pp.141-165, 1978.

P. Legendre, lmodel2: Model II Regression. R package version 1.70, See Httpcran R-Proj, 2011.

S. L. Lewis, B. Sonke, T. Sunderland, S. K. Begne, G. Lopezgonzalez et al., Above-ground biomass and structure of 260 African tropical forests, vol.368, 2013.

M. Marra, D. Higuchi, N. Trumbore, S. E. Ribeiro, G. H. Santos et al., Predicting biomass of hyperdiverse and structurally complex Central Amazon forests-a virtual approach using extensive field data, Biogeosciences Discuss., accepted, vol.12, pp.15537-15581, 2015.

A. Mäkelä and H. T. Valentine, Crown ratio influences allometric scaling of trees, Ecology, vol.87, p.87, 2006.

Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Phillips et al., The regional variation of aboveground live biomass in oldgrowth Amazonian forests, Glob. Change Biol, vol.12, pp.1107-1138, 2006.

J. Mascaro, C. M. Litton, R. F. Hughes, A. Uowolo, and S. A. Schnitzer, Minimizing Bias in Biomass Allometry: Model Selection and Log-Transformation of Data, vol.43, pp.649-653, 2011.

T. A. Mcmahon and R. E. Kronauer, Tree structures: deducing the principle of mechanical design, J. Theor. Biol, vol.59, pp.443-466, 1976.

E. T. Mitchard, S. S. Saatchi, A. Baccini, G. P. Asner, S. J. Goetz et al., Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps, Carbon Balance Manag, vol.8, p.10, 2013.

J. Moorby and P. F. Wareing, Ageing in Woody Plants, Ann. Bot, vol.27, pp.291-308, 1963.

Q. Moundounga-mavouroulou, A. Ngomanda, N. L. Engone-obiang, J. Lebamba, H. Gomat et al., How to improve allometric equations to estimate forest biomass stocks? Some hints from a central African forest, Can. J. Forest Res, vol.44, pp.685-691, 2014.

V. M. Muggeo, A. Ngomanda, N. L. Engone-obiang, J. Lebamba, Q. Moundounga-mavouroulou et al., Site-specific vs. pantropical allometric equations: Which option to estimate the biomass of a moist central African forest?, Forest Ecol. Manag, vol.22, pp.1-9, 2003.

K. J. Niklas, Size-dependent Allometry of Tree Height, Diameter and Trunk-taper, Ann. Bot, vol.75, pp.217-227, 1995.

E. M. Nogueira, P. M. Fearnside, B. W. Nelson, R. I. Barbosa, and E. W. Keizer, Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories, vol.256, pp.1853-1867, 2008.

S. T. O'brien, S. P. Hubbell, P. Spiro, R. Condit, and R. B. Foster, Diameter, Height, Crown, and Age Relationship in Eight Neotropical Tree Species, vol.76, 1926.

J. Pelletier, N. Ramankutty, and C. Potvin, Diagnosing the uncertainty and detectability of emission reductions for REDD + under current capabilities: an example for Panama, Environ. Res. Lett, vol.6, p.24005, 2011.

D. A. Perry, The competition process in forest stands, Attrib. Trees Crop Plants, pp.481-506, 1985.

N. Picard, F. B. Bosela, and V. Rossi, Reducing the error in biomass estimates strongly depends on model selection, Ann. For. Sci, vol.72, pp.811-923, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01284209

N. Picard, E. Rutishauser, P. Ploton, A. Ngomanda, H. et al., Should tree biomass allometry be restricted to power models?, Forest Ecol. Manag, vol.353, pp.156-163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02091120

L. Poorter, F. Bongers, F. J. Sterck, and H. Wöll, Architecture of 53 rain forest tree species differing in adult stature and shade tolerance, Ecology, vol.84, p.84, 2003.

L. Poorter, L. Bongers, and F. Bongers, Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups, Ecology, vol.87, issue.2, p.87, 2006.

. R-core-team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2012.

M. Réjou-méchain, H. C. Muller-landau, M. Detto, S. C. Thomas, T. Le-toan et al., Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks, vol.11, pp.6827-6840, 2014.

M. Réjou-méchain, B. Tymen, L. Blanc, S. Fauset, T. R. Feldpausch et al., Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest, Remote Sens. Environ, vol.169, pp.93-101, 2015.

S. S. Saatchi, N. L. Harris, S. Brown, M. Lefsky, E. T. Mitchard et al., Benchmark map of forest carbon stocks in tropical regions across three continents, P. Natl. Acad. Sci. USA, vol.108, pp.9899-9904, 2011.

L. Scrucca, Model-based SIR for dimension reduction, Comput. Stat. Data An, vol.55, pp.3010-3026, 2011.

K. Shinozaki, K. Yoda, K. Hozumi, K. , and T. , A quantitative analysis of plant form-the pipe model theory: I. Basic analyses, vol.14, pp.97-105, 1964.

G. W. Sileshi, A critical review of forest biomass estimation models, common mistakes and corrective measures, Forest Ecol. Manag, vol.329, pp.237-254, 2014.

S. C. Sillett, R. Van-pelt, G. W. Koch, A. R. Ambrose, A. L. Carroll et al., Increasing wood production through old age in tall trees, Forest Ecol. Manag, vol.259, pp.976-994, 2010.

P. Sist, L. Mazzei, L. Blanc, and E. Rutishauser, Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon, Forest Ecol. Manag, vol.318, pp.103-109, 2014.

J. W. Slik, G. Paoli, K. Mcguire, I. Amaral, J. Barroso et al., Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics, Global Ecol. Biogeogr, vol.22, pp.1261-1271, 2013.

N. L. Stephenson, A. J. Das, R. Condit, S. E. Russo, P. J. Baker et al., Rate of tree carbon accumulation increases continuously with tree size, Nature, vol.507, pp.90-93, 2014.

H. A. Van-gelder, L. Poorter, and F. J. Sterck, Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community, New Phytol, vol.171, pp.367-378, 2006.

G. Vieilledent, R. Vaudry, S. F. Andriamanohisoa, O. S. Rakotonarivo, H. Z. Randrianasolo et al., A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models, Ecol. Appl, vol.22, pp.572-583, 2011.

G. B. West, J. H. Brown, and B. J. Enquist, A general model for the structure and allometry of plant vascular systems, Nature, vol.400, pp.664-667, 1999.

A. E. Zanne, G. Lopez-gonzalez, D. A. Coomes, J. Ilic, S. Jansen et al., Data from: towards a worldwide wood economics spectrum, 2009.