Multi-Wave Coherent Control of a Solid State Single Emitter - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Photonics Année : 2016

Multi-Wave Coherent Control of a Solid State Single Emitter

Résumé

Coherent control of individual two-level systems (TLSs) is at the basis of any implementation of quantum information. An impressive level of control is now achieved using nuclear, vacancies and charge spins. Manipulation of bright exciton transitions in semiconductor quantum dots (QDs) is less advanced, principally due to the sub-nanosecond dephasing. Conversely, owing to their robust coupling to light, one can apply tools of nonlinear spectroscopy to achieve all-optical command. Here, we report on the coherent manipulation of an exciton via multi-wave mixing. Specifically, we employ three resonant pulses driving a single InAs QD. The first two induce a four-wave mixing (FWM) transient, which is projected onto a six-wave mixing (SWM) depending on the delay and area of the third pulse, in agreement with analytical predictions. Such a switch enables to demonstrate the generation of SWM on a single emitter and to engineer the spectro-temporal shape of the coherent response originating from a TLS. These results pave the way toward multi-pulse manipulations of solid state qubits via implementing the NMR-like control schemes in the optical domain.

Dates et versions

hal-01357648 , version 1 (30-08-2016)

Identifiants

Citer

F. Fras, Q. Mermillod, G. Nogues, C. Hoarau, C. Schneider, et al.. Multi-Wave Coherent Control of a Solid State Single Emitter. Nature Photonics, 2016, 10 (3), pp.155-158. ⟨10.1038/nphoton.2016.2⟩. ⟨hal-01357648⟩

Collections

UGA CNRS NEEL
49 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More