
HAL Id: hal-01357112
https://hal.science/hal-01357112

Submitted on 29 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International
License

An efficient numerical method for solving the
Boltzmann equation in multidimensions

Giacomo Dimarco, Raphaël Loubère, Jacek Narski, Thomas Rey

To cite this version:
Giacomo Dimarco, Raphaël Loubère, Jacek Narski, Thomas Rey. An efficient numerical method for
solving the Boltzmann equation in multidimensions. Journal of Computational Physics, 2018, 353,
pp.46-81. �10.1016/j.jcp.2017.10.010�. �hal-01357112�

https://hal.science/hal-01357112
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


An efficient numerical method for solving the Boltzmann equation in
multidimensions

Giacomo Dimarco

Department of Mathematics and Computer Science, University of Ferrara, Via Machiavelli 30, 44122 Ferrara, Italy.

Raphaël Loubère

CNRS and Institut de Mathématiques de Toulouse (IMT) Université Paul-Sabatier, Toulouse, France.

Jacek Narski

CNRS and Institut de Mathématiques de Toulouse (IMT) Université Paul-Sabatier, Toulouse, France.

Thomas Rey
Laboratoire Paul Painlevé, Université Lille 1, Lille, France.

Abstract

In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) [J. Comput. Phys., Vol. 255,
2013, pp 680-698] originally constructed for solving the BGK equation, to the more challenging case of the
Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based
on an innovative Lagrangian technique supplemented with fast spectral schemes to treat the collisional
operator by means of an operator splitting approach. This approach along with several implementation
features related to the parallelization of the algorithm permits to construct an efficient simulation tool
which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas
dynamic. We present results up to the 3D×3D case for unsteady flows for the Variable Hard Sphere model
which may serve as benchmark for future comparisons between different numerical methods for solving the
multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on
the computational cost and memory consumption as well as comparisons with the BGK model or the limit
model of compressible Euler equations.

Keywords: Boltzmann equation, kinetic equations, semi-Lagrangian schemes, spectral
schemes, 3D/3D, GPU, CUDA, OpenMP, MPI.
2000 MSC: (82B40, 76P05, 65M70, 65M08, 65Y05, 65Y20

Contents

1 Introduction 2

2 The Boltzmann equation 3

3 The Fast Kinetic Scheme and the Fast Spectral Scheme 5
3.1 The Fast Kinetic Scheme (FKS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

∗Corresponding author
Email address: giacomo.dimarco@unife.it (Giacomo Dimarco)

Preprint submitted to Journal of Computational Physics August 29, 2016



3.2 Conservation of macroscopic quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Fast Spectral Scheme (FSS) to discretize the Boltzmann collision operator . . . . . . . . . . . 8

4 Numerical implementation 11
4.1 Algorithm for the transport part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Profiling and parallelization strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Numerics 14
5.1 Part 1. Numerical results for the space homogeneous case . . . . . . . . . . . . . . . . . . . . 15

5.1.1 Test 1.1. Convergence to equilibrium for the Maxwell molecules in dimension two. . . 15
5.1.2 Test 1.2. Space homogeneous comparison between the BGK and the Boltzmann model.

Maxwellian molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.3 Test 1.3. Convergence to equilibrium in dimension three. Hard sphere molecules. . . . 17

5.2 Part 2. Numerical results for the one dimensional case in space. . . . . . . . . . . . . . . . . . 18
5.2.1 Test 2.1. Numerical convergence of the Boltzmann equation. The two dimensional in

velocity Maxwellian molecules case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Test 2.2. Comparisons between the BGK model and the Boltzmann model. The two

dimensional in velocity Maxwellian molecules case. . . . . . . . . . . . . . . . . . . . . 22
5.2.3 Test 2.3. Numerical convergence of the Boltzmann equation. The three dimensional

in velocity hard sphere molecules case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.4 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Part 3. Numerical results for the space two dimensional case. . . . . . . . . . . . . . . . . . . 26
5.3.1 Test 3.1. Two dimensional vortex in motion. . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Test 3.2. Re-entry test in two dimensions with changing angle of attack in time. . . . 29

5.4 Part 4. Numerical results for the space three dimensional case. . . . . . . . . . . . . . . . . . 31
5.4.1 Test 4.1. Three dimensional re-entry test case. . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion and perspectives 37

1. Introduction

Kinetic equations consider a representation of a gas as particles undergoing instantaneous collisions inter-
spersed with ballistic motion [1, 2]. Nowadays, these models appear in a variety of sciences and applications
such as astrophysics, aerospace and nuclear engineering, semiconductors, plasmas related to fusion processes
as well as biology, medicine or social sciences. The common structure of such equations consists in a com-
bination of a linear transport term with one or more interaction terms which furnishes the time evolution
of the distribution of particles in the phase space. For its nature, the unknown distribution lives in a seven
dimensional space, three dimensions for the physical space and three dimensions for the velocity space, plus
the time. This makes the problem a real challenge from the numerical point of view, since the computational
cost becomes immediately prohibitive for realistic multidimensional problems [2]. Aside from the curse of
dimensionality problem, there are many other difficulties which are specific to kinetic equations. We recall
two among the most important ones. The computational cost related to the evaluation of the collision
operator involving multidimensional integrals which should be solved in each point of the physical space
[3, 4]. The second challenge is represented by the presence of multiple scales which requires the development
of adapted numerical schemes to avoid the resolution of the stiff dynamics [5, 6, 7, 8, 9, 10, 11] typically
arising when dealing with problems with multiple regimes.

Historically, there exists two different approaches which are generally used to tackle kinetic equations
from a numerical point of view: deterministic numerical methods such as finite volume, semi-Lagrangian and
spectral schemes [2], and, probabilistic numerical methods such as Direct Simulation Monte Carlo (DSMC)
schemes [12, 13]. Both methodologies have strengths and weaknesses. While the first could normally reach
high order of accuracy, the second are often faster, especially for solving steady problems but, typically,
exhibit lower convergence rate and difficulties in describing non stationary and slow motion flows.

2



In this work, we deal with deterministic techniques. In particular, we focus on semi-Lagrangian ap-
proaches [14, 15, 16, 17, 18, 19] for the transport part coupled with spectral methods [20] for the interaction
part. Our main goal is to tackle the challenges related to the high dimensionality of the equations and with
the difficulties related to the approximation of the collision integral. More in details, we deal with the ex-
tension of our recent works [21, 22, 23, 24] which were based on an innovative semi-Lagrangian technique for
discretizing the transport part of a kinetic model (FKS method). This technique has been applied solely to
the solution of a simple kinetic equation with a relaxation type collision operator, i.e. the BGK (Bhatnagar-
Gross-Krook) operator [25]. Here we extend it to the case of the full Boltzmann operator [12, 1] and we
test his performances up to the six dimensional case. The FKS is based on the classical discrete velocity
models (DVM) approach [26, 27, 28, 29]. Successively, in order to overcome the problem of the excessive
computational cost, we propose to use a Lagrangian technique which exactly solves the transport step on
the entire domain, without reprojecting the solution on the grid at each time step. The FKS approach was
shown to be an efficient way to solve linear transport equations, and, it has permitted the simulation of
full six dimensions problems on a single processor machine [21]. Unfortunately the solutions computed with
this method are limited to a first order in space and time precision. Extension of the method to high order
reconstruction is under consideration [30]. Concerning the discretization of the collision operator we rely on
Fourier techniques. For the resolution of the Boltzmann integral, these techniques have been first introduced
independently by L. Pareschi and B. Perthame in [31] and by A. Bobylev and S. Rjasanow in [32]. Since then,
this approach has been investigated by a many authors [3, 4, 33, 34, 35, 36, 32, 37, 38, 39, 40, 41, 42, 43].
In this work we will make use in particular of the fast method described in [44, 3] which has a complexity
of the order of O(Ndv log(Ndv )) where N is the number of point in which the velocity space is discretized
in one direction and dv the dimension of the velocity space. The method preserves mass, and approximates
with spectral accuracy momentum and energy.

Combining opportunely the FKS method with the fast spectral approach we have developed a method
for solving the Boltzmann equation up to the six dimensional case for unsteady flows. In order to obtain such
result we have constructed a parallel version of our algorithm taking advantages of Graphical-Processor-Unit
(GPU) under CUDA language. The results presented in this work show that we are nowadays ready and
able to use kinetic equations to simulate realistic multidimensional flows. Up to our knowledge this is one
of the first examples in literature of solution of the full multidimensional Boltzmann equation by means of
deterministic schemes. Our main limitation to run extensive simulations remains at the present moment
the lack of memory capacity due to the use of shared memory machines. However, in the present paper, we
also report some preliminary results about the extension of our method to deal with distributed-memory
computers but we postpone for a future research the detailed analysis of the Message Passive Interface (MPI)
version of the algorithm as well as the analysis of its performances.

The article is organized as follows. In Section 2 we recall the Boltzmann equation. In Section 3 we
present the Fast Kinetic Scheme and the fast spectral scheme. In Section 4 we detail the aspects related
to the implementation of the resulting algorithm necessary to realize an efficient parallel numerical tool.
Several tests starting from the 0D× 2D up to the 3D×3D case are studied in details in Section 5. These
tests assess the validity of our approach as well as detail all the computational aspects. Conclusions and
future works are finally exposed in Section 6.

2. The Boltzmann equation

In this section we briefly recall the Boltzmann equation and its main properties, we also recall some
related models, i.e. the BGK model and the compressible Euler equations, which will be used for numerical
comparisons. We refer the reader to [2, 1] for an exhaustive description.

In the kinetic theory of rarefied gases, the non-negative function f(x, v, t) characterizes the state of the
system and it defines the density of particles having velocity v ∈ Rdv in position x ∈ Rdx at time t ∈ R+,
where dx is the physical dimension and dv the dimension of the velocity space. The time evolution of the
particle system is obtained through the equation

∂f

∂t
+ v · ∇xf = Q(f). (1)

3



The operator Q(f), on the right hand side in equation (1), describes the effects of particle interactions and
its form depends on the details of the microscopic dynamic. Independently on the type of microscopic inter-
actions considered, typically the operator is characterized by some conservation properties of the physical
system. They are written as ∫

Rdv
Q(f)φ(v) dv = 0, (2)

where φ(v) = (1, v, |v|2) are commonly called the collision invariants. We denote by

U(x, t) =
∫
Rdv

f(x, v, t)φ(v) dv ∈ R2+dv

the first three moments of the distribution function f , namely, U(x, t) = (ρ, ρu,E), where ρ is the density, ρu
the momentum and E the energy. Integrating (1) against φ(v) yields a system of macroscopic conservation
laws

∂

∂t

∫
Rdv

fφ(v) dv +
∫
Rdv

v · ∇xf φ(v) dv = 0. (3)

The above moment system is not closed since the second term involves higher order moments of the distri-
bution function f . However, using the additional property of the operator Q(f) that the functions belonging
to its kernel satisfy

Q(f) = 0 iff f = M [f ], (4)

where the Maxwellian distributions M [f ] = M [f ](x, v, t) can be expressed in terms of the set of moments
U(x, t) by

M [f ] = ρ

(2πT )dv/2 e
−(v−u)2

2T ,
1
2dvρT = E − 1

2ρ|u|
2 (5)

with T the temperature, one can get a closed system by replacing f with M [f ] in (3). This corresponds to
the set of compressible Euler equations which can be written as

∂U

∂t
+∇x · F (U) = 0, (6)

with F (U) =
∫
Rdv

M [f ]vφ(v) dv. The simplest operator satisfying (2) and (4) is the relaxation operator [25]

QBGK(f) = ν(M [f ]− f), (7)

where ν = ν(x, t) > 0 defines the so-called collision frequency. Its values will be specified in the numerical
test Section in order for the model to be as close as possible to the Boltzmann model described next. The
classical Boltzmann operator reads

QB(f) =
∫
Rdv

∫
Sdv−1

B(|v − v∗|, ω) (f(v′)f(v′∗)− f(v)f(v∗)) dv∗dω, (8)

where ω is a vector of the unitary sphere Sdv−1 ⊂ Rdv . The post-collisional velocities (v′, v′∗) are given by
the relations

v′ = 1
2(v + v∗ + |q|ω), v′∗ = 1

2(v + v∗ + |q|ω), (9)

where q = v − v∗ is the relative velocity. The kernel B characterizes the details of the binary interactions,
it has the form

B(|v − v∗|, cos θ) = |v − v∗|σ(|v − v∗|, cos θ) (10)

where the scattering cross-section σ, in the case of inverse k-th power forces between particles, can be written
as

σ(|v − v∗|, cos θ) = bα(cos θ)|v − v∗|α−1, (11)

4



with α = (k − 5)/(k − 1). The special situation k = 5 gives the so-called Maxwell pseudo-molecules model
with

B(v, v∗, ω) = b0(cos θ). (12)

For the Maxwell case the collision kernel is independent of the relative velocity. For numerical purposes, a
widely used model is the variable hard sphere (VHS) model introduced by Bird [12]. The model corresponds
to bα(cos θ) = Cα, where Cα is a positive constant, and hence

σ(|v − v∗|, cos θ) = Cα|v − v∗|α−1. (13)

In the numerical test Section we will consider the Maxwell molecules case when dealing with a velocity
space of dimension dv = 2 and with the more realistic case of VHS molecules when dealing with the three
dimensional case in velocity space: dv = 3. For comparison purposes we will also consider the simplified
BGK model (7) and the compressible Euler system case (6).

3. The Fast Kinetic Scheme and the Fast Spectral Scheme

In this section we detail the numerical scheme. In the first part we discuss the Fast Kinetic Scheme
(FKS) and in the second part the Fast Spectral method for the Boltzmann equation. The two solvers are
connected by using splitting in time approaches as the ones described in [45].

3.1. The Fast Kinetic Scheme (FKS)
The Fast Kinetic Scheme [21, 22] belongs to the family of so-called semi-Lagrangian schemes [14, 15, 46]

which are typically applied to a Discrete Velocity Model (DVM) [26, 29] approximation of the original kinetic
equation.

In order to introduce the scheme, let us truncate the velocity space by fixing some given bounds and
set a cubic grid in velocity space of N points with ∆v the grid step which is taken equal in each direction.
The continuous distribution function f is then replaced by a vector whose components are assumed to be
approximations of the distribution function f at locations vk:

f̃k(x, t) ≈ f(x, vk, t). (14)

The discrete velocity kinetic model consists then of a set of N evolution equations in the velocity space for
f̃k, 1 ≤ k ≤ N , of the form

∂tf̃k + vk · ∇xf̃k = Q(f̃k), (15)

where Q(f̃k) is a suitable approximation of the collision operator Q(f) at location k discussed in Section
(3.3). Observe that, due to the truncation of the velocity space and to the finite number of points with
which f is discretized, the moments of the discrete distribution function f̃k are such that

Ũ(x, t) =
∑
k

φk f̃k(x, t) ∆v 6= U(x, t), (16)

with φk = (1, vk, |vk|2) the discrete collision invariants, i.e. they are no longer those given by the continuous
distribution f . This problem concerns all numerical methods based on the discrete velocity models and
different strategies can be adopted to restore the correct macroscopic physical quantities [29, 27, 28, 34].
At the same time, the spectral approach does not preserve the energy and the momentum of the system
even if it approximates these quantities with spectral accuracy [4]. In order to solve this problem of loss
of conservation we adopt an L2 projection technique for the discretized distribution and the discretized
collision operator which permits to project the discretized f̃k and Q(f̃k) in the space of the distributions
for which the moments are exactly the continuous macroscopic quantities we aim to preserve. We detail
this approach in the following paragraph. For lightening the notations we omit the tilde in the rest of the
paper, we only use it in the next paragraph in order to introduce the L2 projection procedure. We will then
suppose from now on that all the operations preserves the macroscopic moments if not differently stated.

5



f
k,j

n

Vk+1

f
k+1,j

n

f
k+2,j

n f
k+2,j

n+1

f
k+1,j

n+1

f
k,j

n+1

Vk

j

j

k

Vk+2

j

Vk

j

j

k

Vk+2

j

Vk+1

Figure 1: Illustration of the transport scheme for the FKS scheme. Left panel before transport step, right panel after transport
step. Each discrete velocity (index k) drives its own transport equation with velocity vk. The representation of f is made
by means of a piecewise constant function. The shape of the entire function has not changed during the transport but the
cell-centered values (bullets) may have.

Let us now introduce a Cartesian uniform grid in the three dimensional physical space made ofM points
with ∆x a scalar which represents the grid step (the same in each direction) in the physical space. Further
we define a time discretization tn+1 = tn + ∆t starting at t0, where ∆t is the time step defined by an
opportune CFL condition discussed next. The time index n varies between 0 and Nt so that the final time
is tfinal = tnt = t0 +Nt∆t.

Each equation of system (15) is solved by a time splitting procedure. We recall here a first order
splitting approach: first a transport step exactly solves the left-hand side, whereas a collision stage solves
the right-hand side using the solution from the transport step as initial data:

Transport stage −→ ∂tfk + vk · ∇xfk = 0, (17)
Collisions stage −→ ∂tfk = Q(fk). (18)

Transport step. Let f0
j,k be the point-wise values at time t0 of the distribution f , f0

j,k = f(xj , vk, t0). The
idea behind the fast kinetic scheme is to solve the transport stage (17) continuously in space, see Fig. 1 for
a sketch in the one dimensional setting. To this aim we define at the initial time the function f0

k(x) as a
piecewise continuous function for all x ∈ Ωj , where Ωj = [xj−1/2;xj+1/2] and Ω =

⋃
j Ωj . Hence starting

from data f0
k,j at time index 0, the exact solution of (17) is simply

f
∗,1
k = f

0
k(x− vk∆t), ∀x ∈ Ω. (19)

In other words, the entire function f0
k is advected with velocity vk during ∆t unit of time and the ∗ superscript

indicates that only the transport step has been solved so far. The extension of this procedure to the generic
time step n gives

f
∗,n+1
k = f

n

k (x− vk∆t), ∀x ∈ Ω, (20)

where now, the key observation is that the discontinuities of the piecewise function fnk (x) do not lie on the
interfaces of two different cells. Instead, the positions of the discontinuities depend entirely on the previous
advection step and thus they may be located anywhere in the physical space. This means that if only the
linear transport equation has to be solved, this approach gives the exact solution to the equation if the
initial data is truly a piecewise constant function initially centered on the spacial mesh.

6



Collision step. The effect of the collisional step is to change the amplitude of fk(x). The idea is to solve
the collision operator locally on the grid points, and, successively, extend these computed values to the full
domain Ω. Thus we need to solve the following ordinary differential equation

∂tfj,k = Q(fj,k), (21)

where fj,k = f(xj , vk, t), for all velocities of the lattice k = 1, . . . , N and grid points j = 1, . . . ,M . The
initial data for solving this equation is furnished by the result of the transport step obtained by (20) at
points xj of the mesh at time tn+1 = tn + ∆t, i.e. f∗,n+1

k (xj), for all k = 1, . . . , N , and j = 1, . . . ,M . Then,
the solution of (21), locally on the grid points, reads if, for simplicity, a forward Euler scheme is used as

fn+1
j,k = f∗,n+1

j,k + ∆tQ(f∗,n+1
j,k ), (22)

where f∗,n+1
j,k = f

∗,n+1
k (xj). Many different time integrators can be employed to solve this equation. In

particular special care is needed in the case in which the equation becomes stiff, refer to [5, 6] for alternative
strategies. Since the time integration of the collision term is not the issue considered in this paper, we con-
sidered the simplest possible scheme, but the FKS technique remains the same when other time integrators
are employed. Equation (22) furnishes a new value for the distribution f at time tn+1 only in the cell centers
of the spacial cells for each velocity vk. However, one needs also the value of the distribution f in all points
of the domain in order to perform the transport step at the next time step. Therefore, we define a new
piecewise constant function Qk for each velocity of the lattice vk as

Q
n+1
k (x) = Q(f∗,n+1

j,k ), ∀x such that f
∗,n+1
k (x) = f

∗,n+1
k (xj). (23)

Said differently we make the fundamental assumption that the shape of Q(fk) in space coincides with the
one of fk. Thanks to the above choice one can rewrite the collision step in term of spatially reconstructed
functions as

f
n+1
k (x) = fk(x, tn + ∆t) = f

∗,n+1
k (x) + ∆tQn+1

k (x). (24)
This ends one time step of the FKS scheme.

Concerning the transport part of the scheme, the time step ∆t is constrained by a CFL like condition of
type

∆tmax
k

(
|vk|
∆x

)
≤ 1 = CFL. (25)

The time step constraint for the collision step depends on the choice of the operator Q. Since in the
numerical test section we used both a BGK and a Boltzmann operator, the time step constraint for the
interaction part has been chosen as the minimum time step which gives stability in the solution of the ODE
(22) independently on the type of collision operator employed. As observed in [21] the transport scheme is
stable for every choice of the time step, being the solution for a given fixed reconstruction performed exactly.
Nonetheless the full scheme being based on a time splitting technique, the error is of the order of ∆t in the
case of first order splitting or of order (∆t)q for a splitting of order q. This suggests to take the usual CFL
condition for the transport part in order to maintain the time error small enough.

To conclude this Section let us observe that time accuracy can be increased by high order time split-
ting methods, while spacial accuracy can be increased close to the fluid limit to a nominally second-order
accurate scheme by the use of piecewise linear reconstructions of state variables, see the details in [22].
Spacial accuracy for all regime can also be increased by using high order polynomial reconstruction for the
distribution f . This work is in progress and results are discussed in [30].

3.2. Conservation of macroscopic quantities
In order to preserve mass, momentum and energy in the scheme, we employ the strategy proposed in [34].

We consider one space cell, the same renormalization of f should be considered for all spatial cells. This step

7



is performed at the beginning, i.e. t = 0. for the distribution f̃(xj , vk, t = 0) and after each collision step (22)

which causes loss of momentum and energy due to the spectral discretization. Let f̃ =
(
f̃1, f̃2, . . . , f̃N

)T
be the distribution function vector at t = tn at the center of the cell and let f = (f1, f2, . . . , fN )T be the
unknown corrected distribution vector which fulfills the conservation of moments. Let

C(dv+2)×N =

 (∆v)dvk
vk(∆v)dvk
|vk|2(∆v)dvk


be a matrix of coefficients depending on the discretization parameters and U(dv+2)×1 = (ρ ρu E)T be the
vector of conserved quantities, namely density, momentum and energy. Conservation can be imposed solving
a constrained optimization formulation:

Given f̃ ∈ RN , C ∈ R(dv+2)×N , and U ∈ R(dv+2)×1,

find f ∈ RN such that (26)
‖f̃ − f‖2

2 is minimized subject to the constrain Cf = U.

The solution of this minimization problem can be analytically obtained by employing the Lagrange multiplier
method. Let λ ∈ Rdv+2 be the Lagrange multiplier vector. The corresponding scalar objective function to
be minimized is given by

L(f, λ) =
N∑
k=1
|f̃k − fk|2 + λT (Cf − U). (27)

Then, by nullifying the derivative of L(f, λ) with respect to fk we get

f = f̃ + 1
2C

Tλ (28)

while the Lagrange multipliers are obtained by solving

CCTλ = 2(U − Cf̃). (29)

In particular, the above expression says that the value of λ is uniquely determined by λ = 2(CCT )−1(U−Cf̃).
Back substituting λ into (28) finally provides

f = f̃ + CT (CCT )−1(U − Cf̃). (30)

Note that matrix CT (CCT )−1 is pre-computed and stored as being constant for each simulation. If a
discretization of the Maxwellian distribution M [f ] is needed, as for example when using the BGK model,
the same procedure should be applied to the function M(xj , vk, tn) in order to assure conservation of the
first three moments at each instant of time at which the Maxwellian function M(xj , vk, tn) is invoked. In
this case by defining with E [f ] the approximated Maxwellian and by Ẽ [f ] = M(xj , vk, tn) the pointwise
value of the equilibrium distribution, we get mimicking (30)

E [U ] = Ẽ [f ] + CT (CCT )−1(U − CẼ [f ]). (31)

This ends the description of the procedure which permits to conserve macroscopic quantities.

3.3. Fast Spectral Scheme (FSS) to discretize the Boltzmann collision operator
The fast spectral discretization of the Boltzmann operator employed in this work is described in this

section. To this aim, we focus again on a given cell xj at a given instant of time tn. The same computation
is repeated for all cells xj , j = 1, ..,M and times tn, n = 0, .., Nt. Moreover, since the collision operator

8



acts only on the velocity variable, to lighten the notation in this paragraph, only the dependency on the
velocity variable v is considered for the distribution function f , i.e. f = f(v).

The first step to construct for our spectral discretization is to truncate the integration domain of the
Boltzmann integral (8) as done for the distribution f . As a consequence, we suppose the distribution
function f to have compact support on the ball B0(R) of radius R centered in the origin. Then, since one
can prove that supp (Q(f)(v)) ⊂ B0(

√
2R), in order to write a spectral approximation which avoid aliasing,

it is sufficient that the distribution function f(v) is restricted on the cube [−T, T ]dv with T ≥ (2 +
√

2)R.
Successively, one should assume f(v) = 0 on [−T, T ]dv \ B0(R) and extend f(v) to a periodic function
on the set [−T, T ]dv . Let observe that the lower bound for T can be improved. For instance, the choice
T = (3 +

√
2)R/2 guarantees the absence of intersection between periods where f is different from zero.

However, since in practice the support of f increases with time, we can just minimize the errors due to
aliasing [20] with spectral accuracy.

To further simplify the notation, let us take T = π and hence R = λπ with λ = 2/(3 +
√

2) in the
following. We denote by QRB(f) the Boltzmann operator with cut-off. Hereafter, using one index to denote
the dv-dimensional sums, we have that the approximate function fN can be represented as the truncated
Fourier series by

fN (v) =
N/2∑

k=−N/2

f̂ke
ik·v, (32)

f̂k = 1
(2π)dv

∫
[−π,π]dv

f(v)e−ik·v dv. (33)

We then obtain a spectral quadrature of our collision operator by projecting (8) on the space of trigonometric
polynomials of degree less or equal to N , i.e.

Q̂k =
∫

[−π,π]dv
QRB(fN )e−ik·v dv, k = −N/2, . . . , N/2. (34)

Finally, by substituting expression (32) in (34) one gets after some computations

Q̂k =
N/2∑

l,m=−N/2
l+m=k

f̂l f̂mβ̂(l,m), k = −N, . . . , N, (35)

where β̂(l,m) = B̂(l,m)− B̂(m,m) are given by

B̂(l,m) =
∫
B0(2λπ)

∫
Sdv−1

|q|σ(|q|, cos θ)e−i(l·q
++m·q−) dω dq. (36)

with
q+ = 1

2(q + |q|ω), q− = 1
2(q − |q|ω). (37)

Let us notice that the naive evaluation of (35) requires O(n2) operations, where n = N3. This causes the
spectral method to be computationally very expensive, especially in dimension three. In order to reduce the
number of operations needed to evaluate the collision integral, the main idea is to use another representation
of (8), the so-called Carleman representation [47] which is obtained by using the following identity

1
2

∫
Sdv−1

F (|u|σ − u) dσ = 1
|u|d−2

∫
Rdv

δ(2x · u+ |x|2)F (x) dx.

This gives in our context for the Boltzmann integral

QB(f) =
∫
Rdv

∫
Rdv

B̃(x, y)δ(x · y) [f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy, (38)

9



with

B̃(|x|, |y|) = 2dv−1 σ

(√
|x|2 + |y|2, |x|√

|x|2 + |y|2

)
(|x|2 + |y|2)−

dv−2
2 . (39)

This transformation yields the following new spectral quadrature formula

Q̂k =
N/2∑

l,m=−N/2
l+m=k

β̂F (l,m) f̂l f̂m, k = −N, ..., N (40)

where β̂F (l,m) = B̂F (l,m)− B̂F (m,m) are now given by

B̂F (l,m) =
∫
B0(R)

∫
B0(R)

B̃(x, y) δ(x · y) ei(l·x+m·y) dx dy. (41)

Now, in order to reduce the number of operation needed to evaluate (40), we look for a convolution structure.
The aim is to approximate each β̂F (l,m) by a sum

β̂F (l,m) '
A∑
p=1

αp(l)α′p(m),

where A represents the number of finite possible directions of collisions. This finally gives a sum of A discrete
convolutions and, consequently, the algorithm can be computed in O(AN log2 N) operations by means of
standard FFT technique [20].

In order to get this convolution form, we make the decoupling assumption

B̃(x, y) = a(|x|) b(|y|). (42)

This assumption is satisfied if B̃ is constant. This is the case of Maxwellian molecules in dimension two,
and hard spheres in dimension three, the two cases treated in this paper. Indeed, using kernel (10) in (39),
one has

B̃(x, y) = 2dv−1Cα(|x|2 + |y|2)−
dv−α−2

2 ,

so that B̃ is constant if dv = 2, α = 0 and dv = 3, α = 1.
We start by dealing with dimension 2 and B̃ = 1, i.e. Maxwellian molecules. Here we write x and y in

spherical coordinates x = ρe and y = ρ′e′ to get

B̂F (l,m) = 1
4

∫
S1

∫
S1
δ(e · e′)

[∫ R

−R
eiρ(l·e) dρ

] [∫ R

−R
eiρ
′(m·e′) dρ′

]
de de′.

Then, denoting φ2
R(s) =

∫ R
−R e

iρs dρ, for s ∈ R, we have the explicit formula

φ2
R(s) = 2R Sinc(Rs),

where Sinc(x) = sin(x)
x . This explicit formula is further plugged in the expression of B̂F (l,m) and using its

parity property, this yields
B̂F (l,m) =

∫ π

0
φ2
R(l · eθ)φ2

R(m · eθ+π/2) dθ.

Finally, a regular discretization of A equally spaced points, which is spectrally accurate because of the
periodicity of the function, gives

B̂F (l,m) = π

M

A∑
p=1

αp(l)α′p(m), (43)

10



with
αp(l) = φ2

R(l · eθp), α′p(m) = φ2
R(m · eθp+π/2) (44)

where θp = πp/A.
Now let us deal with dimension d = 3 with B̃ satisfying the decoupling assumption (42). First we switch

to the spherical coordinates for B̂F (l,m):

B̂F (l,m) = 1
4

∫
S2×S2

δ(e · e′)
[∫ R

−R
ρa(ρ)eiρ(l·e)dρ

][∫ R

−R
ρ′b(ρ′)eiρ

′(m·e′)dρ′

]
dede′.

Then, integrating first e′ on the intersection of the unit sphere with the plane e⊥ gives

B̂F (l,m) = 1
4

∫
e∈S2

φ3
R,a(l · e)

[∫
e′∈S2∩e⊥

φ3
R,b(m · e′) de′

]
de

where
φ3
R,a(s) =

∫ R

−R
ρ a(ρ) eiρs dρ.

This leads to the following decoupling formula

B̂F (l,m) =
∫
e∈S2

+

φ3
R,a(l · e)ψ3

R,b

(
Πe⊥(m)

)
de

where S2
+ denotes the half sphere and

ψ3
R,b

(
Πe⊥(m)

)
=
∫ π

0
sin θ φR,b

(
|Πe⊥(m)| cos θ

)
dθ.

Now, in the particular case where B̃ = 1, i.e. the hard sphere model, we can explicitly compute the functions
φ3
R. These are

φ3
R(s) = R2 [2 Sinc(Rs)− Sinc2(Rs/2)

]
, ψ3

R(s) = 2R2 Sinc2(Rs/2).

Taking a spherical parametrization (θ, ϕ) of e ∈ S2
+ and uniform grids of respective size A1 and A2 for θ and

ϕ (again spectrally accurate because of the periodicity of the function) leads to the following quadrature
formula for B̂F (l,m)

B̂F (l,m) = π2

A1A2

A1,A2∑
p,q=0

αp,q(l)α′p,q(m)

where
αp,q(l) = φ3

R,a

(
l · e(θp,ϕq)

)
, α′p,q(m) = ψ3

R,b

(
Πe⊥(θp,ϕq)

(m)
)
,

φ3
R,a(s) =

∫ R

−R
ρ a(ρ) eiρs dρ, ψ3

R,b(s) =
∫ π

0
sin θ φ3

R,b(s cos θ) dθ,

and for all p and q
(θp, ϕq) =

(p π
A1

,
q π

A2

)
.

4. Numerical implementation

We discuss in this part some aspects relative to the numerical implementation of the method.

11



4.1. Algorithm for the transport part
The method described in the previous sections can be resumed into two main actions: transport and

interaction. In our implementation we have adopted a particle like interpretation of the FKS scheme which
helps in reducing the computational effort and the memory requirement. In this interpretation, each point
of the quadrature of the phase space is represented by a particle with a given mass, velocity and position.
The transport phase causes the particle to move in the physical space, while the interaction phase causes
the mass of each particle to change. In this setting, the distribution function f can be expressed as

f(x, v, t) =
Np∑
i=1

mi(t) δ(x− xi(t))δ(v − vi(t)), vi(t) = vk, (45)

where xi(t) represents the particle position, vi(t) the particle velocity, mi the particle mass. Moreover, the
particle velocity corresponds to the quadrature point chosen to discretize the velocity space. The effect of
the transport is a simple shift of particles to their new positions according to

xi(t+ ∆t) = xi(t) + vi(t)∆t. (46)

The collision step acts only locally and changes the velocity distribution. The particle interpretation of this
part of the scheme consists in changing the mass of each particle through the formula (22) which reads

mi(t+ ∆t) = mi(t) + ∆tQ(vi), (47)

where Q(vi) corresponds to the approximation of the collision integral in the center of the cell evaluated at
location vi by means of the fast spectral method described before. Let observe that thanks to the uniform
grid in velocity and physical space, the number of particles is the same in each cell and remains constant
in time. This permits to consider the motion of only a fixed subset of particles which belongs to only
one chosen cell. The relative motion of all other particles in their cells being the same [21]. This gives
great computational advantage since the number of particle to track in time is greatly reduced. The only
information which should be tracked remains the mass of each individual particle which is different for every
velocity vi and position xi. This reinterpretation of the scheme permits to strongly reduce the computational
cost related to the transport part as shown in the numerical test section.

4.2. Profiling and parallelization strategy
The Fast Kinetic scheme for the BGK equation was shown to be very efficient and extremely paralleliz-

able (with a shown acceleration very close to the ideal scaling) in [24] on mild parallel architecture, namely
using OpenMP on maximum 64 threads and on two Graphical Processing Units (GPU) using CUDA frame-
work. These light parallel infrastructures are unfortunately not sufficient when Boltzmann operator is to
be simulated. To this aim, let us briefly discuss the profiling of the collision algorithm. As we have already
seen in the description of the method in the previous section, the resolution of Boltzmann operator requires
several passages from the physical space to the Fourier space, which implies several calls to (inverse) Fourier
transforms within nested loops which are due to the convolutive form of the integral. This interaction step
covers about 98% of the total cost of a 2D×2D simulation on a serial machine, see table 1. The situation
is alike in the case of 3D×3D simulations, and, thus, results are not reported. From table 1 we deduce
that the collision step is the part of the code which demands to be dealt with great attention if any gain in
performance is expected. More precisely, if we give a closer look to the computational cost related to the
computation of the collision term Q(f) in one fixed spacial cell, the major cost (beyond 90%) is spent by the
Fourier transform routines. In our implementation, the collision is performed without any communication
with the local neighborhood. In other words, once the N values of the distribution functions fj,k, k = 1, .., N
are stored then Q(f) is computed locally. Because N is not too large, typically the number of points cho-
sen to discretize the velocity space goes from N = 163 to N = 643, then the memory requirement is not
extremely demanding. Finally, as seen in the previous Section the computation of Q(f) is based on a loop
over the number of angles θp with p = 1, .., A in dimension two, and, a double loop over the angles θp and

12



Main routines Cost CPU % Sub-routines Sub-cost CPU %
Transport '2 % — '2 %

Update moments '0 % — '0 %

Collision ≥ 98 %

Compute F(f) '5 %

θp-Loop: compute coeff. '5 %

θp-Loop: compute F−1 '87 %

Update Q '3 %

Total 100 % 100%

Table 1: Schematic table of the average cost for each routine of the code on a cylindrical Sod like problem in 2D×2D. Simulation
is run on a serial machine. The collision part demands almost all the CPU resources and, within this step, the calls to the
(inverse) Fourier transform routine covers more than 85% of the total cost of one single step.

φq in dimension three with p = 1, ..A1 and q = 1, .., A2 with a typical number of chosen angles of eight.
After a first Fourier transform of the distribution f , for each iterate of these loops, the coefficients of the
quadrature formula are computed and then three calls to the inverse fast Fourier transform are done. The
results of the FFT are gathered into temporary complex variables later arranged to form the solution of
Q(f). The costs related to the four main routines needed for the evaluation of the operator namely: Fourier
transform, coefficients computation, inverse Fourier transform and sum of the obtained values to form Q(f),
are detailed in table 1.

We discuss now some aspects related to the parallelization strategy. The framework described is ex-
tremely well suited for parallelization. The strategy adopted is to divide the space domain in several
subdomains because the interaction step, the most expensive one, does not demand any communication
between spatial cells. Each cell can be therefore treated independently from the others. Then, the idea
employed has been to use the OpenMP on shared memory systems and make each computational core
responsible for a subset of a space mesh. This approach requires very little modification of a sequential
code and gives strong scaling close to ideal as shown in [24] for the BGK case. A different possibility is to
compute the collision kernel, and all the related Fast Fourier Transforms on a GPU. Even if, this involves
substantial amount of slow communications between CPU and GPU, the computational complexity of this
part is so large that the communication time does not play a fundamental role. This approach requires
more programming effort, compared to the OpenMP parallelization strategy as several routines have to be
completely rewritten. In particular, the code has to be adapted to the Single Instruction, Multiple Threads
(SIMT) parallel programming mode imposed by the GPU architecture. That is to say, parts of the code
that can be run in parallel on large number of threads have to be identified and rewritten as so called CUDA
kernels - functions that are executed multiple times in parallel by different CUDA threads. Moreover, the
GPU-CPU memory data transfer has to be taken into account. The payoff is however higher and, at least
for computations which does not require too large memory storage, this is probably the best choice.

Unfortunately, when the number of points needed to perform a simulation grows in the case the Boltz-
mann operator is used, the above implementation strategies on shared memory systems are not sufficient
any more. This is true particularly in the full three dimensional case. Luckily, the method described in this
work can be easily adapted for its application in distributed memory systems. The idea adopted in this case
is to distribute spatial degrees of freedom over computational nodes, keeping on every node a complete set
of velocity space points. The computational domain is then decomposed into slices along the Z direction
(see Fig.2). The slices are successively distributed over different MPI processes. Every node will therefore
compute the collision term for a part of computational domain. This can be done on each node using
the OpenMP or GPU parallelization strategy, depending on the architecture at disposal. As the update
of the primitive variables requires an exchange with neighboring spatial cells, some of the particle masses,
which contain all the information related to the distribution function f in our implementation, need to be
broadcast to other computational nodes. This data exchange, which is typically a bottleneck in the MPI
computations, and, usually demands large efforts in order to be minimized the internodal communications,

13



z axis

node#0

node#1

node#2

node#3
ghost cells

ghost cells

Figure 2: Domain decomposition for the MPI parallelization. The domain slices are distributed over computational nodes.
After the collision step the new information brought by the particles on the cells located on the subdomain boundary are
communicated to the ghost cells of the neighboring nodes.

in the case of the Boltzmann equation, takes only a small part of the total runtime, even if, in our first
MPI implementation, the domain decomposition is far from being optimal. We postpone to a future work
the discussion related to a more efficient MPI parallelization strategy and all details related to this type of
implementation.

5. Numerics

In this section, we validate the proposed SFKS (Spectral-FKS) method which couples the fast semi-
Lagrangian and the fast spectral scheme. The testing methodology is divided into four parts.

Part 1. Sanity checks. We only consider the space homogeneous Boltzmann equation in two and three
dimensions in velocity space. Two problems from [4] for which the analytical solution is known are sim-
ulated. The results show that our implementation of the fast spectral discretization of the Boltzmann
operator is correct.

Part 2. Using the SFKS method in one dimension of physical space and two or three dimensions in velocity
space, we show on Riemann like problems the differences between the BGK and the Boltzmann models.
The reported results justify the use of the more complex and costly collisional Boltzmann operator
especially in situations far from the thermodynamical equilibrium. We also report the details of the
computational costs as well as the numerical convergence of the method for an increasing number of
points in the physical or velocity space.

Part 3. Using the SFKS method in the two dimensional case in space and velocity, we show that using
the Boltzmann or the BGK operator leads to notably different results. We consider a regular vortex
like problem and a reentry like problem with evolving angle of attack. Performances and profiling
study of the SFKS approach supplemented with BGK or Boltzmann collisional operator are provided
for refined grids in space and time. Details about the computational costs of the different part of the
scheme, scalability with respect to the number of cells are also furnished in order to characterize the
behavior of the method as precisely as possible.

Part 4. We test the SFKS method in the full three dimensional case in space and velocity for an unsteady
test problem. The interaction of a flying object with the surrounding ambient gas is simulated. We
compare the results obtained with the Boltzmann collisional operator with those given by a simpler

14



# of points L1 error L2 error
82 6.3× 10−3 3.8× 10−3

162 5.7× 10−4 2.9× 10−4

322 6.5× 10−5 7.2× 10−5

Table 2: Test 1.1. Sanity check — L1 and L2 relative errors for the fast spectral method for different number of points at
tfinal = 10. Maxwellian molecules in dimension two.

BGK model. Moreover, we measure the cost of such a 3D×3D simulation in terms of CPU, cost per
degree of freedom and scalability with respect to the number of cells. Some code profiling is also
provided to measure the cost of the main components of the scheme.

Finally, the ability of the whole numerical code to run on several parallel environments is tested: CPU
(OpenMP, MPI) and GPU (CUDA) types of parallelism frameworks are considered.

5.1. Part 1. Numerical results for the space homogeneous case
In this part, we validate our spectral discretization implementation of the Boltzmann collisional operator.

To this aim, we re-employ the test cases considered in [4] and [18] for the homogeneous two dimensional
and three dimensional Boltzmann equation. For both situations, exact solutions are available and briefly
recalled in the following.

5.1.1. Test 1.1. Convergence to equilibrium for the Maxwell molecules in dimension two.
We consider two dimensional in velocity Maxwellian molecules and the following space homogeneous

initial condition

f(v, t = 0) = v2

π
exp(−v2). (48)

The analytical solution (the so-called BKW one) is given for all times t by [48, 49]:

f(v, t) = 1
2πS2 exp(−v2/2S)

[
2S − 1 + 1− S

2S v2
]
, ∀t > 0, (49)

with S = 1 − exp(−t/8)/2. The final time is set to tfinal = 10 and the time step is equal to ∆t = 0.02.
The test is performed for N = 82, 162, 322 points and for eight discrete angles θp. In order to keep the
aliasing error smaller than the spectral error, the velocity domain is set to [−4, 4]2 for N = 82, [−6, 6]2 for
N = 162 and to [−9, 9]2 for N = 322 points. This choice helps fighting back the aliasing error behavior since
it increases with the number of points. Therefore, to have comparable aliasing errors for the three meshes,
we enlarge the size of the velocity space when the number of points increases. We report the discrete L1
and L2 norms of the error for the distribution function f in Table 2. Moreover, in Figure 3, we report
the distribution function f(vx, vy = 0, t) at different times (t = 1, 2 and 10) when N = 32. The solution
is plotted versus the exact solution. The results clearly show the convergence of the method towards the
exact solution. Last in Figure 3 right panel, we present the time evolution of the L1 error for the three
configurations. Consistently the errors decrease by about one order of magnitude. The last recorded results,
at tfinal = 10 corresponds to the Figures reported in table 2.

5.1.2. Test 1.2. Space homogeneous comparison between the BGK and the Boltzmann model. Maxwellian
molecules.

In Figure 4, we compare the convergence to equilibrium for the BGK and Boltzmann models on the
test case described in the previous paragraph using N = 322 points on a domain [−9, 9]2. The L1 norm
of the difference between the two distribution functions fBGK(v, t) and fBoltz(v, t) as a function of time is
shown. As expected the differences are increasing at early stages of the relaxation towards the equilibrium
to reach a maximum difference around time t ' 1.66. Then, the two models slowly converge towards the

15



-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-4 -2  0  2  4

 f
(v

_
x
, 
v
_
y
=

0
, 
t)

 

v_x

Numerics t=1
Numerics t=2

Numerics t=10
Exact t=1
Exact t=2

Exact t=10

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0  1  2  3  4  5  6  7  8  9  10

time

8 points
16 points
32 points

Figure 3: Test 1.1. Sanity check — Left: f(vx, vy = 0, t) (symbols and straight line) as a function of velocity vx and time for
t = 1, 2 and tfinal = 10 versus the exact solution (dashed line). Right: L1 error as a function of time for 8, 16 and 32 points
(or modes) in each direction. Maxwellian molecules in dimension two.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0  1  2  3  4  5  6  7  8  9  10

 |
|f
_

B
G

K
 -

 f
_

B
o

lt
z
||
 

time

iteration#10

40

80

320

Difference btw distribution functions

Figure 4: Test 1.2. Differences between the distribution functions obtained with the BGK and the Boltzmann models.
Maxwellian molecules in two dimensions. The distribution function values for the red marked iterations are depicted in
Figure 5.

16



-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.002  0.004  0.006  0.008  0.01  0.012

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.005  0.01  0.015  0.02  0.025  0.03

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009  0.01

Figure 5: Test 1.2. Differences in the distribution functions obtained by using the BGK and the Boltzmann models at t = 0.2,
t = 1, t = 2 and t = 6.4 from top-left to bottom-right. Maxwellian molecules in two dimensions.

same equilibrium solution. The red marked iterations in Figure 4 are further depicted in Figure 5, where
we show the details of the difference in time between the two distribution functions. The same azimuthal
scale is employed to ease the comparison.

5.1.3. Test 1.3. Convergence to equilibrium in dimension three. Hard sphere molecules.
The following initial condition is considered [18]

f(v, t = 0) = 1
2(2πσ2)3/2

[
exp

(
−|v − v1|2

2σ2

)
+ exp

(
−|v + v1|2

2σ2

)]
, (50)

where σ2 = 0.2 and v1 is v1 = (vx, vy, vz) = (−1,−1,−0.25). The final time is set to tfinal = 2, the time step
is ∆t = 0.05, while the velocity domain is [−7; 7]3 discretized with N = 323 points. In Figure 6, we report
the initial data while in Figure 7, we report the relaxation to the equilibrium for the hard sphere model
on a fixed plane passing through the points of coordinates ±(−1,−1,−0.25) and of normal (−0.1,−0.1, 1)1.
In Figure 8, we report as before the comparison between the Boltzmann and the BGK model measuring
the L1 difference between the two distribution functions in time. Finally, in Figure 9 are presented the
details of such differences between the distribution functions for the red marked iterations of figure 8 at
vz = 0. As for the Maxwellian molecules in two dimensions, at the beginning of the simulation we observe

1This plane passes through the center of the two spheres defined by (50)

17



-8
-6

-4
-2

 0
 2

 4
 6

 8
u -8

-6
-4

-2
 0

 2
 4

 6
 8

v

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

-8
-6

-4
-2

 0
 2

 4
 6

 8
u -8

-6
-4

-2
 0

 2
 4

 6
 8

v

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

-8
-6

-4
-2

 0
 2

 4
 6

 8
u -8

-6
-4

-2
 0

 2
 4

 6
 8

v

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

Figure 6: Test 1.3. Sanity check — Initial distribution function for f(vx, vy , 0) middle, f(vx, vy , 0.25) left and f(vx, vy ,−0.25)
right. Hard sphere molecules.

the larger deviations between the two models while at the end they both converge to the same limit solution
as expected.
The results of these homogeneous tests (in two and in three dimensions in velocity) are meant to verify and
validate our implementation of the spectral discretization of the Boltzmann collisional operator. Moreover,
the differences observed between the two models justify the necessity of the Boltzmann operator for space
non homogeneous situations. We can now investigate the coupling of the Boltzmann operator with the Fast
semi-Lagrangian method for several space non homogeneous cases.

5.2. Part 2. Numerical results for the one dimensional case in space.
In this part, we focus on solving the one dimensional in space Boltzmann and BGK equations considering

a two or three dimensional dimensional velocity space setting. The purposes are twofold. First, we numer-
ically demonstrate that the FKS and the spectral accurate Boltzmann kernel solver may be appropriately
coupled and that they provide a valid kinetic solver for Boltzmann equations. Second, we show that BGK
and Boltzmann models provide different results, justifying the use of a more sophisticated model. For these
tests, a classical Riemann problem with Sod like initial data is considered

ρ = 1, u = 0, T = 2.5, if x ≤ L/2,
ρ = 0.125, u = 0, T = 0.25, if x > L/2,

with Ω = [0, 2]. Initial local thermodynamics equilibrium is considered for all tests: f(x, v, t = 0) =
M [f ](x, v, t = 0). The velocity space is set to Lv = [−15, 15] for all cases. Dirichlet boundary conditions
are set on the left/right boundaries of Ω. The two kinetic models are solved by employing a time rescaling
factor in order to put in evidence the role of the collisions in the solutions. The rescaled equations reads

∂tf + v · ∇xf = 1
τ
Q(f), (51)

where τ is the rescaled parameter (the frequency of relaxation) which plays the role of the non dimensional
Knudsen number. Smaller is the relaxation frequency, faster is the relaxation of the distribution function
towards the equilibrium state. However, the exact rate of convergence is dependent on the type of collision
considered either BGK or Boltzmann (Maxwellian molecules or hard spheres).

5.2.1. Test 2.1. Numerical convergence of the Boltzmann equation. The two dimensional in velocity
Maxwellian molecules case.

The two dimensional velocity space is first considered leading to a space/velocity mesh of the formM×N
with N = 642 and a varying number of space cellsM . In Figure 10, we present the space convergence results

18



Figure 7: Test 1.3. Sanity check for the hard sphere case at time t = 0, 0.25, 0.5 and tfinal = 2 for 32 points in each direction.
The Figure shows the relaxation to the Maxwellian state for the distribution function f(vx, vy , vz , t) on a plane which passes
from the points ±(−1,−1,−0.25) and of normal (−0.1,−0.1, 1).

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0  0.5  1  1.5  2

 |
|f
_

B
G

K
 -

 f
_

B
o

lt
z
||
 

time

1

5

iteration#10

20

Difference btw distribution functions

Figure 8: Test 1.3. Differences between the distribution functions obtained with the BGK and the Boltzmann models. Hard
sphere molecules in three dimensions. The distribution function values for the red marked iterations are depicted in Figure 9.

19



-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

Figure 9: Test 1.3. Differences in the distribution functions obtained by using the BGK and the Boltzmann models at t = 0.05,
t = 0.25, t = 0.5 and t = 1 from top-left to bottom-right for vz = 0. Hard sphere molecules in three dimensions.

20



for the density, the velocity and the temperature when the Boltzmann operator is solved. Successively refined
(doubled) spatial meshes are employed, from 50 to 400 up to final time tfinal = 0.15. From these data we
can observe that the simulation results seem to converge towards a given numerical solution in both cases
τ = 10−3 (left panels) and τ = 10−4 (right panels). We can also observe that the increase in mesh resolution
is profitable especially for smaller τ . This is the same behavior observed in [21]. In fact, the scheme
precision decreases as the equilibrium state is approached, being virtually exact in non collisional or almost
non collisional regimes. The loss of precision observed in fluid dynamic regimes can be recovered with a
similar technique as the one proposed in [22]. Here, however we do not consider this possibility. The CFL
condition employed is the following

∆t ≤ min
(

∆x
|vmax|

,
τ

ρ

)
, (52)

where the first term on the right hand side of the above equation comes from the will of keeping the error
small enough in the splitting scheme, while the second term is due to the stability restriction in the solution
of the space homogeneous problem when Maxwellian molecules are employed. In fact, in this case the loss
part of the collision integral Q−(f) can be estimated, giving Q−(f) = ρ(f)f .

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 50 cells

Boltzmann 100 cells

Boltzmann 200 cells

Boltzmann 400 cells

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 50 cells

Boltzmann 100 cells

Boltzmann 200 cells

Boltzmann 400 cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 50 cells

Boltzmann 100 cells

Boltzmann 200 cells

Boltzmann 400 cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 50 cells

Boltzmann 100 cells

Boltzmann 200 cells

Boltzmann 400 cells

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 50 cells

Boltzmann 100 cells

Boltzmann 200 cells

Boltzmann 400 cells

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 50 cells

Boltzmann 100 cells

Boltzmann 200 cells

Boltzmann 400 cells

Figure 10: Test 2.1. One dimension in space and two dimension in velocity Boltzmann model with Maxwellian molecules for a
Sod like test case at tfinal = 0.15. Mesh convergence results for τ = 10−3 (left) and τ = 10−4 (right). Density (top), velocity
(middle) and temperature (bottom) are shown for M = 50, 100, 200, and 400 cells and N = 642 velocity cells.

21



5.2.2. Test 2.2. Comparisons between the BGK model and the Boltzmann model. The two dimensional in
velocity Maxwellian molecules case.

Here, the BGK and Boltzmann models are simulated for the same Sod-like problem. In order to have
fairest as possible comparisons between the two models, we choose ν = ρ for the BGK model. This choice
permits to have the same loss part for the two models since for Maxwellian molecules the loss part is close
to ρf as stated in the previous paragraph. We fix M = 800 spatial cells and N = 642 cells in velocity space.
This permits to consider almost converged results. In Figure 11, we present the results when τ = 10−3 (left)
and τ = 10−4 (right) for the density (top), the velocity (middle top), the temperature (middle bottom) and
the heat flux (bottom). The very first observation is the relative large differences between the two solutions.
The Boltzmann solution systematically presents more dissipated waves than BGK solution. However, the
main waves are located in the same positions for the two models. The difference in term of the macroscopic
quantities can be of the order of 10%− 25% of the solution. Systematically, the BGK model underestimates
the values of the heat flux. In Figure 12 we report the absolute value of the difference between the two
distribution functions fBGK(x, v, t) and fBoltz(x, v, t) at different locations xj and at final time tfinal as a
function of the velocity variables v. The vertical scale is kept constant for all panels, only the color scale is
adapted to the values reported.

5.2.3. Test 2.3. Numerical convergence of the Boltzmann equation. The three dimensional in velocity hard
sphere molecules case.

Let us focus on the one dimension in space and three dimensions in velocity case. We consider the same
Sod-like problem up to final time tfinal = 0.5 and two different collision frequencies τ = 10−2 and τ = 2 10−3.
The space/velocity mesh chosen is of the form M ×N with N = 323 uniformly spread on a velocity domain
[−16; 16]3 and varying number of space cells M . In Figure 13, we present the space convergence results for
the density, the velocity and the temperature for successively refined spatial meshes from 32 to 128. From
these data we can observe that the simulation results seem to converge towards the same numerical solution
in both cases τ = 10−2 (left panels) and τ = 2 10−3 (right panels). The CFL condition employed in this
case is the following

∆t ≤ min
(

∆x
|vmax|

,
τ

µ

)
, (53)

where the second term is due to the stability restriction in the solution of the space homogeneous problem
when hard sphere molecules are employed. In this case, the loss part of the collision integral Q−(f) can be
only estimated, giving Q−(f) = L(f)f ≤ Cα4π(2λπ)α and thus µ ≥ Cα4π(2λπ)α in order to ensure that
the gain part Q+(f) is positive and monotone. We have also performed comparisons between the BGK and
the Boltzmann models in this one dimensional setting. The results are close to the ones obtained for the
two dimensional Maxwell molecules, i.e. the BGK model tends to over-relax the distribution function to the
equilibrium state and for this reason we do not report them. However, since the computational costs involved
in the approximation of the Boltzmann integral in the three dimensional setting are much larger than those
obtained with the simpler two dimensional model, in the next paragraph we analyze the performances of
the scheme proposed in both cases.

5.2.4. Performances
In this part, we analyze the performances of our scheme in the one dimensional in space setting. In

Table 3 we monitor the CPU time for the Boltzmann and BGK operators when a successively refined spatial
mesh is considered for a fixed two and three dimensional velocity mesh. The data reported are relative to
the same Sod-like problem considered in the previous paragraphs. We employ 642 velocity cells in the two
dimensional case and 323 in the three dimensional case. The number of spatial cells is M = 100, 200 and
400 in the two dimensional case and M = 32, 64, and 128 in the three dimensional one. More precisely, we
measure the CPU time T in seconds, the time per cycle as Tcycle = T/Ncycle, the time per cycle per spatial
cell by Tcell = T/Ncycle/M and the time per cycle per degree of freedom (d.o.f) Tdof = T/Ncycle/(M ×N).
The OpenMP parallel version of the scheme is used on a laptop having 8 threads (HP ZBook with Intel 8
Core i7-4940MX CPU @ 3.10GHz on Ubuntu 15.10 (64 bits)). These simulations have been run in parallel

22



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

BGK 800 cells

Boltzmann 800 cells

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

BGK 800 cells

Boltzmann 800 cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

BGK 800 cells

Boltzmann 800 cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

BGK 800 cells

Boltzmann 800 cells

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

BGK 800 cells

Boltzmann 800 cells

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

BGK 800 cells

Boltzmann 800 cells

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

BGK 800 cells

Boltzmann 800 cells

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

BGK 800 cells

Boltzmann 800 cells

Figure 11: Test 2.2. One dimension in space and two dimension in velocity Boltzmann model with Maxwellian molecules (blue)
and a BGK model (red) for a Sod like test case at tfinal = 0.15 for τ = 10−3 (left) and τ = 10−4 (right). Density (top), velocity
(middle top), temperature (middle bottom) and heat flux (bottom) are shown for M = 800 cells and N = 642 velocity cells.

23



Cell 323

-15
-10

-5
 0

 5
 10

 15
u

-15

-10

-5

 0

 5

 10

 15

v

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

Cell 401

-15
-10

-5
 0

 5
 10

 15
u

-15

-10

-5

 0

 5

 10

 15

v

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

Cell 479

-15
-10

-5
 0

 5
 10

 15
u

-15

-10

-5

 0

 5

 10

 15

v

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

323

401 479

533

563 641

BGK 800 cells

Boltzmann 800 cells Cell 533

-15
-10

-5
 0

 5
 10

 15
u

-15

-10

-5

 0

 5

 10

 15

v

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

Cell 563

-15
-10

-5
 0

 5
 10

 15
u

-15

-10

-5

 0

 5

 10

 15

v

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

Cell 641

-15
-10

-5
 0

 5
 10

 15
u

-15

-10

-5

 0

 5

 10

 15

v

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

Figure 12: Test 2.2. One dimension in space and two dimension in velocity at tfinal = 0.15 for BGK and Boltzmann models for
τ = 10−3 with M = 800 and N = 642 velocity cells. Middle panel: temperature for the two models. The arrows indicate the
regions for which the difference of the two distribution functions |fBGK(xi, v)− fBoltz(xi, v)| is reported. The vertical scale is
kept constant, only the color scale is adapted to the values.

on non dedicated computer, as such the results are to be understood as rough estimates. By no mean we
pretend that they cannot be improved. In the two dimensional case in velocity, the Boltzmann model results
are about 15 times more expensive than the BGK model, while in three dimensions, it can reach about 250
times. Notice that, as expected, these ratio do increase when the collision frequency τ becomes smaller, for
instance when τ = 2 × 10−3 in three dimensions then the ratio in CPU time between the two models is of
the order of 500. Let us notice that the number of cycles for hard sphere molecules is fixed for the reported
simulations. This is due to the fact that the hard sphere model considered has a stability condition which
is more restrictive than the CFL condition chosen for the transport part as opposite to the Maxwellian
molecule model for the two dimensional case. For fair comparison, the number of cycles of the two models
has been kept constant in the computation of the costs, even if, the space homogeneous BGK model does
not present stability requirements. Next in table 4 we monitor the CPU time of the simulation when the
number of cells is fixed in space to M = 100. The number of velocity cells increases from N = 82 to 642

in two and from N = 83 to 643 in three dimensions. The same Sod test case as in table 3 is simulated.
Because the CPU times have been obtained by parallel simulations, the analysis of such table must take
into account the fact that the dimension of the mesh plays a role in the performance. For instance, in two
dimensions, the smaller mesh (100× 82) usually presents a larger CPU time per degree of freedom. This is
due to the fact that a decent amount of cells is needed to observe the benefit of using a parallel machine.
For the Boltzmann simulations, in three dimensions, 8 velocity cells in each direction is not large enough
to have a stable simulation. This is probably due to the large loss of energy caused by the spectral method

24



Sod like Riemann problem in 1D×2D τ = 10−3

M
od

el Velocity Cell # Cycle Time T/cycle T/cell T/d.o.f

N Ve
l.

M ×N Ncycle T (s) Tcycle (s) Tcell (s) Tdof (s)

B
G

K

642

[−
15
,1

5]

100× 642
111 0.935 8.42× 10−3 8.42× 10−5 2.06× 10−8

' 4.1× 105

200× 642
222 2.738 1.23× 10−2 6.17× 10−5 1.51× 10−8

' 8.2× 105

400× 642
436 7.822 1.77× 10−2 4.41× 10−5 1.08× 10−8

' 16.4× 105

B
ol

tz
m

an
n

642

[−
15
,1

5]

100× 642
111 8.174 7.36× 10−2 7.36× 10−4 5.64× 10−8

' 4.1× 105

200× 642
218 28.095 1.27× 10−1 6.33× 10−4 4.42× 10−8

' 8.2× 105

400× 642
443 113.495 2.56× 10−1 6.40× 10−4 1.56× 10−7

' 16.4× 105

Sod like Riemann problem in 1D×3D τ = 10−2

M
od

el Velocity Cell # Cycle Time T/cycle T/cell T/d.o.f

N Ve
l.

M ×N Ncycle T (s) Tcycle (s) Tcell (s) Tdof (s)

B
G

K

32

[−
16
,1

6]

32× 322
395 12.64 3.20× 10−2 1.00× 10−3 3.05× 10−8

' 1.05× 106

64× 322
395 19.55 4.95× 10−2 7.73× 10−4 2.36× 10−8

' 2.10× 106

128× 322
395 40.75 1.03× 10−1 8.06× 10−4 2.46× 10−8

' 4.19× 106

B
ol

tz
m

an
n

32

[−
16
,1

6]

32× 322
395 2104.17 5.33 1.66× 10−1 5.08× 10−6

' 1.05× 106 ∼ 35mn
64× 322

395 4799.19 12.10 1.90× 10−1 5.79× 10−6
' 2.10× 106 ∼ 1.3h

128× 322
395 9114.56 23.10 1.80× 10−1 5.50× 10−6

' 4.19× 106 ∼ 2.5h

Table 3: One dimensional in space, two dimensional in velocity Maxwellian molecules and three dimensional in velocity hard
sphere molecules simulations. Comparisons between the BGK and Boltzmann models for spatial mesh variation. Monitoring
of CPU time. Time per cycle is obtained by Tcycle = T/Ncycle, time per cycle per cell by Tcell = T/Ncycle/M and time per
cycle per degree of freedom Tdof = T/Ncycle/(M ×N).

25



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 32 cells

Boltzmann 64 cells

Boltzmann 128 cells

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 32 cells

Boltzmann 64 cells

Boltzmann 128 cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 32 cells

Boltzmann 64 cells

Boltzmann 128 cells

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 32 cells

Boltzmann 64 cells

Boltzmann 128 cells

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 32 cells

Boltzmann 64 cells

Boltzmann 128 cells

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Boltzmann 32 cells

Boltzmann 64 cells

Boltzmann 128 cells

Figure 13: Test 2.3: One dimension in space and three dimension in velocity for Sod like test case at tfinal = 0.5 for the hard
sphere molecules case. Mesh convergence results for τ = 10−2 (left) and τ = 2 10−3 (right). Density (top), velocity (middle)
and temperature (bottom) are shown for M = 32, 64 and 128 cells and N = 323 velocity cells.

which can be only partly cured by the L2 projection technique detailed in Section 3.2. In fact, even if such
renormalization permits to keep the correct energy after the collision step, it may transform the distribution
function in an unphysical manner. This operation repeated multiple times give rise to instability in the
spectral scheme. However, for completeness using the first completed iterations we report in the table an
approximation of the CPU time that would be needed using this small amount of points. The Hard Sphere
molecule simulations, as can be seen on the Figures reported, are extremely time consuming already in the
one dimensional case in space. In two dimensions, the cost of the Boltzmann model is about 3 to 8 times
(from the smallest to largest mesh) more expensive than the BGK model. In three dimensions, this ratio
ranges between 40 and 700 times.

5.3. Part 3. Numerical results for the space two dimensional case.
In this part, we focus on solving the two dimensional in space and velocity Boltzmann and BGK equations.

The purposes are twofold. First, we want to show the differences which arises between the two models.
Second, we want to analyze the performances of the method in the two dimensional setting by monitoring
the cost of such simulations and by performing a profiling of the scheme in terms of the main routines in
order to highlight the eventual bottlenecks. This permits to understand in which part of the scheme one

26



Sod like Riemann problem in 1D×2D τ = 10−3

M
od

el Velocity Cell # Cycle Time T/cycle T/cell T/d.o.f

N Ve
l.

M ×N Ncycle T (s) Tcycle (s) Tcell (s) Tdof (s)

B
G

K

82

[−
15
,1

5]

100× 82
105 0.126 1.20× 10−3 1.20× 10−5 1.87× 10−7

' 6.4× 104

162 100× 162
106 0.265 2.50× 10−3 2.50× 10−5 9.78× 10−8

' 2.56× 104

322 100× 322
109 0.291 2.67× 10−3 2.67× 10−5 2.61× 10−8

' 1.024× 105

642 100× 642
111 0.935 8.42× 10−3 8.42× 10−5 2.06× 10−8

' 4.096× 105

B
ol

tz
m

an
n

82

[−
15
,1

5]

100× 82
105 0.387 3.69× 10−3 3.69× 10−5 5.76× 10−7

' 6.4× 104

162 100× 162
106 0.733 3.69× 10−3 3.69× 10−5 5.76× 10−7

' 2.56× 104

322 100× 322
109 2.302 2.11× 10−2 2.11× 10−4 2.06× 10−7

' 1.024× 105

642 100× 642
111 7.834 7.06× 10−2 7.06× 10−4 1.72× 10−7

' 4.096× 105

Sod like Riemann problem in 1D×3D τ = 10−2

M
od

el Velocity Cell # Cycle Time T/cycle T/cell T/d.o.f

N Ve
l.

M ×N Ncycle T (s) Tcycle (s) Tcell (s) Tdof (s)

B
G

K

83

[−
15
,1

5]

100× 83
395 0.126 1.20× 10−3 1.20× 10−5 1.87× 10−7

' 5.12× 104

163 100× 163
395 0.265 2.50× 10−3 2.50× 10−5 9.78× 10−8

' 4.10× 105

323 100× 323
395 0.291 2.67× 10−3 2.67× 10−5 2.61× 10−8

' 3.28× 106

643 100× 643
395 0.935 8.42× 10−3 8.42× 10−5 2.06× 10−8

' 2.62× 107

B
ol

tz
m

an
n

83

[−
15
,1

5]

100× 83
395 FAIL FAIL FAIL FAIL

' 5.12× 104 (∼ 25) (∼ 6.50× 10−2) (∼ 6.50× 10−4) (∼ 1.27× 10−6)

163 100× 163
395 241 6.11× 10−1 6.11× 10−3 1.49× 10−6

' 4.10× 105 ∼ 4mn

323 100× 323
395 6438 1.63× 101 1.63× 10−1 4.97× 10−6

' 3.28× 106 ∼ 1.8h

643 100× 643
395 79099 2.00× 102 2.00× 100 7.64× 10−6

' 2.62× 107 ∼ 22h

Table 4: One dimensional in space, two dimensional in velocity Maxwellian molecules and three dimensional in velocity
hard sphere molecules simulations. Simulations are performed using the OpenMP version of the scheme run on 8 hreads.
Comparisons between the BGK and Boltzmann models for velocity mesh variation. Monitoring of CPU time. Time per cycle
is obtained by Tcycle = T/Ncycle, time per cycle per cell by Tcell = T/Ncycle/M and time per cycle per degree of freedom
Tdof = T/Ncycle/(M ×N).

27



should concentrate to improve the efficiency in the future. For all reported simulations Maxwellian molecules
are considered for the Boltzmann model. The CFL condition employed is as for the one dimensional case
and for all tests the following

∆t ≤ min
(

∆x
|vmax|

,
τ

ρ

)
. (54)

5.3.1. Test 3.1. Two dimensional vortex in motion.
The test case consists of an isentropic vortex in motion initially introduced for the collisional regime, i.e.

the compressible Euler equations, in two dimensions in [50]. This problem has an exact smooth solution
expressed analytically in the fluid regime. The computational domain is Ω = [0, 10]2. The ambient flow is
characterized by a gas with density, mean velocity and temperature respectively of ρ∞ = 1.0, ux,∞ = 1.0,
uy,∞ = 1.0, T∞ = 1.0. A vortex is centered at (xv, yv) = (5, 5) and supplemented at the initial time t = 0
with conditions ux(t = 0) = ux,∞ + δu, uy(t = 0) = uy,∞ + δv, T (t = 0) = T∞ + δT with

δux = −y′ β2π exp
(

1− r2

2

)
, δuy = x′

β

2π exp
(

1− r2

2

)
, δT = − (γ − 1)β

8γπ2 exp
(
1− r2) ,

where r is the Euclidean distance in the two dimensional space, i.e. r =
√
x′2 + y′2, and x′ = x− xv, y′ =

y − yv. The vortex strength depends on the value β fixed here to 5.0. The initial density is given by

ρ(t = 0) = ρ∞

(
T (t = 0)
T∞

) 1
γ−1

=
(

1− (γ − 1)β
8γπ2 exp

(
1− r2)) 1

γ−1

. (55)

Periodic boundary conditions are prescribed everywhere. At the final time chosen: tfinal = 10, the vortex
is back to its original position and, in the collisional regime, the initial and final conditions are alike. In
a rarefied regime, the exact solution is not known, but at least the cylindrical symmetry of the problem
must be retrieved. M = 100× 100 uniform spatial cells are considered on domain [0; 10]2 with N = 32× 32
uniform velocity cells on a velocity domain [−7.5; 7.5]2. The relaxation frequency is fixed to τ = 10−1. The
initial data are presented in Figure 14.

This problem is simulated using both the BGK and Boltzmann models with ν = ρ for the BGK case.
The results are presented in Figure 15 where density, temperature and the velocity are plotted. The top
line presents BGK model results while the bottom line presents Boltzmann ones. The same scale is used to
ease the comparison. The velocity fluctuation (δux, δuy) is represented with the same scaling as to observe
that the vortex is more dissipated by the Boltzmann model than by BGK one. In Figure 16 we replot the
initial density along with the final BGK and Boltzmann results using the same color scale used for showing
the initial data. From the Figures we can observe that both models reproduce a vortex at the correct final
location but with different rates of dissipation. The BGK model furnishes results closer to the compressible
Euler solution results which means over-relaxation.

We analyze now the performances of the scheme. In order to obtain the previous results both models
used 1400 time steps to reach tfinal. This result is due to the choice of the time integrator: the same for
both models. The Open MP version of the code is run on 8 cores and the total CPU times on a laptop
HP ZBook Intel Core i7-4940MX CPU @ 3.10GHz×8 operated by Ubuntu 15.10 64bits, are of the order
CPUBGK ' 102s, and CPUBoltz ' 2008s. We split the code in several distinct and conceptually important
parts which are denoted as Transport, ToConservative, ToPrimitive, and Collision. The first
routine implements the transport phase, the last routine implement the collision phase, while the two routines
in the middle reconstruct the conserved macroscopic and primitive variables from the kinetic distribution.
These two routines are necessary for defining the Maxwellian distribution for performing the collision step
in the BGK model, while they only serve to show the results for the Boltzmann model. Moreover, since
the macroscopic quantities change only due to the transport phase, one can think to associate the cost of
these routines to the transport part. All routines are monitored during a simulation of the vortex problem
using the same mesh reported above. The results are reported in Table 5. The Boltzmann model is 20 times
more expensive than BGK one. More in details, the relative cost of the collision steps jumps from 70% for

28



 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

Figure 14: Test 3.1. Two dimensional vortex test case for τ = 10−1 with M = 100 × 100 spatial cells and N = 322 velocity
cells. Initial density, temperature and velocity vector (δux, δuy).

Cycle CPU Main routines Cost CPU Cost
(s) vs total (s) vs total (%)

B
G

K

1400 102

Transport 0.36 0.35%

ToConservative 30.26 29.77%

ToPrimitive 0.19 0.19%

Collision 70.83 69.69%

= 101.64 100%

B
ol

tz
m

an
n

1400 2008

Transport 1.06 0.053%

ToConservative 66.75 3.325%

ToPrimitive 0.29 0.015%

Collision 1939.63 96.61%

= 2007.73 100%

Table 5: Profiling of the average cost for each routine of the code on the test 3.1. (two dimensional vortex problem) simulated
on a laptop using M = 1002 and N = 322 points.

BGK model to 97% for Boltzmann model. Indeed, while for the BGK model, the collision routine and the
routine recomputing the conservative variables have some impact on the total CPU time, for the Boltzmann
model the collision part is the only one participating to the global cost at least for the mesh used. We
finally gather in Table 6 the results in terms of computational costs when the number of spatial cell in each
direction doubles from M = 252 to M = 2002 keeping the number of velocity cell fixed to N = 32 × 32 on
velocity domain [−7.5; 7.5]2. We monitor the number of cycles, the CPU time T in second(s), and the time
per cycle is obtained by Tcycle = T/Ncycle, the time per cycle per cell by Tcell = T/Ncycle/M and the time
per cycle per degree of freedom Tdof = T/Ncycle/(Md × Ndv ). Doubling the number of spatial cells leads
to an increase in CPU time by a factor 7 to 8 for both models and the number of time cycles is exactly
doubled. Boltzmann model demands on average 20 times more CPU resources than the BGK one. The
time per cycle per cell Tcell is rather constant (7.5 × 10−6 for BGK and 1.4 × 10−4 for Boltzmann (thanks
to the almost linear complexity of the fast spectral solver), it becomes relatively easy to estimate the cost
of further refined simulations keeping the velocity mesh fixed.

5.3.2. Test 3.2. Re-entry test in two dimensions with changing angle of attack in time.
This test is inspired from re-entry test cases described in [51, 23]. The computational domain is set

to Ω = [0; 4] × [0; 4]. Within this domain we initiate three static objects, two small rectangles upfront
([x0;x1]× [y0; y1] and [x0;x1]× [y′0; y′1]) and one larger one behind ([x′0;x′1]× [(y0 +y′0)/2; (y1 +y′1)/2]) where
x0 = 1.5, x1 = 1.7, x′0 = 1.8, x′1 = 2, y0 = 1.7, y1 = 1.95, y′0 = 2.05, y′1 = 2.3. The computational mesh in
physical space is made of 800× 800 square cells. The velocity space is [−10, 10] and is discretized with 322

29



Density Temperature Velocity

B
G

K
re

su
lt

s

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

 0.96

 0.98

 1

 1.02

 1.04

 0.95
 0.96

 0.97

 0.98

 0.99
 1

 1.01

 1.02

 1.03

 1.04

 1.05

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

 0.96

 0.98

 1

 1.02

 1.04

 1
 1.005

 1.01

 1.015

 1.02
 1.025

 1.03

 1.035

 1.04

 1.045
 1.05

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

B
ol

tz
m

an
n

re
su

lt
s

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

 0.96

 0.98

 1

 1.02

 1.04

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

 0.96

 0.98

 1

 1.02

 1.04

 1.012

 1.014

 1.016

 1.018

 1.02

 1.022

 1.024

 1.026

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

Figure 15: Test 3.1. Two dimensional vortex test case for τ = 10−1 with M = 100 × 100 spatial cells and N = 322 velocity
cells. Top/bottom line: results for BGK/Boltzmann models at tfinal = 10.0. Left to right: density, temperature, velocity vector
(δux, δuy).

points. We report the solution obtained in the fluid regime, i.e. τ = 0, obtained by projecting the distribution
f over the equilibrium stateM after each transport phase and the results obtained with τ = 10−2 using both
BGK and Boltzmann models. The initial density is set to ρ(t = 0) = 1, the velocity (ux, uy)(t = 0) = (3, 0)
and the temperature to T (t = 0) = 1 everywhere. The final time is set to tfinal = 10. On the boundaries
with the objects reflective boundary conditions are employed. Inflow boundary conditions are imposed to
the west boundary whereas outflow boundary conditions are set elsewhere. The inflow boundary conditions
are evolving in time and equal to

(ux, uy)BC(t) =


(3, 0) if 0 ≤ t ≤ t1
(
√

9− g2(t), g(t)) if t1 ≤ t ≤ t2
( 3
√

2
2 , 3

√
2

2 ) if t2 ≤ t ≤ tfinal
(56)

where t1 = 3/2, g(t) = t− t1 and t2 = 3
√

2/2+ t1. Given these initial data, we expect a detached shock wave
to occur upfront the objects and some complex wave pattern behind them. Moreover, setting the inflow
boundary conditions to (56) splits the simulation into three stages. The first stage consists in the inflow
boundary conditions facing the objects up to t1. For this stage the upfront detached shock and the complex
flow structure behind the objects are formed but they are not yet steady. Next, for the second stage, the
inflow boundary condition is changing its direction by smoothly increasing the y component of (ux, uy)BC(t)
up to t = t2. Note that this mimics a modification of the angle of attack of the objects with time. This
change modifies the entire flow structure. Last, for the third stage the inflow boundary condition is fixed to
(ux, uy)BC = (u0, v0) up to the final time. As such the flow reaches an almost steady state.

In Figure 17 we present the results for nine intermediate times when τ = 0 for the density. These results
correspond to the fluid limit model that could be obtained when solving compressible Euler equations. Next,
in Figures 18 and 19, we compare the BGK results (top row) with the Boltzmann ones (middle row) for
intermediate iterations 4500, 12000 and 20000 for τ = 10−2 for respectively the density and the temperature.
In the bottom row, it is shown the differences between the two models in terms of density and temperature.
The color legend is the same for the first two rows for both Figures and it can be found in Figure 17, while
for the bottom rows they are shown in the pictures.

30



Initial density BGK model results Boltzmann model results

Figure 16: Test 3.1. Two dimensional vortex test case for τ = 10−1 with M = 100 × 100 spatial cells and N = 322 velocity
cells. Left: initial density. Middle/right: results for BGK/Boltzmann model at tfinal = 10.0 using the same color scale of the
initial density.

In order to conclude this part, let us present some performance data related to those simulations. The
total amount of CPU time needed to compute the Ncycle = 26000 cycles for the BGK solution is 14.5h,
while for Boltzmann model is 304h= 12.67d. The ratio is of the order 21 in favor of BGK consistently
with the previous simulations. However, even if Boltzmann results demand a large amount of CPU time,
we have seen that discrepancies do exist with respect to BGK model and in some cases, especially far from
equilibrium, they cannot be ignored.

5.4. Part 4. Numerical results for the space three dimensional case.
In this last part, we present one numerical test in which we compare the relaxation model with the

Boltzmann model in three space and velocity dimensions in a kinetic regime. Solving the full Boltzmann
equation in three dimensions is extremely resource consuming, even if the fast spectral methods is used and
consequently shared memory systems are not sufficient for this kind of problems. For this reason, only for
this last case we adapted the method to distributed memory systems by employing MPI architecture as
already stated and described in Section 4. The results reported for this situation are not to be intended
as optimal since we are adapting the scheme to this kind of architecture and improvements in terms of
efficiency are attended in the next future.

5.4.1. Test 4.1. Three dimensional re-entry test case.
The computational domain is set to Ω = [0, 2]3 with a static cuboid placed in the center (see Fig.20). The

velocity space is [−10, 10]3 and discretized with 323 points. The relaxation parameter is set to τ = 0.3. The
initial density ρ is set to 1, the temperature T = 1 while the initial velocity is given by (ux, uy, uz) = (2, 0, 0).
The final time is set to tfinal = 0.6 leading to 379 time steps. The inflow boundary conditions are imposed
on the left boundary (x = 0) while outflow boundary conditions on the remaining part of the boundary are
imposed. Hard sphere molecules are considered for Boltzmann while for the BGK model the frequency ν is
taken equal to µ = Cα4π(2λπ)α. For both models the CFL condition considered is consequently given by

∆t ≤ min
(

∆x
|vmax|

,
τ

µ

)
. (57)

The results are shown for the temperature and the density in Figure 20 while the discrepancies between
the two in Figure 21. From the analysis of such results it clearly emerge a difference in the profiles of the
macroscopic quantities between the two models. We now analyze the performances. This test case was
run on the EOS supercomputer at CALMIP, Toulouse France (https://www.calmip.univ-toulouse.fr/).
The supercomputer is equipped with 612 computational nodes, each of them containing two Intel R© Ivybridge
2.8GHz 10 core CPUs and 64 GB of RAM. Each CPU is equipped with 25MB of cache memory. The code

31



Figure 17: Test 3.2. Two dimensional re-entry test case for τ = 0 with M = 800× 800 spatial cells and N = 322 velocity cells.
Density profile. Top-left to bottom-right iterations 500, 1400, 4500, 8000, 10000, 12000, 14000, 16000, 20000.

32



Figure 18: Test 3.2. Two dimensional re-entry test case for τ = 10−2 with M = 800 × 800 spatial cells and N = 322 velocity
cells. BGK model (top row) Boltzmann model (middle row), difference between the two models (bottom row) at iterations
4500, 12000 and 20000. The color legend for the first two rows can be found in figure 17. Density profile.

33



Figure 19: Test 3.2. Two dimensional re-entry test case for τ = 10−2 with M = 800 × 800 spatial cells and N = 322 velocity
cells. BGK model (top row) Boltzmann model (middle row), difference between the two models (bottom row) at iterations
4500, 12000 and 20000. The color legend for the first two rows can be found in figure 17. Temperature profile.

34



BGK-Boltzmann

BGK Boltzmann

Figure 20: Test 4.1. Three dimensional re-entry test case for τ = 0.3 with M = 90 × 90 × 90 spatial cells and N = 323

velocity cells. BGK model (left column), Boltzmann model (right column) at time tfinal = 0.6. Top row: temperature field
with velocity streamlines, bottom row: isosurfaces of the density. Middle row: isosurfaces of the density difference between
BGK and Boltzmann models.

35



Vortex problem in two dimension

M
od

el Velocity Cell # Cycle Time T/cycle T/cell T/d.o.f

N Ve
l.

Md ×Ndv Ncycle T (s) Tcycle (s) Tcell (s) Tdof (s)

B
G

K

322

[−
7.

5,
7.

5]

252 × 322
351 2.61 0.0035 5.60× 10−6 5.47× 10−9

= 64× 104

502 × 322
701 13.77 0.0196 7.84× 10−6 7.66× 10−9

= 256× 104

1002 × 322
1400 102.42 0.0732 7.32× 10−6 7.15× 10−9

= 1024× 104

2002 × 322
2800 785.54 0.2806 7.02× 10−6 6.85× 10−9

= 4096× 104

B
ol

tz
m

an
n

322

[−
7.

5,
7.

5]

252 × 322
351 32.92 0.0938 1.50× 10−4 1.47× 10−7

= 64× 104

502 × 322
701 245.03 0.350 1.40× 10−4 1.37× 10−7

= 256× 104

1002 × 322
1400 2008.56 1.435 1.44× 10−4 1.40× 10−7

= 1024× 104

2002 × 322
2800 15762 5.630 1.41× 10−4 1.37× 10−7

= 4096× 104

Table 6: Test 3.1. Two dimensional vortex problem simulations with spatial mesh variation. Monitoring of CPU time. Time
per cycle is obtained by Tcycle = T/Ncycle, time per cycle per cell by Tcell = T/Ncycle/M and time per cycle per degree of
freedom Tdof = T/Ncycle/(Md ×Ndv ).

density temperature

Figure 21: Test 4.1. Three dimensional re-entry test case for τ = 0.3 with M = 90 × 90 × 90 spatial cells and N = 323

velocity cells. Discrepancies between the BGK solution and the Boltzmann solution at time tfinal = 0.6. Density on the left
and temperature on the right.

36



Cycle CPU Main routines Cost CPU Cost
(s) vs total (s) vs total (%)

B
G

K

379 2174

Transport 0.03 <0.1%

ToConservative 1126 52%

ToPrimitive 0.06 <0.1%

Collisions 217 10%

MPI comm. 825 38%

= 2168 100%

B
ol

tz
m

an
n

379 93713

Transport 0.5 <0.1%

ToConservative 1127 1.2%

ToPrimitive 0.07 <0.1%

Collisions 89396 95.4%

MPI comm. 3190 3.4%

= 93713 100%

Table 7: Profiling of the average cost for each routine of the code on the test 4.1. (three dimensional re-entry test case)
simulated using M = 903 and N = 323 points.

was compiled with gcc-5.3.0 and executed on 90 computational nodes. That is to say, on 1800 computational
cores in parallel. In the case of the Boltzmann collision operator the Fast Fourier Transforms were computed
by means of the fftw library, version 3.3.4. The total runtime was equal to t = 93713s (26h) for the
Boltzmann model. This is equivalent to 46000 computational hours (3.25 years) on a sequential machine.
On the other hand, the runtime for the BGK model was only t = 2174s (0.6h) with a ratio 43 in favor
of the simpler relaxation model. The profiling data are summarized in Table 7. The communications and
MPI synchronization take 38% of the computational time for BGK equation. On the other hand, for the
Boltzmann model the time spent on communications and synchronization amounts merely to 3.4% of the
total runtime. This is due to extreme computational complexity of the three dimensional Boltzmann collision
kernel. As discussed in the previous paragraphs, the costs relatives to the routines ToConservative,
ToPrimitive which are relative to the computation of the macroscopic variables from the distribution
function can be imputed to the transport phase, since this is the only part of the scheme which modifies
these quantities, since collisions preserves density, momentum and energy in the cell.

6. Conclusion and perspectives

In this paper we have generalized the Fast Kinetic Scheme [21, 22, 24, 30] to the challenging case of the
Boltzmann collision integral. We have shown that it is possible to solve the full unsteady three dimensional
Boltzmann equation with variable hard sphere kernel in a reasonable amount of time by using parallel
architectures. Up to the author knowledge, the results reported in this paper represent one of the very first
attempts of solving the seven dimensional Boltzmann model with deterministic numerical schemes. This
has been made possible by combining a fast semi-Lagrangian approach for the transport part with a fast
spectral method for the collision dynamic.

We have performed several numerical tests with the aim of detailing the behavior of the method in
different situations in order to understand its strengths and weaknesses. A side scope of the paper has been
to show the differences that arise between the Boltzmann model and the popular BGK relaxation model.

Differences have been observed to be large far from equilibrium situations.
In the future, we aim in working in the direction of additionally improving the fast spectral method

since we have observed it to be one of the main bottleneck of the scheme by using for instance different
grids during the transport and the collision phases. Another fundamental direction we aim to pursue is
the optimization of the MPI parallelization which is necessary for considering more realistic applications as

37



well as the development of techniques for treating complex boundaries. Finally, the extension of the present
scheme to plasmas is under study.

Acknowledgments

The authors would like to thanks Professor Francis Filbet from the University of Toulouse III, Professor
Rémi Abgrall and Dott. Tulin Kaman from the institute of mathematics in Zürich, Switzerland for their
suggestions and help.
This work has been supported by the Galileo project G14 (Fast Asymptotic-Preserving and semi-Lagrangian
schemes for High Performance Computing : applications to plasmas) from the Franco-Italian University and
by the ANR project MOONRISE (MOdels, Oscillations and NumeRIcal SchEmes, 2015-2019). Thomas Rey
was partially funded by Labex CEMPI (ANR-11-LABX-0007-01).
This work was granted access to the HPC resources of CALMIP supercomputing center under the allocation
2016-P1542 and the authors acknowledge the help from CALMIP.

References

[1] C. Cercignani, The Boltzmann equation and its applications, Vol. 67 of Applied Mathematical Sciences, Springer-Verlag,
New York, 1988.

[2] G. Dimarco, L. Pareschi, Numerical methods for kinetic equations, Acta Numer. 23 (2014) 369–520.
[3] F. Filbet, C. Mouhot, L. Pareschi, Solving the Boltzmann equation in N log2 N, SIAM J. Sci. Comput. 28 (3) (2007)

1029–1053.
[4] L. Pareschi, G. Russo, Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision

operator, SIAM J. Numer. Anal. 37 (4) (2000) 1217–1245.
[5] G. Dimarco, L. Pareschi, High order asymptotic-preserving schemes for the Boltzmann equation, C. R. Math. Acad. Sci.

Paris 350 (9-10) (2012) 481–486.
[6] G. Dimarco, L. Pareschi, Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations,

SIAM J. Numer. Anal. 51 (2) (2013) 1064–1087.
[7] S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Math. Univ.

Parma (N.S.) 3 (2) (2012) 177–216.
[8] S. Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms, J. Comp. Phys. 122 (1995)

51–67.
[9] S. Jin, Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput. 21 (1999)

441–454.
[10] M. Bennoune, M. Lemou, L. Mieussens, Uniformly stable numerical schemes for the Boltzmann equation preserving the

compressible Navier-Stokes asymptotics, J. Comp. Phys. 227 (2008) 3781–3803.
[11] P. Degond, Asymptotic-preserving schemes for fluid models of plasmas, Panoramas et Syntheses SMF.
[12] G. Bird, Molecular gas dynamics and the direct simulation of gas flows, 2nd Edition, Oxford University Press, 1994.
[13] R. E. Caflisch, Monte carlo and quasi-monte carlo methods, Acta numerica 7 (1998) 1–49.
[14] N. Crouseilles, T. Respaud, E. Sonnendrücker, A forward semi-lagrangian method for the numerical solution of the vlasov

equation, Computer Physics Communications 180 (10) (2009) 1730–1745.
[15] N. Crouseilles, M. Mehrenberger, E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, Journal

of Computational Physics 229 (6) (2010) 1927–1953.
[16] Y. Güçlü, W. N. G. Hitchon, A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations

of neutral gas flows, J. Comput. Phys. 231 (8) (2012) 3289–3316.
[17] M. Shoucri, G. Knorr, Numerical integration of the Vlasov equation, J. Computational Phys. 14 (1) (1974) 84–92.
[18] F. Filbet, G. Russo, Accurate numerical methods for the Boltzmann equation, in: Modeling and computational methods

for kinetic equations, Springer, 2004, pp. 117–145.
[19] F. Filbet, G. Russo, High order numerical methods for the space non-homogeneous Boltzmann equation, J. Comput. Phys.

186 (2) (2003) 457–480.
[20] C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral methods in fluid dynamics, Springer Series in Computational

Physics, Springer-Verlag, New York, 1988.
[21] G. Dimarco, R. Loubère, Towards an ultra efficient kinetic scheme. Part I: Basics on the BGK equation, Journal of

Computational Physics 255 (2013) 680–698.
[22] G. Dimarco, R. Loubère, Towards an ultra efficient kinetic scheme. Part II: The high order case, Journal of Computational

Physics 255 (2013) 699–719.
[23] G. Dimarco, R. Loubère, V. Rispoli, A multiscale fast semi-Lagrangian method for rarefied gas dynamics, Journal of

Computational Physics 291 (2015) 99–119.

38



[24] G. Dimarco, R. Loubère, J. Narski, Towards an ultra efficient kinetic scheme. Part III: High-performance-computing,
Journal of Computational Physics 284 (2015) 22–39.

[25] P. Bhatnagar, E. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and
neutral one-component systems, Phys. Rev. 94 (3) (1954) 511–525.

[26] A. V. Bobylev, A. Palczewski, J. Schneider, On approximation of the Boltzmann equation by discrete velocity models, C.
R. Acad. Sci. Paris Sér. I Math. 320 (5) (1995) 639–644.

[27] A. Palczewski, J. Schneider, A. V. Bobylev, A consistency result for a discrete-velocity model of the Boltzmann equation,
SIAM journal on numerical analysis 34 (5) (1997) 1865–1883.

[28] A. Palczewski, J. Schneider, Existence, stability, and convergence of solutions of discrete velocity models to the boltzmann
equation, Journal of statistical physics 91 (1-2) (1998) 307–326.

[29] L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics, Mathematical
Models and Methods in Applied Sciences 10 (08) (2000) 1121–1149.

[30] G. Dimarco, C. Hauck, R. Loubère, A new class of high order semi-Lagrangian schemes for rarefied gas dynamics, Sub-
mitted.

[31] L. Pareschi, B. Perthame, A fourier spectral method for homogeneous Boltzmann equations, Transport Theory Statist.
Phys. 25 (3) (1996) 369–382.

[32] A. V. Bobylev, S. Rjasanow, Difference scheme for the Boltzmann equation based on the fast Fourier transform, Eur. J.
Mech. B Fluids 16 (2) (1997) 293–306.

[33] I. M. Gamba, S. H. Tharkabhushanam, Shock and boundary structure formation by spectral-Lagrangian methods for the
inhomogeneous Boltzmann transport equation, J. Comput. Math. 28 (4) (2010) 430–460.

[34] I. M. Gamba, S. H. Tharkabhushanam, Spectral-Lagrangian methods for collisional models of non-equilibrium statistical
states, J. Comput. Phys. 228 (6) (2009) 2012–2036.

[35] I. M. Gamba, J. R. Haack, A conservative spectral method for the Boltzmann equation with anisotropic scattering and
the grazing collisions limit, J. Comput. Phys. 270 (2014) 40–57.

[36] L. Wu, C. White, T. J. Scanlon, J. M. Reese, Y. Zhang, Deterministic numerical solutions of the Boltzmann equation
using the fast spectral method, Journal of Computational Physics 250 (2013) 27–52.

[37] A. V. Bobylev, S. Rjasanow, Numerical solution of the Boltzmann equation using a fully conservative difference scheme
based on the fast Fourier transform, in: Proceedings of the Fifth International Workshop on Mathematical Aspects of
Fluid and Plasma Dynamics (Maui, HI, 1998), Vol. 29, 2000, pp. 289–310.

[38] L. Pareschi, G. Toscani, C. Villani, Spectral methods for the non cut-off Boltzmann equation and numerical grazing
collision limit, Numer. Math. 93 (3) (2003) 527–548.

[39] F. Filbet, C. Mouhot, Analysis of spectral methods for the homogeneous Boltzmann Equation, Trans. Amer. Math. Soc.
363 (2011) 1947–1980.

[40] L. Wu, H. Liu, Y. Zhang, J. M. Reese, Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions
of the Boltzmann equation, Physics of Fluids (1994-present) 27 (8) (2015) 082002.

[41] A. Alekssenko, E. Josyula, Deterministic solution of the Boltzmann equation using a discontinuous Galerkin velocity
discretization, in: A. C. P. A. I. of Physics (Ed.), Proceedings of the 28th International Symposium on Rarefied Gas
Dynamics, Vol. 1501, 2012, pp. 279–286.

[42] L. Pareschi, G. Russo, On the stability of spectral methods for the homogeneous Boltzmann equation, Trans. Theo. Stat.
Phys. 29 (2000) 431–447.

[43] L. Wu, J. Zhang, J. M. Reese, Y. Zhang, A fast spectral method for the Boltzmann equation for monatomic gas mixtures,
Journal of Computational Physics 298 (2015) 602–621.

[44] C. Mouhot, L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, Math. Comp. 75 (256) (2006)
1833–1852 (electronic).

[45] L. Desvillettes, S. Mischler, About the splitting algorithm for Boltzmann and B.G.K. equations, Math. Models Methods
Appl. Sci. 6 (8) (1996) 1079–1101.

[46] F. Filbet, E. Sonnendrücker, P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys.
172 (1) (2001) 166–187.

[47] T. Carleman, Sur la théorie de l’équation intégrodifférentielle de Boltzmann, Acta Math. 60 (1) (1933) 91–146.
[48] A. V. Bobylev, Exact solutions of the Boltzmann equation, Dokl. Akad. Nauk SSSR 225 (6) (1975) 1296–1299.
[49] M. Krook, T. T. Wu, Exact solutions of the Boltzmann equation, Phys. Fluids 20 (10) (1977) 1589.
[50] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,

in: Quarteroni (Ed.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, 1998, pp. 325–432.
[51] S. Prasad, G. Srinivas, Flow simulation over re-entry bodies at supersonic and hypersonic speeds, International Journal

of Engineering Research and Development 2 (2012) 29–34.

39


