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Bifurcation structure of two coupled periodically driven 
double-well Duffing oscillators

Anatole Kenfack
Max-Planck-Institute for the Physics of Complex Systems, N€oothnitzer Strasse 38, D-01187 Dresden, Germany

Department of Physics, University of Dschang, P.O. Box 67, Dschang, Cameroon 

The bifurcation structure of coupled periodically driven double-well Duffing oscillators is investigated as a function of 
the strength of the driving force f and its frequency X. We first exam ine the stability of the steady-state in linear response, 
and classify the different types of bifurcation likely to occur in this model. We then explore the complex behavior 
associated with these bifurcations numerically. Our results show many striking departures from the behavior of coupled 
driven Duffing oscillators with single-well potentials, as characterized by Kozłowski et al. [Phys. Rev. E 51 (1995) 1861]. 
In addition to the well-known routes to chaos already encountered in a one-dimensional Duffing oscil-lator, our model 
exhibits im bricated period-doubling of both types, symm etry-breaking, sudden chaos and a great abundance of Hopf 
bifurcations, many of which occur more than once for a given driving frequency. We explore the chaotic behavior of 
our model using two indicators, namely Lyapunov exponents and the power spectrum. Poincaré cross-sections and 
phase portraits are also plotted to show the manifestation of coexisting periodic and chaotic at-tractors including 
the destruction of T 2 tori doubling.

1. Introduction

In recent years, a large number of theoretical calculations, numerical simulations and experiments have been carried

out on systems of coupled anharmonic oscillators which provide fundamental models of the dynamical problems in

several disciplines. Such models describe a wide range of processes, helping in general to understand the routes to chaos

that take place in biological, chemical, physical, electromechanical and electronical systems. Here we refer only to

recent papers close to the subject of our own [1–18]. Coupling may arise between oscillators of the same types or

oscillators of different types. Amongst these systems, the most intensively investigated examples are the Duffing os-

cillators [1–8] (strictly dissipative systems which converge to quiescence when not driven), the Van der Pol oscillators [9–

11] (self-excited systems whose final behavior when not driven is a limit cycle) and the coupled Van der Pol–Duffing

oscillators [12,13].

In this paper, we present the results of an investigation of two identical coupled double-well Duffing oscillators

subjected to a periodically driven force. Our study was stimulated by the earlier work of Kozłowski et al. [1] who have

studied the model of the same type, but considered only single-well potentials. Using bifurcation diagrams and phase

diagrams these authors have demonstrated that the global pattern of bifurcation curves in parameter space consists of

repeated subpatterns similar to the superstructure found in a one-dimensional driven Duffing oscillator. They have also

1



proven the existence of a Hopf bifurcation which does not appear in a model of one-dimensional Duffing oscillator.

Other interesting results have been reported in the context of coupled Duffing oscillators. In [2] Kunick et al. showed

that two coupled oscillators can behave regularly with nonzero coupling and chaotically with zero coupling. In a model

of two coupled Duffing oscillators driven with incommensurate frequencies and coupled additively, Stagliano et al. [3]

observed the period-doubling of an attracting T 2 torus and its destruction in parameter space. Migration control in two
Duffing oscillators by open-plus-closed-loop control method and adaptive control algorithm were studied by Paul Raj

and Rajasekar [4]. These authors, in another system of two coupled Duffing oscillators, have also investigated a basin of

attraction with several coexisting chaotic attractors and synchronization of chaos [5]. Yagasaki [6], after having de-

scribed an Auto driver Hommap for the numerical analysis of homoclinic in maps of periodically forced Duffing

systems, modified a version of the homoclinic Melnikov method for orbits homoclinic to two types of periodic orbits.

These theories have been successfully applied to weakly coupled Duffing oscillators. Moreover Yin et al. [7] investigated

the effect of phase difference on the driving forces of two coupled identical Duffing oscillators. They observed desyn-

chronization and lag synchronization of chaotic attractors. Bifurcation behaviors, showing a kind of Hopf bifurcation,

from synchronous chaos of a chain of Duffing oscillators, have been explored by Ma Wen-Qi et al. [8] using the

generalized winding number in tangent space.

The equations of motion for the two identical coupled double-well Duffing oscillators that we are interested in are

the following:

d2x
dt2

¼ �a
dx
dt

þ x� x3 þ kðy � xÞ þ f cosðXtÞ;

d2y
dt2

¼ �a
dy
dt

þ y � y3 � kðy � xÞ;
ð1Þ

where a is the damping parameter, k the coupling parameter, f and X are the amplitude and the frequency of the driving
force, respectively. In system (1), we represent the oscillators by the state variables ðx; dx=dtÞ as oscillator A or sub-

Fig. 1. Eigenvalues spectrum for the stability of the system with a 2 ½�0:2; 0:2� and k 2 ½�5; 5�. Note that when a < 0, the eigenvalues
are in the half-plane left and in the half-plane right otherwise.
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system A subjected to the periodic force f ðtÞ ¼ f cosðXtÞ, which is coupled to the other one with the state variables
ðy; dy=dtÞ as oscillator B or subsystem B. Here f and X are the control parameters of our system. As evident, for k ¼ 0,
Eq. (1) describes two uncoupled Duffing oscillators with their motion governed by a and f. The coupling considered can
be interpreted as a perturbation of each oscillator through a signal proportional to the difference of their amplitudes. A

natural question to ask is how chaotic attractors arise as these parameters are varied. In the case of a one-dimensional

double-well Duffing oscillator, quasiperiodic and period-doubling routes to chaos have been found [19–27].

Fig. 2. Bifurcation diagrams showing the first coordinate x for the driving amplitude f ¼ 15 (a) and the second coordinate v for f ¼ 20
(b) of the Poincar�ee section vs the driving frequency X. Windows of periodic solutions and chaotic domains are visible. Near X ¼ 0:385
(a), six pairs of sb occur followed by the reversed pd till the chaotic domain. Imbricated pd, sb, sn are mentioned. Note that similar

behavior as (b) is observed when X6 0:4 and for small values of f (f < 15).
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The rest of the paper is structured as follows. In Section 2, we establish a linear stability analysis of the system

projected on the Poincar�ee map. Section 3 is devoted to the survey of bifurcation diagrams and the chaotic behavior is
characterized in Section 4. We end with the conclusions of the work in Section 5.

2. Stability analysis

For stability analysis and even for purposes of numerical simulations, it is convenient to transform the second-order

differential Eq. (1) into an autonomous system of first-order differential equations of the following form:

Fig. 3. Bifurcation diagrams for the driving force f ¼ 4:5 (f), f ¼ 15 (a,b,e), f ¼ 20 (d), f ¼ 25 (c) with X > 0:4. Throughout im-

bricated sb, sn, pd of both types and chaotic domains are observed. Besides, resonances (R) appear at X ’ 0:475 (a,b), X ’ 0:445 (d),
X ’ 0:555 (e) and sudden chaos at X ’ 0:408 (c).
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dx
dt

¼ v;

dv
dt

¼ �avþ x� x3 þ kðy � xÞ þ f cosðhÞ;

dy
dt

¼ w;

dw
dt

¼ �awþ y � y3 � kðy � xÞ;

dh
dt

¼ X
2p

ð2Þ

or equivalently

dV
dt

¼ F ðV ; lÞ;

where T ¼ 2p=X is the period of the driving force, h the cyclic variable, V ðx; v; y;w; hÞ an autonomous vector field and
lða; k; f ;XÞ is an element of the parameter space. This system generates a flow / ¼ f/Tg on the phase space R4 � S1

and there exists a global map:

P : Rc ! Rc;

Vpðx; v; y;wÞ ! P ðVpÞ ¼ f/TgjRcðx;v;y;w;h0Þ

with h0 being a constant determining the location of the Poincar�ee cross-section and ðx; v; y;wÞ the coordinates of the
attractors in the Poincar�ee cross-section Rc defined by:

Rc ¼ fðx; v; y;w; hÞ 2 R4 � S1jh ¼ h0g:

System (2) is symmetric since the transformation

S : ðx; v; y;w; hÞ ! ð�x;�v;�y;�w; h þ pÞ

Fig. 3 (continued)
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leaves (2) invariant. This system can support symmetric orbits and also asymmetric ones which are not invariant with

the transformation S. We use a perturbation analysis to proceed with the analysis of solution stability in the Poincar�ee
map Rc. This method consists of differentiation and translation. Thus if we add a small perturbation dVp(dx; dv; dy; dw)
to the steady-state Vp0ðx0; v0; y0;w0Þ we obtain equations for perturbed motion

x ¼ x0 þ dx; y ¼ y0 þ dy; v ¼ v0 þ dv; w ¼ w0 þ dw: ð3Þ

Substituting Eq. (3) into Eq. (2) and developing into powers of the above small perturbations yield the following

variational differential equation:

ddVp
dt

¼ DF ðVp0ÞdVp ð4Þ

with

DF ðVp0Þ ¼

0 1 0 0
1� k � 3x20 �a k 0

0 0 0 1
k 0 1� k � 3y20 �a

0
BB@

1
CCA;

where DF ðVp0Þ is the Jacobian 4� 4 matrix describing the vector field along the solution dVpðtÞ with Vp0 being an
equilibrium point or the steady-state. Next for the very small amplitudes, we neglect in the matrix DF ðVp0Þ the powers
higher than one, that is, x20 and y20 . The solution after one period T of the oscillations in the linearized Poincar�ee map is
simply expressed as:

dVpðT Þ ¼ dVp0 expðDF ðVp0ÞT Þ; dVpð0Þ ¼ dVp0; ð5Þ

where DF ðVp0Þ is the monodromy matrix of a periodic orbit connecting arbitrary infinitesimal variations in the initial
conditions dVp0 with corresponding changes dVpðT Þ, after one period T. The stability of the periodic motion is therefore
determined according to the real parts of the roots of the characteristic equation detðDF ðVp0Þ � IkÞ ¼ 0 written in the
following form:

k4 þ A3k
3 þ A2k

2 þ A1k þ A0 ¼ 0; ð6Þ

where (Ai), i ¼ 0; 1; 2; 3 are the coefficients depending on the two parameters k; a and k ¼ ðkiÞ the eigenvalues of
DF ðVp0Þ. The roots of Eq. (6) are obtained using the Bairstow–Newton–Raphson algorithm [28] and for different values
of k 2 ½�5; 5� and a 2 ½�0:2; 0:2�. The results as the spectrum of the eigenvalues are depicted in a complex plane C (see
Fig. 1). This figure enables us to get an idea of the different types of bifurcation likely to appear in the system. Since

DF ðVp0Þ is a real matrix, complex eigenvalues occur in a complex conjugate pairs responsible for the symmetry observed
along the real axis. Thus if ki is real, it is clear from Eq. (5) that the eigenvalue is the rate of contraction (ki < 0) or
expansion (ki > 0) near the steady-state. Next if ki is complex, the real part of ki gives the rate of contraction

ðReðkiÞ < 0Þ or expansion ðReðkiÞ > 0Þ of the spiral while the imaginary part ImðkiÞ is of the frequency rotation. This
can be well understood with the following expression of the eigenvalues of the linearized Poincar�ee map:

ri ¼ expðReðkiÞÞ cos ImðkiÞTð Þ½ þ j sin ImðkiÞTð Þ�: ð7Þ

Globally, if ReðkiÞ < 0 for all ki, then all sufficiently small perturbations tend toward zero as t goes to infinity and the

steady-state (nodes (n), saddle-nodes (sn), spiral (sp)) is stable. If ReðkiÞ > 0 for all ki, then any small perturbation

grows with time and the steady-state ðn; sn; spÞ is unstable. (A stable or unstable equilibrium state with no complex
eigenvalues is often called node.) On the other hand if there exist i and l such that ReðkiÞ < 0 and ReðklÞ > 0, therefore
the equilibrium state is nonstable. (A nonstable equilibrium state is often called saddle; an equilibrium point whose

eigenvalues all have a nonzero real part are called hyperbolic [29].) With regard to the precedent with again a look on

the spectrum of Fig. 1, it follows that our system of the given parameter k and a can undergo many types of bifurcations
namely: saddle-node ðReðkiÞ ¼ 1Þ, period-doubling ðki ¼ �1Þ, Hopf bifurcations (ki ¼ c � jb ðj2 ¼ �1) with c < 0 and
the motion has the form of exponential increasing beats with period 2p=b [17]) and of course symmetry-breaking bi-
furcation which is often a prerequisite for the first period-doubling bifurcation [30]. Except Hopf bifurcation, such

bifurcations have been successfully found in one-dimensional double-well Duffing oscillators subjected to a periodically

driven force [19,21,26] using the eigenvalues called Floquet multipliers of the linearized Poincar�ee map. In a coupled
identical single-well Duffing oscillators, Kozłowski et al. [1] showed by linear analysis a similar eigenvalues scenario and

they conjectured that the resulting alternating bifurcation sequences have to be expected for all systems of coupled

strictly dissipative oscillators that are driven periodically. The above analysis allows us to know how the steady-state
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becomes locally unstable and to be aware of the type of bifurcation expected in the system. Here, no exploding am-

plitude is possible since the shape of the potential offers globally bounded solutions ðV ðx; yÞ ¼ �ð1=2Þx2 � ð1=2Þy2þ
ð1=4Þx4 þ ð1=4Þy4 ! þ1 as jxj; jyj ! 1Þ.

3. Local bifurcations

The aim of this section is to seek numerically the routes which lead to chaotic solutions of the system when the

control parameter X evolves, for different values of the driving force f. Bifurcation diagrams are very good for nu-
merical as well as for experimental studies when there is a tunable parameter. When a control parameter is varied and

bifurcation takes place a qualitative change of the system happens. For the numerical computations of these diagrams

the control parameter X is increased from an initial value Xi to a final value Xf and then decreased from Xf to Xi in a
very small step (DX ¼ 10�5). The last computed cyclic point for a given value of X is always used as a new initial value
for the next value of X. Starting with initial conditions ðx; vÞ ¼ ð1; 0Þ, ðy;wÞ ¼ ð1; 0Þ at Xi, system (2) is integrated, using
the standard Runge–Kutta Algorithm [28], for 100 periods of the driving force until the transient has died out; the

trajectories expected are attractors and the local calculation error is sufficiently small. Then to find out whether

the trajectory is periodic (quasiperiodic) or chaotic, the system is integrated for the next 180 periods in order to catch

the maximum of coexisting attractors. This procedure allows us to make sure that coexisting attractors are realized due

to different initial conditions which are handed throughout from one parameter to another. We chose k ¼ 5 and a ¼ 0:1
for all examples in the subsequent section. The bifurcation diagrams obtained here show the projection of attractors in

the Poincar�ee section onto x or v vs the control parameter X and for different values of f. In a one-dimensional double-
well Duffing oscillator [19–21,23–27], it is shown that chaotic solutions arise through quasiperiodic, period-doubling

cascade with a sequence of symmetry-breaking and saddle-nodes. Hopf bifurcations have not been found, but are

abundant in our model.

We computed a great number of diagrams, and some of them showing the main features of the system are presented

in Figs. 2–4. It is important to note that no hysteresis has been detected while checking all these diagrams. We can

therefore avoid any confusion over the periods of attractors when reading this type of diagram; for instance, one single

period-2 yields to two points for one frequency value whereas two coexisting attractors each of period-1 also yield to

two points for one frequency. These diagrams show a great number of coexisting attractors (chaotic domains) inter-

mingled with imbricated windows made up of periodic solutions of different periodicities, period-doubling of both

types, sudden Chaos and Hopf bifurcation. The so-called chaotic domains (or chaotic sea) will be characterized in the

following section.

At lowest frequencies (0 < X6 0:4) quasiperiodic as well as chaotic solutions occur together with a number of
symmetry-breaking (sb), period-doubling (pd) and saddle-nodes (sn). In Fig. 2(a) where f ¼ 15, it appears in the
neighborhood of X ¼ 0:385, six pairs of sb followed by three reversed pd until the chaotic domain. When the driving

force is increased to f ¼ 20, overlapping pd cascade and sn appear as can be seen in Fig. 2(b). Similar features as in the
latter case are also observed for small values of f (f < 15). In other ranges of driving frequencies bigger than X ¼ 0:4 the
aforementioned features still exist and additional ones such as resonances and Hopf bifurcations appear in the system;

the results are displayed in Figs. 3 and 4. In Fig. 3 it can be seen throughout overlapping pd cascade of both types, sb,

resonances (R) and even sudden chaos (SC). When f ¼ 4:5 in Fig. 3(f) at X ’ 0:785, period-8 attractor undergoes
reversed period-doubling cascade and period-2 is created as from X ’ 0:805. Besides, for f P 7 appear resonances (R)

in Figs. 3(a), (b), (d), and (e), Fig. 6(a) and sudden chaos in Fig. 3(c). However in Fig. 4 when f becomes much larger

and X P 0:5, Hopf bifurcation (H) is abundant and often appears more than once at a given frequency. This notation –
nH – means that there are n (n6 3), integer Hopf bifurcation at a given frequency. One can therefore observe –H– in (a),
–3H– in (b), –2H– � � � –2H– in (c,d), –2H– � � � –3H– � � � –2H– in (e,f) and –3H–3H– in (g,h). In Fig. 4(h), for instance, at
X ¼ 0:5925, a period-6 attractor undergoes reversed period-doubling to become a period-3; next after three pairs of
symmetry-breaking near X ’ 0:6, appears again period-3 attractor as from X ’ 0:601. And then at X ¼ 0:603 this
attractor of period-3 undergoes three Hopf bifurcations. Windows of periodic solutions separated by quasiperiodic ones

are clearly visible. The Poincar�ee cross-section of quasiperiodic attractors of this kind (–3H–) consists of three invariant
tori (destroyed or not). Thus at any X where –nH– exists, the projection of the attractor corresponds to n Tori on the

Poincar�ee cross-section. The torus attractor arises from Hopf bifurcation which is a bifurcation from a fixed point to an
invariant curve. At the transition to quasiperiodic motion, this fixed point (projection of the limit cycle into the cross-

section) loses its stability and gives birth to an invariant circle, which is a cross-section of the torus in the flow. The three

pairs of sb appearing at the neigborhood of X ’ 0:6 (Figs. 4(g) and (h)) seem to be apparently a window of period-6
attractor. In fact it is just a period-3 attractor as can be illustrated further in Fig. 8(b). This orbit, born asymmetrically,

coexists with its inversion symmetric orbit of the same period-3 and are caught simultaneously.
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Fig. 4. Bifurcation diagrams for f ¼ 30 (a,g,h), f ¼ 25 (b), f ¼ 15 (c,d), f ¼ 20 (e,f) showing many Hopf bifurcations (H). One can
observe –H– (a), –3H– (b), –2H– � � � –2H (c,d), –2H– � � � –3H– � � � –2H– (e,f), –3H–3H– (g,h) (see also text).
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Next we pursue our investigation for large values of X (X P 3) and for different values of f. It turns out that the

features observed so far have disappeared and the system becomes regular providing attractors with a small number of

periods as can be seen in Fig. 5. The phase diagrams which often show bifurcations, curves, surfaces and which is out of

the scope of this paper could also help to match the features obtained in this analysis.

4. Chaotic behavior

To better support the results obtained above, we intend in this section to characterize chaotic behavior. For this

purpose some indicators are used namely the Lyapunov exponents and the power spectrum density. Also, Poincar�ee

Fig. 5. Bifurcation diagram for f ¼ 5 showing attractors of small number of periods. Note that the system becomes regular and this
behavior is observed for XP 3 and for any value of f.

Fig. 4 (continued)
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cross-sections and phase portraits are shown to illustrate some attractors present in the system. The Lyapunov exponent

is one of the most important tools for understanding chaotic behavior, obtained by examining ‘‘a very sensitive de-

pendence of initial conditions’’. In particular it is generally well established that a rigorous measure of chaos may be

given in terms of Lyapunov spectrum of the dynamical system. A positive Lyapunov exponent is characteristic of chaos

while zero and negative values of the exponent signify a marginally stable or quasiperiodic orbit and periodic orbit,

respectively. Solving numerically the variational equation (4) together with system (2) we calculate the maximum

Lyapunov exponent kmax in the Poincar�ee cross-section with

Fig. 6. Bifurcation diagram for f ¼ 15 (a) and the corresponding Lyapunov spectrum (b) in the Poincar�ee map. Windows of chaotic
domains are clearly justified with positive values of kmax.
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kmax ¼ lim
s!þ1

1

s
lnðkLðsÞkÞ;

where kLðsÞk ¼ ðdx2 þ dv2 þ dy2 þ dw2Þ1=2. The spectrum is displayed in Fig. 6 together with a bifurcation diagram.
Windows of chaotic domains and periodic solutions are clearly justified. Power spectrum density using fast fourier

transformation (FFT) has also been computed with some values from Fig. 6 for a periodic solution (X ¼ 0:495, f ¼ 7)
and a chaotic solution (X ¼ 0:47, f ¼ 7) (see Fig. 7). Figs. 8 shows the phase portraits and Poincar�ee cross-section. In
Figs. 8(a) and (b) plotted are the phase portraits, related to Figs. 4(g) and (h), showing a period-3 attractor for f ¼ 30,
X ¼ 0:6025 (a) and a coexistence of two asymmetric attractors, each of period-3 for f ¼ 30, X ¼ 0:6 (b). The dots (�)

Fig. 7. Power spectra densities (PSD). The values of f ¼ 7 and X are from the bifurcation diagrams shown in Fig. 6 with X ¼ 0:495 (a)
periodic motion and X ¼ 0:47 (b) chaotic motion.
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represent the corresponding points in the Poincar�ee cross-sections. In Figs. 8(c) and (d) two chaotic attractors are plotted
in the Poincar�ee cross-section for X ¼ 0:5, f ¼ 2 and for X ¼ 0:375, f ¼ 15, respectively. Furthermore, we observe in
Figs. 8(e) and (f) three T 2 tori doubling at X ¼ 0:605, f ¼ 30 and at X ¼ 1:14, f ¼ 15, two T 2 tori doubling (destroyed)
corresponding to –3H– and –2H–, respectively (values from Figs. 4(c) and (h)). In the torus route to chaos, the original

torus appears to split into two circles at the torus doubling bifurcation point. This route is reminiscent of the period-

doubling route to chaos, although there are a finite number of torus doublings before the onset of chaos motion. Also,

the torus doubling route to chaos is a higher-dimensional phenomenon, requiring at least a four-dimensional flow or a

three-dimensional map. It is not observed in one-dimensional maps, unlike the period-doubling route to chaos [30].

Fig. 8. Phase portraits and projection of the attractors in the Poincar�ee section onto the two first coordinates x; v of the Poincar�ee cross-
section. At X ¼ 0:6025 (a), one period-3 orbit and at X ¼ 0:6 (b) coexistence of two asymmetric orbits of the same period-3. The values
of X are from Figs. 4(g) and (h) and f ¼ 30. The dots (�) represent the corresponding points in the Poincar�ee cross-section. Two chaotic
attractors shown in (c,d) for X ¼ 0:5, f ¼ 2 and X ¼ 0:375, f ¼ 15, respectively. Three T 2 tori doubling for X ¼ 0:605, f ¼ 30 (e) and
two T 2 tori doubling (destroyed) for X ¼ 1:14, f ¼ 15 (f). The values of X are from Figs. 4(c) and (h).
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5. Conclusion

To sum up we have investigated coupled double-well Duffing oscillators subjected to a periodic driving force. Our

main conclusion is that the shape of the potential in the coupled Duffing oscillators system has a profound influence on

the routes to chaos taken by the system. By a linear analysis we have examined the stability of the steady-state of the

system leading to different types of bifurcation likely to appear for k 2 ½�5; 5� and a 2 ½�0:2; 0:2�. With the help of
bifurcation diagrams, it has been shown that the bifurcation structure, which is complicated, depends strongly on the

values of the control parameter X. For a simple electronic realization of our model, it is obvious that the oscillators may
be very difficult to control for small values of X due to the large windows for chaos. This system becomes regular for
large values of X (X P 3). Apart from the routes already encountered in a one-dimensional double-well Duffing os-

cillator such as quasiperiodic and period-doubling cascade, sudden chaos and mostly Hopf bifurcations have been

newly found in this work. Besides, resonances (R), imbricated sb, sn, pd intermingled by chaotic domains are observed,

rending the structure highly chaotic. Two and three T 2 tori doubling have also been observed. To characterize chaotic
behavior of this system, Lyapunov exponents and the power spectrum density using FFT have been employed. Poincar�ee
cross-sections and phase portraits have also been used for a better visualization of the periodic and chaotic attractors.

An analytical approach using approximative technics could be an interesting topic for future work, and would probably

shed further light on the rich behavior of this model.
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