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Abstract

In this work we obtain an exact solution to cubic Duffing oscillator
equation with initial conditions and bounded periodic solutions. This
solution is expressed in terms of the Jacobi elliptic function cn. In
particular, we may apply the exact solution in the study of the cubic
nonlinear Schrodinger equation, which is reduced to a cubic Duffing
oscillator equation by means of a traveling wave transformation.

Keywords: Duffing equation, cubic Duffing oscillator equation, analytic
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1 Introduction

Serious studies of forced nonlinear oscillators appeared early in the 20th cen-
tury when Georg Duffing (1918) examined mechanical systems with nonlinear
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restoring forces and Balthasar van der Pol studied electrical systems with non-
linear damping. Subsequently, any equation of the form

··
x+ b

·
x+ f(x) = F sinωt (1)

was called Duffing’s equation, the nonlinearity f(x) often being polynomial,

usually cubic. Here,
·
x represents the time derivative dx

dt
. Linear resonance

has f(x) = αx (c > 0) and Duffing’s extension models many mechanical and
electrical phenomena. For a cubic nonlinearity f(x) = αx+ βx3, if β > 0, the
system is hardening. When β < 0 we deal with a softening system. In this
work our objective is to derive the exact solution to Duffing equation. We use
this solution to obtain the solution to pendulum equation.

2 General solution to Duffing Equation

We are going to find the general solution to Dufiing’s equation

··
x+ αx+ βx3 = 0 (2)

in terms of the Jacobi elliptic function cn. This function is defined as follows:

cn(t,m) = cosφ, where t =

φ∫
0

dθ√
1−m2 sin2 θ

. (3)

There are other two important elliptic Jacobi functions : sn and dn. They are
defined by

sn(t,m) = sinφ and dn(t, k) =

√
1−m2 sin2 φ. (4)

The number m (0 < m < 1) is called elliptic modulus and the number φ is
called Jacobi amplitude and it is denoted by am(t,m). Thus,

φ = am(t,m), sin(φ) = sin(am(t,m)) = sn(t,m)

Following identities meet :

sn2(t,m) + cn2(t,m) = 1, dn2(t,m) = 1−m2sn2(t,m) (5)

lim
m→0

sn(t,m) = sin t, lim
m→0

cn(t,m) = cos t, lim
m→0

dn(t,m) = 1. (6)

lim
m→1

sn(t,m) = tanh t, lim
m→1

cn(t,m) = secht, lim
m→1

dn(t,m) = secht. (7)

In view of (6) -(7) we may define sn(t, 0) = sin t, cn(t, 0) = cos t, dn(t, 0) = 1
and sn(t, 1) = tanh t, cn(t, 1) =sech t, dn(t, 0) =sech t. These functions are
derivable and

d

dt
sn(t,m) = cn(t,m)dn(t,m),

d

dt
cn(t,m) = −sn(t,m)dn(t,m),

d

dt
dn(t,m) = −m2sn(t,m)cn(t,m).

(8)
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Figure 1: Graph of sn=sn(t, 1/4) and cn=cn(t, 1/4) on the interval 0 ≤ t ≤
6.34.

The graph of functions sn and cn are shown in Figure 1 for m = 1
4
.

From Figure 1 we see that functions sn and cn are periodic. They have a
common period equal to 4K(1/4) = 4K(m), where K = K(m) is called the
ellipticK function for modulus m. In our case, K(1/4) ≈ 1.5962422.
Equations (6) say us that functions sn and cn generalize the sine and cosine
functions respectively. In the linear case, the general solution to equation
x′′(t) +αx(t) = 0 is x(t) = c1 cos(

√
αt+ c2), where c1 and c2 are the constants

of integration which are determined from the initial conditions x(0) = x0 and
x′(0) = x′0. When a cubic term is added we obtain the nonlinear equation
x′′(t) + αx(t) + βx3(t) = 0 and the solution cannot be expressed in terms
of cosine function. In this case the Jacobi cn funtion solves this nonlinear
equation. Indeed, direct calculations using equations (8) show that function
x = c1cn(ωt+ c2,m) satisfies following differential equation

x′′(t) + ω2
(
1− 2m2

)
x(t) +

2m2ω2

c21
x3(t) = 0 (9)

for any constants c1 and c2. Therefore, the general solution to equation (2) is
obtained by solving the system

α = ω2
(
1− 2m2

)
, β =

2m2ω2

c21
(10)

which gives

ω =
√
α + c21β and m =

√
c21β

2(α + c21β)
. (11)

We have proved that the solution to initial value problem

··
x+ αx+ βx3 = 0, x(0) = x0 and

·
x(0) = x′0 (β 6= 0). (12)

is

x(t) = c1cn

(√
α + c21βt+ c2,

√
c21β

2(α + c21β)

)
(13)
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The values of c1 and c2 are determined from the initial conditions x(0) = x0
and

·
x(0) = x′0. In order to find c1 and c2 we must solve following system :

c1cn (c2,m) = x0 and −
√
α + c21βsn(c2,m)dn(c2,m) = x′0, m =

√
c21β

2(α + c21β)
.

(14)

If
·
x(0) = x′0 = 0 then c1 = x0 and c2 = 0. In this case, the solution to initial

value problem

··
x+ αx+ βx3 = 0, x(0) = x0 and

·
x(0) = 0. (15)

is

x(t) = x0 cn

(√
α + βx20t,

√
βx20

2(α + βx20)

)
, α + βx20 6= 0. (16)

Example 1 (for (16) ). Let α = β = 2, x0 = 1. Then the solution to problem
··
x + 2x + 2x3 = 0, x(0) = 1 and

·
x(0) = 0 is x(t) =cn(2t, 1/2).This solution is

bounded and periodic with period 2K(1/2) ≈ 3.3715. See Fig. 2.

Let w = α + βx20 = ω2 and µ =
βx20

2(α+βx20)
= m2. Then x(t) = x0

cn(
√
wt,
√
µ). In the cases when w < 0 or µ < 0 solution (16) may be

written as follows [3] :

x(t) = x0nc(
√
−wt,

√
1− µ), w < 0 and 0 < µ ≤ 1. (17)

Example 2 (for (17) with 0 < µ < 1). Let α = β = −2, x0 = 1.

Then the solution to problem
··
x − 2x − 2x3 = 0, x(0) = 1 and

·
x(0) = 0 is

x(t) =cn(2
√
−1t, 1/2) =nc(2t,

√
3/2). This solution is unbounded and periodic

with period 2K(
√

3/2) ≈ 4.313. See Fig. 3.
Example 3 (for (17) with µ = 1). Let α = 1, β = −2, x0 = 1.

Then the solution to problem
··
x + x − 2x3 = 0, x(0) = 1 and

·
x(0) = 0 is

x(t) =cn(
√
−1t, 1) =nc(t, 1) = sec t.This solution is unbounded and periodic

with period 2π ≈ 3.31416. See Fig. 4.

x(t) = x0dc(
√
−wµt,

√
1− 1

µ
), w < 0 and µ > 1. (18)

Example 4 (for (18) ). Let α = 3, β = −1, x0 = 2. Then the so-

lution to problem
··
x + 3x − x3 = 0, x(0) = 2 and

·
x(0) = 0 is x(t) =

2cn(
√
−1t,

√
2) = 2dc(

√
2t,
√

2/2).This solution is unbounded and periodic
with period 4K(

√
2/2)/

√
2 ≈ 5.2441. See Fig. 5.

x(t) = x0cd(
√
w(1− µ)t,

√
−µ√

1− µ
), w > 0 and µ < 0. (19)
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Figure 2: x(t) =cn(2t, 1/2).
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Figure 3: x(t) =nc(2t,
√

3/2).

Example 5 (for (19) ). Let α = 2, β = −1, x0 = 1. Then the solution to

problem
··
x+2x−x3 = 0, x(0) = 1 and

·
x(0) = 0 is x(t) =cn(t,

√
−1/
√

2) =cd(
√

3/2t,
√

3/3).

This solution is bounded with period 4K(
√

3/3)/
√

2 ≈ 8.0086. See Fig. 6.

x(t) = x0nd(
√
−w(1− µ)t,

1√
1− µ

), w < 0 and µ < 0. (20)

Example 6 (for (20) ). Let α = −2, β = 13, x0 = 10−2. Then the

solution to problem
··
x − 2x + 13x3 = 0, x(0) = 10−2 and

·
x(0) = 0 is x(t) =

0.01cn(
√
−11.4142t,

√
−10.018) = 0.01nd(1.41398t, 0.999837).This solution is

bounded and periodic with period 15.2826. See Fig. 7.
We have obtained the solution to problem (15) in the form x(t) = x0ϕ(ω0t,m0)
in terms of Jacobi elliptic functions cn, nc, dc, cd and nd having positive
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Figure 4: x(t) = sec t.
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Figure 5: x(t) = 2dc(
√

2t,
√

2/2).
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Figure 6: x(t) =cd(
√

3/2t,
√

3/3).

frequency ω0 and modulus m0 on the interval [0, 1] for all α, β and x0 such
that α+βx20 6= 0. It is clear from (17)-(18)-(19) and (20) that solution (16) to
problem (15) is always real valued.

The behavior of solution (16) depends on the parameters α and β and
initial the condition x0. Solution (16) is periodic and bounded if ω2 = w =
α + βx20 > 0 for any β. Indeed, if β > 0 then since |cn(ωt,m)| < 1 for any
m > 0 and ω > 0 then |x(t)| ≤ |x0|. See Example 1 and Fig. 2. On the other
hand, if β < 0 then since |cd(ω0t,m0)| , it follows from (19) that |x(t)| ≤ |x0|,
where ω0 =

√
w(1− µ) > 0 and 0 < m0 =

√
−µ√
1−µ < 1, µ < 0. See Example

5 and Fig. 6. In the case when α + βx20 < 0 we obtain a bounded solution if
β > 0. See Example 6 and Fig. 7. If α + βx20 < 0 and β < 0 the solution is

10 20 30 40
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0.5

Figure 7:
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unbounded. See Examples 2, 3 and 4 and Figures 3, 4 and 5, respectively.
If β → −2α

x2
0
then m = βx0

2(α+βx2
0)

→ 1 and since limm→1cn(ωt,m) =sech(ωt)

solution (16) reduces to
x(t) = x0 sech(

√
αt) (21)

Observe that solution (21) is bounded and non periodic. This situation is
typical for solitons. Some important nonlinear differential equations admit
soliton solutions tha are expressible in terms of sech.

On the other hand, if β → 0 and α > 0 then m =
βx2

0

2(α+βx2
0)

→ 0 and since

limm→0cn(ωt,m) = cos(ωt) (16) degenerates into

x(t) = x0 cos(
√
αt),

which is the solution to linear equation y′′(t) + αy(t) = 0. This result is con-
sistent with the theory we know for the linear case.

3 An Application : The Mathematical Pen-

dulum.

The pendulum is the archetypal dynamical system studied in nonlinear dynam-
ics. Its nonlinear characteristics were studied by Rayleigh, and more-or-less
the whole of Duffing’s book was devoted to it.

Figure 8: Mathematical Pendulum (picture taken from [2])

The equation of motion describing the angular displacement θ of the harmon-
ically excited pendulum shown in Figure 8 is given by

ml2
d2θ

dt2
+mgl sin θ = M cosωt, (22)
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where l is the length of the pendulum, g is the acceleration due to gravity,
and M is the amplitude of the applied moment [2]. It can be seen that the
pendulum has a softening stiffness characteristic because of the negative cubic
term in the stiffness moment.
We are going to solve equation (22) for M = 0, that is ml2 d

2θ
dt2

+mgl sin θ = 0.
This equation may be written in the form

d2θ

dt2
+ λ2 sin θ = 0, θ(0) = θ0 (0 ≤ θ0 ≤ π), θ′(0) = 0, λ =

√
g

l
> 0. (23)

Direct calculations using (8) show that the solution to problem (23) is given
by θ = θ(t) = 2 arcsin(x(t)), where x(t) is the solution to initial value problem
(15) with x0 = sin (θ0/2) , α = (1 + x20)λ

2 and β = −2λ2. Then, from (16) and
(19) with w = λ2 cos2 (θ0/2) > 0 and µ = − tan2(θ0/2) < 0, we see that the
solution to (23) may be written in the form

θ(t) = 2 arcsin

[
sin

(
θ0
2

)
cd

(√
g

l
t, sin

(
θ0
2

))]
, (24)

where cd(u,m)=cn(u,m)/dn(u,m).
Example 7. Let x0 = 1, θ0 = 600, g = 9.8 and l = 1/5. Then the solution
to problem d2θ

dt2
+ 49 sin θ = 0, θ(0) = 600 = π/3 , θ′(0) = 0 is θ(t) =

2 arcsin
(
1
2
cd
(
7t, 1

2

))
. Its period is 4K(1/2)/7 ≈ 0.96. Figure 9 shows the

graph of this solution on 0 ≤ t ≤ 8K(1/2)/7.
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Figure 9: Graph of solution θ(t) = 2 arcsin
(
1
2
cd
(
7t, 1

2

))
.

4 Conclusions

We have derived the solution to both Duffing
··
x + αx + βx3 = 0 (β 6= 0)

for α + βx20 6= 0 and pendulum equations. Duffing equation is important in
the study of nonlinear phenomena and nonlinear oscillations [1]. More details
about Duffing equation may be found in [2]. A clear exposition about elliptic
functions and their applications may be consulted in [4]. Some nonlinear par-
tial differential equations admit solutions in terms of Jacobi elliptic functions
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[5]-[6].
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