1. Who and . Europe, Air Quality-Review of Evidence on Health Aspects of Air Pollution-REVIHAAP Project: Final Technical Report Available online: http://www.euro.who.int/en/health-topics/environment-and- health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap- project-final-technical-report, 2016.

C. Mathers, G. Stevens, and M. Mascarenhas, Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; World Health Organization, United Nations Environment Programme. Global Environment Outlook GEO, vol.5, issue.4, 2009.

. Who|cancer, Available online: http://www.who.int/mediacentre, 2016.

A. D. Wilson and M. Baietto, Applications and Advances in Electronic-Nose Technologies, Sensors, vol.9, issue.7, pp.5099-5148, 2009.
DOI : 10.3390/s90705099

L. A. Agrofoglio, A. Krstulja, C. De-schutter, P. Favetta, R. Delépée et al., Detection of urinary modified nucleosides by a bulk acoustic wave MIP sensor ??? Results and future work, IRBM, vol.35, issue.2, pp.66-71, 2014.
DOI : 10.1016/j.irbm.2014.02.009

URL : https://hal.archives-ouvertes.fr/hal-00988691

T. M. Gronewold, A. Baumgartner, E. Quandt, and M. Famulok, Discrimination of Single Mutations in Cancer-Related Gene Fragments with a Surface Acoustic Wave Sensor, Analytical Chemistry, vol.78, issue.14, pp.4865-4871, 2006.
DOI : 10.1021/ac060296c

N. Lebal, V. Raimbault, H. Hallil, B. Plano, J. Lachaud et al., Love Wave-Based Acoustic Components as Versatile Sensors for Electronic Nose or Tongue. Application to Cancer Monitoring, Proceedings of the 2014 IEEE SENSORS, pp.2-5, 2014.

T. Watson, Environment: Breathing trouble, Nature, vol.122, issue.7517
DOI : 10.1001/jama.287.9.1132

A. D. Wilson and M. Baietto, Advances in Electronic-Nose Technologies Developed for Biomedical Applications, Sensors, vol.11, issue.12, pp.1105-1176, 2011.
DOI : 10.3390/s110101105

A. Wilson, Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath, Metabolites, vol.5, issue.1, pp.140-163, 2015.
DOI : 10.3390/metabo5010140

S. Sankaran, L. R. Khot, and S. Panigrahi, Biology and applications of olfactory sensing system: A review, Sensors and Actuators B: Chemical, vol.171, issue.172, pp.171-172
DOI : 10.1016/j.snb.2012.03.029

J. Pereira, P. Porto-figueira, C. Cavaco, K. Taunk, S. Rapole et al., Breath Analysis as a Potential and Non-Invasive Frontier in Disease Diagnosis: An Overview, Metabolites, vol.5, issue.1, pp.3-55, 2015.
DOI : 10.3390/metabo5010003

N. Queralto, A. N. Berliner, B. Goldsmith, R. Martino, P. Rhodes et al., Detecting cancer by breath volatile organic compound analysis: a review of array-based sensors, Journal of Breath Research, vol.8, issue.2, p.27112, 2014.
DOI : 10.1088/1752-7155/8/2/027112

D. Natale, C. Paolesse, R. Martinelli, E. Capuano, and R. , Solid-state gas sensors for breath analysis: A review, Analytica Chimica Acta, vol.824, pp.1-17, 2014.
DOI : 10.1016/j.aca.2014.03.014

S. Chatterjee, M. Castro, and J. F. Feller, An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer, Journal of Materials Chemistry B, vol.171, issue.20, p.4563, 2013.
DOI : 10.1039/c3tb20819b

URL : https://hal.archives-ouvertes.fr/hal-00985347

C. Wang, A. Mbi, and M. Shepherd, A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C, IEEE Sensors Journal, vol.10, issue.1, pp.54-63, 2010.
DOI : 10.1109/JSEN.2009.2035730

G. Neri, A. Bonavita, G. Micali, and N. Donato, Design and Development of a Breath Acetone MOS Sensor for Ketogenic Diets Control, IEEE Sensors Journal, vol.10, issue.1, pp.131-136, 2010.
DOI : 10.1109/JSEN.2009.2035663

A. Bajtarevic, C. Ager, M. Pienz, M. Klieber, K. Schwarz et al., Noninvasive detection of lung cancer by analysis of exhaled breath, BMC Cancer, vol.38, issue.14, p.348, 2009.
DOI : 10.1016/j.atmosenv.2004.01.019

B. Timmer, W. Olthuis, and A. Van-den-berg, Ammonia sensors and their applications???a review, Sensors and Actuators B: Chemical, vol.107, issue.2, pp.666-677, 2005.
DOI : 10.1016/j.snb.2004.11.054

S. Dubois, S. Eng, R. Bhattacharya, S. Rulyak, T. Hubbard et al., Breath Ammonia Testing for Diagnosis of Hepatic Encephalopathy, Digestive Diseases and Sciences, vol.32, issue.4, pp.1780-1784, 2005.
DOI : 10.1007/s10620-005-2937-6

P. Gouma, K. Kalyanasundaram, X. Yun, M. Stanacevic, and L. Wang, Nanosensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath, IEEE Sensors Journal, vol.10, issue.1, pp.49-53, 2010.
DOI : 10.1109/JSEN.2009.2036050

O. Kuzmych, B. L. Allen, and A. Star, Carbon nanotube sensors for exhaled breath components, Nanotechnology, vol.18, issue.37, p.375502, 2007.
DOI : 10.1088/0957-4484/18/37/375502

K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. Mcmillen et al., Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy, Applied Physics B, vol.3, issue.2-3, pp.427-435, 2006.
DOI : 10.1007/s00340-006-2301-3

A. D. Smith, J. O. Cowan, S. Filsell, C. Mclachlan, G. Monti-sheehan et al., Diagnosing Asthma, American Journal of Respiratory and Critical Care Medicine, vol.169, issue.4, pp.473-478, 2004.
DOI : 10.1164/rccm.200310-1376OC

S. Pantalei, E. Zampetti, A. Bearzotti, F. De-cesare, and A. Macagnano, Improving sensing features of a nanocomposite PEDOT:PSS sensor for NO breath monitoring, Sensors and Actuators B: Chemical, vol.179, pp.87-94, 2013.
DOI : 10.1016/j.snb.2012.10.015

M. Corradi, M. Majori, G. C. Cacciani, G. F. Consigli, E. De-'munari et al., Increased exhaled nitric oxide in patients with stable chronic obstructive pulmonary disease, Thorax, vol.54, issue.7, pp.572-575, 1999.
DOI : 10.1136/thx.54.7.572

M. T. Drangsholt, A New Causal Model of Dental Diseases Associated With Endocarditis, Annals of Periodontology, vol.3, issue.1, pp.184-196, 1998.
DOI : 10.1902/annals.1998.3.1.184

C. C. Okell and S. D. Elliott, BACTERI??MIA AND ORAL SEPSIS WITH SPECIAL REFERENCE TO THE ??TIOLOGY OF SUBACUTE ENDOCARDITIS, The Lancet, vol.226, issue.5851, pp.869-872, 1935.
DOI : 10.1016/S0140-6736(00)47788-3

S. Van-den-velde, D. Van-steenberghe, P. Van-hee, and M. Quirynen, Detection of Odorous Compounds in Breath, Journal of Dental Research, vol.88, issue.3, pp.285-289, 2009.
DOI : 10.1902/jop.1992.63.9.783

L. Mei, Y. Chen, and J. Ma, Gas Sensing of SnO 2 Nanocrystals Revisited: Developing Ultra-Sensitive Sensors for Detecting the H 2 S Leakage of Biogas

S. Chen, V. Mahadevan, and L. Zieve, Volatile fatty acids in the breath of patients with cirrhosis of the liver, J. Lab. Clin. Med, vol.75, pp.622-627, 1970.

J. R. Stetter, W. R. Penrose, S. Yao, and . Sensors, Sensors, Chemical Sensors, Electrochemical Sensors, and ECS, Journal of The Electrochemical Society, vol.150, issue.2, p.11, 2003.
DOI : 10.1149/1.1539051

G. F. Fine, L. M. Cavanagh, and A. Afonja, Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring, Sensors, vol.10, issue.6, pp.5469-5502, 2010.
DOI : 10.3390/s100605469

S. K. Pandey, K. Kim, and K. Tang, A review of sensor-based methods for monitoring hydrogen sulfide, TrAC Trends in Analytical Chemistry, vol.32, pp.87-99, 2012.
DOI : 10.1016/j.trac.2011.08.008

H. Singh, V. B. Raj, J. Kumar, U. Mittal, M. Mishra et al., Metal oxide SAW E-nose employing PCA and ANN for the identification of binary mixture of DMMP and methanol, Sensors and Actuators B: Chemical, vol.200, pp.147-156, 2014.
DOI : 10.1016/j.snb.2014.04.065

Y. Zheng, H. Kong, J. Xiong, S. Lv, and G. Xu, Clinical significance and prognostic value of urinary nucleosides in breast cancer patients, Clinical Biochemistry, vol.38, issue.1, pp.24-30, 2005.
DOI : 10.1016/j.clinbiochem.2004.09.021

S. Cho, M. H. Choi, W. Lee, and B. C. Chung, Evaluation of urinary nucleosides in breast cancer patients before and after tumor removal, Clinical Biochemistry, vol.42, issue.6, pp.540-543, 2009.
DOI : 10.1016/j.clinbiochem.2008.12.026

A. Frickenschmidt, H. Fröhlich, D. Bullinger, A. Zell, S. Laufer et al., Metabonomics in cancer diagnosis: mass spectrometry-based profiling of urinary nucleosides from breast cancer patients, Biomarkers, vol.1084, issue.4, pp.435-449, 2008.
DOI : 10.1080/13547500410001668379

C. Henneges, D. Bullinger, R. Fux, N. Friese, H. Seeger et al., Prediction of breast cancer by profiling of urinary RNA metabolites using Support Vector Machine-based feature selection, BMC Cancer, vol.272, issue.1, p.104, 2009.
DOI : 10.1016/0005-2787(72)90252-3

T. Rasmuson, G. R. Björk, L. Damber, L. Jacobsson, A. Jeppsson et al., Tumor Markers in Mammary Carcinoma: An evaluation of carcinoembryonic antigen, placental alkaline phosphatase, pseudouridine and CA-50, Acta Oncologica, vol.20, issue.4, pp.261-267, 1987.
DOI : 10.1016/S0046-8177(74)80061-4

K. Nakano, T. Nakao, K. H. Schram, W. M. Hammargren, T. D. Mcclure et al., Urinary excretion of modified nucleosides as biological marker of RNA turnover in patients with cancer and AIDS, Clinica Chimica Acta, vol.218, issue.2, pp.169-183, 1993.
DOI : 10.1016/0009-8981(93)90181-3

T. Rasmuson and G. Björk, Urinary Excretion of Pseudouridine and Prognosis of Patients with Malignant Lymphoma, Acta Oncologica, vol.47, issue.1, pp.61-67, 1995.
DOI : 10.1002/1097-0142(197508)36:2<390::AID-CNCR2820360214>3.0.CO;2-C

L. Jeng, W. Hsu, W. Lin, C. Lin, C. Lai et al., Analysis of urinary nucleosides as helper tumor markers in hepatocellular carcinoma diagnosis, Rapid Communications in Mass Spectrometry, vol.84, issue.11, pp.1543-1549, 2009.
DOI : 10.1002/rcm.4034

J. Yang, G. Xu, H. Kong, Y. Zheng, T. Pang et al., Artificial neural network classification based on high-performance liquid chromatography of urinary and serum nucleosides for the clinical diagnosis of cancer, Journal of Chromatography B, vol.780, issue.1, pp.27-33, 2002.
DOI : 10.1016/S1570-0232(02)00408-7

J. E. Mcentire, K. C. Kuo, M. E. Smith, D. L. Stalling, J. W. Richens et al., Classification of Lung Cancer Patients and Controls by Chromatography of Modified Nucleosides in Serum, Cancer Res, vol.49, pp.1057-1062, 1989.

S. Weissman, A. Z. Eisen, M. Lewis, and M. Karon, Pseudouridine metabolism. III. Studies with isotopically labeled pseudouridine, Chromatogr. Libr, pp.40-47, 1962.

E. Borek, B. S. Baliga, C. W. Gehrke, C. W. Kuo, S. Belman et al., High Turnover Rate of Transfer RNA in Tumor Tissue, Cancer Res, vol.37, p.3362, 1977.

G. Sander, H. Topp, J. Wieland, G. Heller-schöch, and G. Schöch, Possible use of urinary modified RNA metabolites in the measurement of RNA turnover in the human body, Hum. Nutr. Clin. Nutr, vol.40, pp.103-118, 1986.

A. Seidel, S. Brunner, P. Seidel, G. I. Fritz, and O. Herbarth, Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control, British Journal of Cancer, vol.38, pp.1726-1733, 2006.
DOI : 10.1016/S0021-9673(98)00589-5

G. Schöch, G. Sander, H. Topp, and G. Heller-schoch, Chapter 13 Modified Nucleosides and Nucleobases in Urine and Serum as Selective Markers for The Whole-Body Turnover of tRNA, rRNA and mRNA-CAP - Future Prospects and Impact, In Journal of Chromatography Library, vol.45, pp.389-441, 1990.
DOI : 10.1016/S0301-4770(08)61551-1

C. Zhang, Z. Liu, X. Liu, L. Wei, Y. Liu et al., Targeted metabolic analysis of nucleotides and identification of biomarkers associated with cancer in cultured cell models, Acta Pharmaceutica Sinica B, vol.3, issue.4, pp.254-262, 2013.
DOI : 10.1016/j.apsb.2013.06.002

M. R. Schetinger, V. M. Morsch, C. D. Bonan, and A. T. Wyse, NTPDase and 5'-nucleotidase activities in physiological and disease conditions: New perspectives for human health, BioFactors, vol.52, issue.5, pp.31-77, 2007.
DOI : 10.1002/biof.5520310205

J. C. Schoeman and D. T. Loots, Improved disease characterisation and diagnostics using metabolomics: A review, J. Cell Tissue Res, 2011.

S. Kurada, N. Alkhouri, C. Fiocchi, R. Dweik, and F. Rieder, Review article: breath analysis in inflammatory bowel diseases, Alimentary Pharmacology & Therapeutics, vol.2, issue.Suppl 1, pp.329-341, 2015.
DOI : 10.1111/apt.13050

T. Huynh and W. Kutner, Molecularly imprinted polymers as recognition materials for electronic tongues, Biosensors and Bioelectronics, vol.74, pp.856-864
DOI : 10.1016/j.bios.2015.07.054

F. Josse and R. W. Cernosek, Resonant Piezoelectric Devices as Physical and Biochemical Sensors, pp.91-123, 2004.
DOI : 10.1007/978-1-4020-2929-5_3

N. Lebal, H. Hallil, C. Dejous, B. Plano, A. Krstulja et al., Association of a Love wave sensor to thin film molecularly imprinted polymers for nucleosides analogs detection, The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp.7-10, 2013.
DOI : 10.1109/NEMS.2013.6559790

V. Raimbault, D. Rebiére, C. Dejous, M. Guirardel, and J. L. Lachaud, Molecular weight influence study of aqueous poly(ethylene glycol) solutions with a microfluidic Love wave sensor, Sensors and Actuators B: Chemical, vol.144, issue.1, pp.318-322, 2010.
DOI : 10.1016/j.snb.2009.10.070

URL : https://hal.archives-ouvertes.fr/hal-00548722

D. R. Kryscio and N. A. Peppas, Critical review and perspective of macromolecularly imprinted polymers, Acta Biomaterialia, vol.8, issue.2, pp.461-473
DOI : 10.1016/j.actbio.2011.11.005

N. Liu, X. Li, X. Ma, G. Ou, and Z. Gao, Rapid and multiple detections of staphylococcal enterotoxins by two-dimensional molecularly imprinted film-coated QCM sensor, Sensors and Actuators B: Chemical, vol.191, pp.326-331, 2014.
DOI : 10.1016/j.snb.2013.09.086

R. Schirhagl, Bioapplications for Molecularly Imprinted Polymers, Analytical Chemistry, vol.86, issue.1, pp.250-261, 2014.
DOI : 10.1021/ac401251j

A. Ersöz, S. E. Diltemiz, A. A. Özcan, A. Denizli, and R. Say, Synergie between molecular imprinted polymer based on solid-phase extraction and quartz crystal microbalance technique for 8-OHdG sensing, Biosensors and Bioelectronics, vol.24, issue.4, pp.742-747, 2008.
DOI : 10.1016/j.bios.2008.06.058

A. Florea, Z. Guo, C. Cristea, F. Bessueille, F. Vocanson et al., Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework, Talanta, vol.138, pp.71-76, 2015.
DOI : 10.1016/j.talanta.2015.01.013

A. Kugimiya and K. Kohara, Biomimetic sensor for cAMP using an ion-sensitive field-effect transistor, Materials Science and Engineering: C, vol.29, issue.3, pp.959-962, 2009.
DOI : 10.1016/j.msec.2008.09.001

M. Zayats, M. Lahav, A. B. Kharitonov, and I. Willner, Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors, Tetrahedron, vol.58, issue.4, pp.815-824, 2002.
DOI : 10.1016/S0040-4020(01)01112-7

M. B. Gholivand and N. Karimian, Fabrication of a highly selective and sensitive voltammetric ganciclovir sensor based on electropolymerized molecularly imprinted polymer and gold nanoparticles on multiwall carbon nanotubes/glassy carbon electrode, Sensors and Actuators B: Chemical, vol.215, pp.471-479
DOI : 10.1016/j.snb.2015.04.007

E. Gohary, N. A. Madbouly, A. Nashar, R. M. Mizaikoff, and B. , Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir, Biosensors and Bioelectronics, vol.65, pp.108-114, 2015.
DOI : 10.1016/j.bios.2014.10.024

P. Turkewitsch, B. Wandelt, G. D. Darling, and W. S. Powell, Fluorescent Functional Recognition Sites through Molecular Imprinting. A Polymer-Based Fluorescent Chemosensor for Aqueous cAMP, Analytical Chemistry, vol.70, issue.10, pp.2025-2030, 1998.
DOI : 10.1021/ac980003i

F. Breton, R. Delépée, and L. A. Agrofoglio, Molecular imprinting of AMP by an ionic-noncovalent dual approach, Journal of Separation Science, vol.804, issue.19, pp.3285-3291, 2009.
DOI : 10.1002/jssc.200900226

A. Buvailo, Y. Xing, J. Hines, and E. Borguet, Thin polymer film based rapid surface acoustic wave humidity sensors, Sensors and Actuators B: Chemical, vol.156, issue.1, pp.444-449, 2011.
DOI : 10.1016/j.snb.2011.04.080

Q. He, F. Sévérac, H. Hajjoul, Y. Viero, and A. Bancaud, Directed Assembly of Nanoparticles along Predictable Large-Scale Patterns Using Micromolded Hydrogels, Langmuir, vol.27, issue.11, pp.6598-6605, 2011.
DOI : 10.1021/la200064n

R. Delépée, F. Breton, D. Jegourel, and L. A. Agrofoglio, Molecularly imprinted polymer as biomimetic sensor of nucleoside phosphorylation mediated by a kinase, Proceedings of the 2010 Biosensors, pp.25-28, 2010.

N. Lebal, D. Rebière, R. Delepée, L. Agrofoglio, B. Plano et al., Nucleosides analogues recognition by molecularly imprinted polymer-coated Love wave sensor. Micro Amp Nano Lett, pp.563-566, 2013.

V. Raimbault, D. Rebière, and C. Dejous, A microfluidic surface acoustic wave sensor platform: Application to high viscosity measurements, Materials Science and Engineering: C, vol.28, issue.5-6, pp.759-764, 2008.
DOI : 10.1016/j.msec.2007.10.018

URL : https://hal.archives-ouvertes.fr/hal-00183748

N. O. Aouled, H. Hallil, B. Plano, D. Rebiere, C. Dejous et al., Love wave sensor based on thin film moleculary imprinted polymer: MIP layer morphology and nucleosides analogs detection, Proccedings of the 2013 IEEE Sensors, pp.3-6, 2013.

T. Lin, C. Hu, and T. Chou, Determination of albumin concentration by MIP-QCM sensor, Biosensors and Bioelectronics, vol.20, issue.1, pp.75-81, 2004.
DOI : 10.1016/j.bios.2004.01.028

O. Tigli, L. Bivona, P. Berg, and M. E. Zaghloul, Fabrication and Characterization of a Surface-Acoustic-Wave Biosensor in CMOS Technology for Cancer Biomarker Detection, IEEE Transactions on Biomedical Circuits and Systems, vol.4, issue.1, pp.62-73, 2010.
DOI : 10.1109/TBCAS.2009.2033662

B. B. Prasad, S. Srivastava, K. Tiwari, and P. S. Sharma, Development of Uracil and 5-Fluorouracil Sensors Based on Molecularly Imprinted Polymer-Modified Hanging Mercury Drop Electrode, pp.291-306, 2009.

B. B. Prasad and A. Kumar, Development of molecularly imprinted polymer nanoarrays of N-acryloyl-2-mercaptobenzamide on a silver electrode for ultratrace sensing of uracil and 5-fluorouracil, J. Mater. Chem. B, vol.39, issue.28, pp.5864-5876
DOI : 10.1007/s12291-015-0482-4

L. Alnaim, Therapeutic drug monitoring of cancer chemotherapy, Journal of Oncology Pharmacy Practice, vol.64, issue.4, pp.207-221, 2007.
DOI : 10.1177/1078155207081133

W. J. Hrushesky and G. A. Bjarnason, Circadian cancer therapy., Journal of Clinical Oncology, vol.11, issue.7, pp.1403-1417, 1993.
DOI : 10.1200/JCO.1993.11.7.1403

M. Rosbash and J. S. Takahashi, Circadian rhythms: The cancer connection, Nature, vol.93, issue.6914, pp.373-374, 2002.
DOI : 10.1146/annurev.micro.53.1.389