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Hand-Object Contact Force Estimation From
Markerless Visual Tracking

Tu-Hoa Pham, Nikolaos Kyriazis, Antonis A. Argyros and Abderrahmane Kheddar, Senior Member, IEEE

Abstract—We consider the problem of computing realistic contact forces during manipulation, backed with ground-truth
measurements, using vision alone. Interaction forces are traditionally measured by mounting force transducers onto the manipulated
objects or the hands. Those are costly, cumbersome, and alter the objects’ physical properties and their perception by the human
sense of touch. Our work establishes that interaction forces can be estimated in a cost-effective, reliable, non-intrusive way using
vision. This is a complex and challenging problem. Indeed, in multi-contact, a given trajectory can generally be caused by an infinity of
possible distributions. To alleviate the limitations of traditional models based on inverse optimization, we collect and release the first
large-scale dataset on manipulation kinodynamics as 3.2 hours of synchronized force and motion measurements under 193

object-grasp configurations. We learn a mapping between high-level kinematic features based on the equations of motion and the
underlying manipulation forces using recurrent neural networks (RNN). The RNN predictions are consistently refined using
physics-based optimization through second-order cone programming (SOCP). We show that our method can successfully capture
interaction forces compatible with both the observations and the way humans naturally manipulate objects, on an acquisition system no
more complex than a single RGB-D camera.

Index Terms—Force sensing from vision, hand-object tracking, manipulation, pattern analysis, sensors, tracking.
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1 INTRODUCTION

TOUCH (i.e. physical contact) is of fundamental impor-
tance in the way we naturally interact with objects and

in our perception of their physical and functional properties.
Human manipulation remains little understood at the level
of the underlying interaction forces, which are traditionally
measured using force transducers. The latter are costly, cum-
bersome, and intrusive on both the object and the human
haptic sense. Moreover, if mounted onto the hand, they
often hinder or reduce the range of possible motions. Recent
work has showed how the latter could be inferred from
vision [1], [2], [3]. Moreover advances in markerless visual
tracking opened up the possibility for monitoring hand-
object motions in a non-intrusive fashion. Computer vision
techniques would therefore be an ideal substitute for current
force sensing technologies.

This is an extremely challenging perspective. Indeed,
tracking a hand interacting with an object is difficult due to
strong mutual occlusions. Moreover, even when a manipu-
lation trajectory is fully known, the force estimation problem
is ill-posed or indeterminate in multi-contact. Indeed, given
the physical properties of the object, there generally exists an
infinity of force distributions resulting in the same motion
(e.g. using different grip strengths– i.e. internal workless
forces). While it is possible to compute physically plausible
force distributions, capturing the real forces being applied
is an open problem explored in multiple fields (Section 2).
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In particular, kinesiology research has resulted in successful
attempts at modeling grip forces by inverse optimization,
e.g., during static prehension [4] or two-finger circular mo-
tion [5]. Although these scenarios are of limited scope, this
suggests that it may be possible to construct a general model
on human grasping, provided a rich dataset on manipula-
tion kinodynamics (motion and forces).

In our work, we show that physics-based optimization
can be used in conjunction with learning to capture manip-
ulation forces from non-intrusive visual observation, on a
setup as simple as a single RGB-D camera.

• We construct the first large-scale dataset on human
manipulation kinodynamics, containing 3.2 hours
of high-frequency measurements for 193 different
object-grasp configurations (Section 3).

• We propose a force estimation framework that relies
simultaneously on a recurrent neural network to pre-
dict forces that are consistent with the way humans
naturally manipulate objects, and on a second-order
cone program guaranteeing the physical correctness
of the final force distribution (Section 4).

• We thoroughly validate our approach on ground-
truth measurements (Section 5) and show that it can
seamlessly be extended to visual tracking (Section 6).

Due to instrumentation constraints, our dataset is dedicated
to constant contacts on prismatic grasps, i.e., with the thumb
in direct opposition to the antagonist fingers. We discuss
these limitations and show that the dual optimization-
learning framework can still address scenarios beyond the
focus of our study (Section 7). Finally, we discuss thoroughly
the current limitations, possible extensions and applications
of our work (Section 8). A preliminary version of this
research, focused on estimating normal forces from vision,
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appeared in [6]. Our current study extends the latter idea
and includes: an improved formulation of the optimization
and learning models accounting for individual normal and
tangential components, time-coherent manipulation forces,
as well as algorithmic descriptions and extensive validation
experiments that have not been presented before. To foster
the research in this new topic, we make the manipulation
kinodynamics dataset publicly available1.

2 RELATED WORK

2.1 Monitoring Hand-Object Interactions

Current force transduction and sensing technologies are
costly and may require frequent calibration. Mounting them
onto objects biases physical properties such as shape, mass
distribution and friction, while mounting them onto hands
obstructs the human haptic sense, limiting the natural range
of motion. In contrast, there is evidence that fingertip forces
can be correlated to changes in the coloration of fingernails
and surrounding skin [7], [8], [9]. These setups already
suggest that computer vision can measure touch forces.

Used in conjunction with force sensing technologies,
motion tracking can also provide information on body
dynamics to explain how humans interact with their envi-
ronment. A setup combining marker-based motion capture
and force sensors was used in [10] to estimate hand joint
compliance and synthesize interaction animations. While
the use of motion capture markers does not directly interfere
with the hand-object interactions, it is arguably invasive
and difficult to deploy in the context of daily life activities.
In this direction, the topic of markerless hand tracking
was introduced in [11] and has lately received renewed
attention in [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21]. During manipulation, hand-object interactions cause
mutual occlusions that generative approaches can employ
to enforce priors in the optimization process [22], [23], [24],
[25]. In particular, force models can be used to select hand
poses that are compatible with the observations through
physical simulation [26], [27], [28]. In contrast with our
approach, these models only need to capture physically
plausible distributions rather than the actual forces being
applied, which may substantially differ.

2.2 Biomechanical Models for Human Prehension

Prehension is an active research topic in the kinesiology
field, an interest that stems from the remarkable dexterity
and complexity of the human hand. As a result, inverse opti-
mization approaches for manipulation have mostly resulted
in models that, albeit sophisticated, rely on rather strong
simplifying assumptions. The most common restriction is
on the motion’s dimensionality, e.g. static prehension [4].
Other approaches allow limited motion, e.g. circular [5],
using a simplified grasp model in which individual fingers
and hand surfaces are grouped into functional units named
virtual fingers [29]. For instance, a hand holding a cup is
seen as the thumb on one side and a virtual finger on the
opposite side realizing the total wrench due to the four an-
tagonist fingers. Under this formalism, the five-finger grasp

1. https://github.com/jrl-umi3218/ManipulationKinodynamics.

is effectively seen as two-finger. In this simplified model,
given the object’s kinematics, the knowledge of one force
fully determines the other. In reality, the force distribution
problem is generally indeterminate as full-hand forces can
compensate each other and cause the same motion.

The virtual finger model was also applied on nominal-
internal forces during vertical and horizontal translational
motions [30]. Internal forces represent the set of forces that
humans apply in excess to the nominal forces that are phys-
ically required to create a given motion [31], [32]. For in-
stance, when holding a cup statically, nominal forces directly
compensate gravity, while internal forces secure the object
through a firm grip but cancel each other out [33], [34].
Past studies showed that humans control internal forces to
prevent slip, muscle fatigue or damaging fragile objects [35],
[36], [37]. Overall, in reviewing several optimization-based
models attempting to predict muscle activation patterns,
[38] showed that the high redundancy of the human body
makes it particularly difficult to identify clear optimization
criteria in the way the central nervous system regulates
human efforts at the musculoskeletal level.

2.3 Force Sensing From Vision

The force sensing from vision (FSV) framework presented
in this paper is a continuation of our earlier work in [6],
that was limited to 1D normal force measurements, four-
finger grasps and relatively limited experimental conditions.
In contrast, this paper is based on an extensive dataset of
3D force measurements on five-finger, diverse manipulation
experiments. In addition, our past work used shallow mul-
tilayer perceptrons (MLP) to learn internal forces. Such an
approach is difficult to generalize as the decomposition into
nominal and internal components is not intrinsic, but rather
depends on the objective function chosen to minimize nom-
inal forces. While the extended approach we present here
still builds upon the formulation of the force distribution
problem as a second-order cone program (SOCP) [39], [40],
we also capitalize on the recent success of deep learning
applications to manipulation and monitoring of human
activities [2], [41], [42] to construct a network that directly
learns full 3D manipulation forces, avoiding the need for
arbitrary constraints and hand-engineering [43].

Our work was also inspired by [44], which estimated
ground reaction forces from motion capture using a damped
spring model. Recently, forces were computed between the
hand and deformable objects [45] and conversely by con-
sidering the human body elastic [46]. [19] showed that ma-
nipulation forces play a crucial role towards understanding
hand-object interactions from vision and noted the challenge
of obtaining the ground-truth contact points and forces
humans use instinctively, which we address in our work.

3 MANIPULATION KINODYNAMICS DATASET

Over the last years, the release of public datasets has mas-
sively benefitted the research in fields related to this work,
such as object recognition and scene understanding [47],
[48], whole-body and hand tracking [17], [49], and robotic
grasping [50], [51]. In contrast, datasets viewing human
manipulation not only from the angle of vision but also of

https://github.com/jrl-umi3218/ManipulationKinodynamics
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(a) AHRS base, thickness layers, sensor plates
for repositionable transducers (four sizes).

(b) 3D force transducers, support caps of
various frictional characteristics, AHRS.

(c) Assembled instrumented device. The cables are tied
to the subject’s elbow to minimize force perturbations.

(d) 3D-printed box-shaped device with extra mass. (e) Bottle-shaped device. (f) Mug-shaped device for non-prismatic, spherical grasp.

Fig. 1. We collect the manipulation kinodynamics dataset using dedicated instrumented devices of adjustable shape, friction, mass distribution and
contact configuration (a-c). Additionally, we construct devices based on everyday objects, instrumented so as to allow intuitive interactions (d-f).

touch have been more scarce so far. A notable example is the
interaction capture technique of [10] for joint compliance
estimation in graphics and synthesis of interaction anima-
tions. In this section, we introduce a new, extensive dataset
dedicated to the kinodynamics of human manipulation.

3.1 Experimental Setup
Our objective is to construct a general force model capable
of capturing the whole range of manipulation forces that are
commonly applied during daily activities. The manipulation
kinodynamics dataset was thus collected for diversity and
genericity, regarding both the objects being manipulated
and the way they are grasped. While using real objects
may initially seem ideal, instrumenting them with force and
motion sensors is impractical and makes it difficult and
lengthy to collect a diverse dataset. Additionally, physical
properties of arbitrary objects (e.g., inertia matrices) are
seldom publicly available and must therefore be manually
identified [52], [53]. Finally, the instrumentation may result
in measured forces that substantially differ from those that
would have been applied on the original objects.

We address these caveats with dedicated instrumented
devices, pictured in Fig. 1, composed of two symmetric parts
for the thumb and the antagonist fingers. Each half consists
of a base serving as support for an attitude and heading
reference system (AHRS, Xsens MTi-300), and a sensor plate
on which 3D precision force transducers (Tec Gihan USL06-
H5-50N) can be positioned by 8 mm steps on the surface.
Thickness layers can be inserted in between to increase the
grasp width by 5 mm increments, bringing the total grasp
width range between 46 mm and 86 mm. The force transduc-
ers are fitted with support caps of different surface textures:
PET, sand paper of grit 40 (coarse), 150 (medium) and 320
(fine). The mass distribution can be adjusted with balancing
weights inside and on the surface of the instrumented

device. We 3D-print four sets of instrumented modules,
with sensor plates of dimensions 80×152, 56×152, 80×96
and 56×96 mm2. This setup allows the efficient collection
of force and kinematics measurements under diverse grasp
poses, friction conditions and mass distributions, obtained
from the CAD models of the individual components.

Still, instrumentation constraints make it difficult to col-
lect ground-truth measurements for arbitrary object shapes
and grasps [54], which we consider essential to also prove
the validity of any force prediction approach. Indeed, it
would require a significantly heavier experimental setup to
allow the individual adjustment of degrees of freedom such
as local curvatures and finger repositioning. Note that these
limits only apply to the dataset and not to the force esti-
mation framework itself, which can still produce physically
correct force distributions for such scenarios, although pos-
sibly different from the real forces being applied. We discuss
these limitations and apply our algorithm to manipulation
scenarios beyond the explicit scope of our study in Section 7.

3.2 The Dataset
Eleven right-handed volunteers, three females and eight
males, took part as subjects in our experiments. Each subject
was instructed to perform series of up to eight manipulation
sequences as follows. For each series, the subject is given an
instrumented box of randomly picked shape, thickness and
surface texture as described in Section 3.1. The initial object
configuration is completed by mounting the AHRS either at
the top or at the bottom of the instrumented device, and at
random with an additional 400 g mass inside. The subject
is then instructed to perform manipulation tasks on eight
variations of the initial configuration. Before each trial, the
force transducers are placed on the box according to the
subject’s preferred grasp pose and their signals are adjusted
following the manufacturer’s recommended acquisition and
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calibration procedure. Each trial consists in the subject
grasping the object and manipulating it for approximately
60 s. Every 10 s, in order to ensure the diversity of the
kinematics and forces present in the final dataset, the subject
is given randomly picked instructions on speed, direction
and task (e.g., slow forward pouring motion, fast left and
right oscillations). After each trial, a 50 g balancing weight is
attached to a randomly picked side, excluding sensor plates.
Throughout the eight trials, we measure the effect of mass
variations between 0 g and 350 g or 400 g and 750 g with the
additional internal mass, arranged differently across series.
Finally, the subject can interrupt the series whenever the
object becomes uncomfortable to manipulate.

Overall, we collect motion and force measurements for
3.2 hours of manipulation experiments under 193 condi-
tions of motion, friction, mass distribution and grasp. For
each experiment, we provide: the global orientation q, rota-
tional velocity ω and translational acceleration a measured
by the AHRS at 400 Hz; 3D force measurements expressed
in the reference frame of the object Robj., subsampled from
500 Hz to 400 Hz to match the AHRS; the physical prop-
erties of the object: mass m, inertia matrix J about the
center of mass C; and the grasp parameters: for each finger
k ∈ F , the friction coefficient µk at contact point Pck, and
Rk = (nk, t

x
k, t

y
k) a local right-handed reference frame with

nk the normal to the surface oriented from the finger to the
object. Friction coefficients are estimated by instructing the
subjects to press and pull the force transducers until slipping
and computing the maximum ratio between tangential and
normal forces through the Coulomb model:

‖gktxk + hkt
y
k‖2 ≤ µkfk, (1)

with (fk, gk, hk) the local decomposition of contact force Fk:

Fk = fknk + gkt
x
k + hkt

y
k. (2)

3.3 Equations of Motion and Synchronization

Let F c and τ c be the net force and torque due to individual
contact forces, and Fd and τ d be the net force and torque
due to non-contact forces (e.g., gravitation); the Newton-
Euler equations of motion at the center of mass are:{F c = ma−Fd

τ c = Jq ·α+ ω × (Jq · ω)− τ d,
(3)

with Jq the inertia matrix at orientation q and α the rota-
tional acceleration of the object, obtained by numerical dif-
ferentiation of the AHRS rotational velocity measurements
ω. The left hand side elements correspond to the contribu-
tions of the force transducer measurements while the right
hand side elements can be computed from the object prop-
erties and AHRS kinematics measurements. This allows us
to synchronize the kinematic and dynamic measurements
temporally while also accounting for sensor uncertainties.

First, the two signals can be synchronized temporally
by computing the cross-correlation between the sequences
of net forces obtained either from the AHRS or from the
force transducers. Second, both the AHRS and the force
transducers are subject to measurement errors, resulting
in discrepancies in the resulting net force and torque. The
specified AHRS maximum acceleration measurement error

is of ±0.3 m · s−2. For an object of mass 500 g, this amounts
to net force errors up to ±0.15 N. In contrast, non-linearity
and hysteresis can cause measurement errors up to±1 N per
force transducer, i.e. ±5 N at most on the net force. In prac-
tice, the average net force discrepancy between AHRS and
force transducers throughout the whole dataset is 0.33 N.
For each experiment, we compute the average net force
∆F c and torque ∆τ c discrepancies between AHRS and
force transducers. We align their values by computing the
minimal offsets (∆Fk)k∈F that result in ∆F c and ∆τ c:

min {CF c + Cτ c + Cvar}, (4)

with force-torque discrepancy and variation cost functions:

CF c ((∆Fk)k) =

∥∥∥∥∥∆F c −
∑
k∈F

[∆Fk]

∥∥∥∥∥
2

2

Cτ c ((∆Fk)k) =

∥∥∥∥∥∆τ c −
∑
k∈F

[−−→
CPk ×∆Fk

]∥∥∥∥∥
2

2

Cvar ((∆Fk)k) =
∑
k∈F

‖∆Fk‖22

(5)

In practice, it is preferrable to normalize CF c and Cτ c , e.g.,
with the initial discrepancies ∆F c and ∆τ c respectively.
We solve the optimization problem using sequential least
squares programming and correct the force transducer mea-
surements with the resulting offsets.

4 FORCE MODEL

Based on the Newton-Euler equations, the net contact force
F c and torque τ c are completely determined by the object’s
motion and physical properties. However, given F c and τ c
can generally be achieved by an infinity of different force
distributions. Our force model addresses these two aspects
by combining physics-based optimization and learning to
reconstruct force distributions that are both physically plau-
sible and similar to actual human grasping.

4.1 Physics-Based Optimization for Manipulation
In this section, we formulate the Newton-Euler equations
and Coulomb model as constraints of an optimization prob-
lem allowing the extraction of force distributions compatible
with a given motion. We integrate these constraints in a
second-order cone program (SOCP) of the form:

min C(x) =
1

2
xTPx + rTx

s.t.


‖Ajx + bj‖2 ≤ cTj x + dj , j = 1, . . . ,m

Ex ≤ f

Gx = h.

(6)

We express conditions of physical plausibility using the local
decompositions of Eq. (2) as 15 optimization parameters:

x = (f1, g1, h1, . . . , f5, g5, h5)
T (7)

Positivity. Recall that for each finger k, we choose the
contact normal nk oriented inwards the object. With this
convention, the normal components fk are non-negative:

fk ≥ 0, k = 1, . . . , 5. (8)



5

This can be rewritten in Eq. (6) with linear inequality matri-
ces E and f of respective sizes 5×15 and 5×1, with:

E(i, j) =

{−1 if j = 3(i− 1) + 1

0 else
f(i, 1) = 0.

(9)

Friction. The Coulomb model of Eq. (1) can be written as
five cone constraints, i.e., one per finger. For each finger k,
the cone constraint matrices Ak, bk, ck, dk, are of respective
sizes 2×15, 2×1, 15×1 and 1×1, such that:

Akx + bk =

(
gk

hk

)
and cTk x + dk = (µkfk) . (10)

Their elements are defined as follows:

Ak(i, j) =

{
1 if j = 3(k − 1) + 1 + i

0 otherwise
bk(i, 1) = 0

ck(i, 1) =

{
µk if i = 3(k − 1) + 1

0 otherwise
dk(1, 1) = 0.

(11)

Equations of motion. Recall from Eq. (3) that the net contact
force F c and torque τ c can be determined from kinematic
quantities only. The individual finger forces are such that:

F c =
∑
k∈F

Fk

τ c =
∑
k∈F

[−−→
CPk × Fk

]
.

(12)

We express the Newton-Euler equations in the global ref-
erence frame Rglobal = (v1,v2,v3). The equality constraint
matrices G and h are of respective sizes 6×15 and 6×1 with:

∀i = 1, . . . , 3; ∀j = 1, . . . , 15; ∀k = 1, . . . , 5;

G(i, j) =


nk · vi if j = 3(k − 1) + 1

txk · vi if j = 3(k − 1) + 2

tyk · vi if j = 3(k − 1) + 3

0 otherwise
h(i, 1) = F c · vi

G(i+ 3, j) =



[−−→
CPk × nk

]
· vi if j=3(k−1)+1[−−→

CPk × txk

]
· vi if j=3(k−1)+2[−−→

CPk × tyk

]
· vi if j=3(k−1)+3

0 otherwise
h(i+ 3, 1) = τ c · vi

(13)

Cost function. Physically plausible force distributions can
be computed with a cost function depending only on the
optimization variables, e.g. minimal (squared) L2 norm [6]:

CL2(x) =
∑
k∈F

[
fk

2+gk
2+hk

2
]

=
∑
k∈F

‖Fk‖22 . (14)

Yet, the resulting forces can significantly differ from those
humans really apply (see Fig. 2). Instead, we consider a cost
minimizing the discrepancy with given target forces F̃k:

CF̃k
(x) =

∑
k∈F

∥∥∥Fk − F̃k

∥∥∥2
2
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Fig. 2. Force distributions computed only by physics-based optimization
are guaranteed to result in the observed motion (net force and torque)
but can significantly differ from the real distributions at the finger level.

In the following, we use CF̃k
to correct force transducer

measurements and neural network prediction uncertainties.

4.2 Learning Features

The criteria that is optimized by the central nervous sys-
tem in hand-object manipulation is still unknown (see
Section 2.2). A major obstacle to its identification is a
dependency on musculoskeletal parameters that can be
difficult to measure precisely [55]. Rather than explicitly
considering such low-level parameters, the force model we
propose in this work relies on an artificial neural network
that predicts manipulation forces from high-level kinematic
features. Based on the dataset presented in Section 3, we
group the available parameters into three categories:

• Object and grasp parameters: location of the center
of mass C in Robj., mass m, inertia matrix J, contact
point locations Pk and friction coefficients µk.

• Kinematic parameters: appearing in Eq. (3) are the
object’s orientation q inRglobal, rotational velocity ω,
rotational acceleration α and translational accelera-
tion a. q,ω,a are directly measured by the AHRS.
α is obtained by simple numerical differentiation of
ω. Alternatively, the relevant kinematic parameters
can be obtained from visual tracking, through double
differentiation of the object’s pose and orientation.

• Force transducer measurements F̃k.
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AHRS

Orientation q,
rot. vel. ω,

trans. acc. a

Direct measurement

Kinematics
q,a,ω,α

Simple num. diff. ω

Object-grasp
parameters

C,m,J,
(µk,Pk)k∈F

3D force
transducers

3D force
measurements(

F̃k

)
k∈F

Direct measurement

SOCP: extract physically plausible 3D forces Fk in the vicinity of F̃k:

min
(Fk)k

{ ∑
k∈F

∥∥∥Fk − F̃k

∥∥∥2
2

}

Fig. 3. For each experiment, we extract force distributions compatible
with the observed motion in the vicinity of the transducer measurements.

To alleviate sensing uncertainties, we extract physically
plausible force distributions Fk in the vicinity of the pos-
sibly inaccurate measurements F̃k, as depicted in Fig. 3.

The objective is then to learn the extracted force distri-
butions Fk based on input parameters that depend only
on the grasp, the object and its kinematics. We select these
input features based on their contribution to the Newton-
Euler equations of motion. A first approach could be to take
the raw parameters listed above. However, their influence is
often determined not individually but rather in interaction
with other parameters. From Eq. (12), the positions of the
center of mass C and contact points Pk are meaningful not
on their own but in relation to each other as

−−→
CPk. Similarly,

from Eq. (3), we summarize the contributions of m, a, J, q,
ω, α into the target net contact force Fc and torque τ c.

Recall that Fc and τ c are expressed in Rglobal. Since the
dataset focuses on static grasps, for each experiment, the
contact points are constant in any frame attached to the ob-
ject. We account for translational and rotational invariances
by projecting Fc, τ c and

−−→
CPk on Robj.. Thus, the input

features stemming from the Newton-Euler equations are:

∀(k,v) ∈ F ×Robj.,


pFc
v = Fc · v
pτc
v = τ c · v
pPk
v =

−−→
CPk · v

. (16)

In addition, we consider the average friction coefficient:

pµ = 〈µk〉k∈F (17)

We regroup these parameters, derived from the grasp-object
properties and kinematics, into a 22-element vector K:

K =
(
pFc
v , pτc

v , pPk
v , pµ

)
(k,v)∈F×Robj.

(18)

Similarly, we denote by D the 15-element vector of the force
distribution expressed in the local frame:

D = (Fk · v)(k,v)∈F×Robj.
(19)

Note that attaching the frame to a chosen finger also helps
preserve invariances througout objects and experiments.
Using the thumb contact space Rth.= (tx0 , t

y
0,n0) with ty0

towards the palm, all four antagonist fingers share the same
coordinate along n0, hence reducing K to 19 elements.

KDN-FH-F

Recurrent
Neural

Network

Linear
Layer

Ki

Di−1

Di

(a) KDN-FH-F: full hand forces.

KDN-VF-F

KDN-VF-F(th.-VF)

RNN LL
K(th.-VF)
i

D(th.-VF)
i−1

D(th.)
i

KDN-VF-F(ant.)

RNN LL
K(ant.)
i

D(ant.)
i−1

D(ant.)
i

Ki

Di−1

Di

(b) KDN-VF-F: two-stage thumb-virtual finger network.

Fig. 4. Two RNN architectures learning the manipulation forces at each
fingertip based on the current kinematics and past forces.

4.3 Neural Network Modelling
Given an object-grasp configuration, the goal of our work is
to obtain an accurate estimate of the force distribution ap-
plied to achieve an observed motion, e.g. by reconstructing
a force distribution function F such that:

D = F (K) (20)

In [6], we approximated such a function with an MLP
learning internal forces. Yet, our previous formulation has
two important limitations:

• Similar tasks can be achieved with different force dis-
tributions, i.e., multiple values of D can be associated
to the same value of K. As such, different distribu-
tions would tend to be averaged albeit equally valid.

• In Eq. (20), consecutive force distributions are inde-
pendent through time. Instead, since contact is never
broken, we should expect that the force distribution
Di at timestamp i depends not only on the corre-
sponding task parameters Ki but also on the past.

Therefore, we adopt the following alternative formulation:

Di = F
(
Ki,Di−1, (Kj ,Dj−1)j=1,i−1

)
(21)

Through the dependency on past kinodynamics, the first
limitation is also mitigated since forces are distinguished
based on Ki trajectories rather than single samples.

We capture the sequential nature of manipulation kino-
dynamics using recurrent neural networks (RNN) [56], with
long short term memory (LSTM) neurons [57] that allow
for better learning of long-term dependencies. In this work,
we investigate four kinodynamics network (KDN) archi-
tectures. The first model we propose, KDN-FH-F, directly
predicts full hand forces Di from the current kinematics Ki

and previous distribution Di−1 using a single RNN:

Di = KDN-FH-F(Ki,Di−1). (22)

Alternatively, we propose a two-stage network inspired
by the virtual finger model, KDN-VF-F. A first RNN esti-
mates thumb forces D(th.)

i based on parameters reducing the
full grasp to a thumb and virtual finger:

D
(th.)
i = KDN-VF-F(th.-VF)

(
K

(th.-VF)
i ,D

(th.)
i−1

)
. (23)
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We associate the virtual finger with the centroid of the
antagonist fingers Fant. and their average friction coefficient:

K
(th.-VF)
i =

(
pFc
v , pτc

v , pPth.
v , pµth. , pPant.

v , pµant.
)
v∈Rth.

with

{
pPant.
v =

〈
pPk
v

〉
k∈Fant.

pµant. = 〈µk〉k∈Fant.

(24)

We compute the total wrench due to the antagonist fingers
based on the contribution of the estimated thumb force Fth.:

∀v ∈ Rth.,

{
pF ant.
v = (Fc − Fth.) · v

pτ ant.
v =

(
τ c −

(−−−→
CPth. × Fth.

))
· v

(25)

The second stage of the network learns the resulting distri-
bution D

(ant.)
i over the antagonist fingers:

D
(ant.)
i = KDN-VF-F(ant.)

(
K

(ant.)
i ,D

(ant.)
i−1

)
with K

(ant.)
i =

(
pF ant.
v , pτ ant.

v , pPk
v , pµant.

)
(k,v)∈Fant.×Rth.

(26)

We depict KDN-FH-F and KDN-VF-F in Fig. 4.
In order to further address the fact that the same motion

can be due to different yet equally valid force distributions,
we introduce alternative versions of KDN-FH-F and KDN-
VF-F that associate current kinematics Ki and past forces
Di−1 to force variations ∆Di. In doing so, we explicitly
associate the same output to two sequences that differ by
a constant internal force distribution. We denote these al-
ternative architectures by KDN-FH-∆ and KDN-VF-∆. Full
manipulation forces are then reconstructed by sequentially
adding predicted force variations. As such, these architec-
tures are prone to drift and may require additional control.

5 EXPERIMENTS

We train the four architectures KDN-FH-F, KDN-FH-∆,
KDN-VF-F, KDN-VF-∆ on the manipulation kinodynamics
dataset of Section 3. Note that its sampling rate (400 Hz) far
exceeds the frame rate of off-the-shelf RGB-D sensors such
as Microsoft Kinect (30 fps) and Asus Xtion (60 fps). In order
to be compatible with vision-based kinematics (Section 6),
we down-sample the dataset to 60 Hz and split it for training
(60 %), validation (20 %) and testing (20 %). In KDN-FH-F
and KDN-FH-∆, the RNN contains two hidden-layers of
size 256. In KDN-VF-F and KDN-VF-∆, each RNN stage
contains a single hidden-layer of size 256. The networks are
implemented and trained within the Torch7 framework [58]
using stochastic gradient descent with a mean square error
criterion and dropout [59] to avoid overfitting.

5.1 Force Reconstruction Model
From Eq. (21), each force distribution Di is computed from
the corresponding kinematics Ki and the distribution at the
previous time step Di−1. Due to this sequential process,
the predicted forces may drift away from the transducer
measurements throughout the experiment. We assess the
influence of the experiment duration in Section 5.2. Sim-
ilarly, the predicted sequence also depends on the choice
of the initial force distribution D0, which we address in
Section 5.3. In this section, we discuss the reconstruction
of physically plausible manipulation forces from KDN pre-
dictions and present our results on full-length experiments

Object-grasp param., kinematics (i)

KDN
Ki

D(raw)
i−1

(i− 1) (i+ 1)

D(raw)
i

Ki+1

KDNRaw force
predictions

(a) Open-loop: force predictions are not checked for physical plausibility.

Object-grasp param., kinematics (i)

KDN
Ki

D(CL)
i−1SOCP

(i− 1) (i+ 1)

SOCPD(raw)
i D(CL)

i

Ki+1

KDN

(b) Closed-loop: force predictions are corrected between time steps.

Fig. 5. Open-loop and closed-loop force generation processes.

TABLE 1
Force Estimation Errors on Full-Length Manipulation Sequences

Open-loop Post-processed Closed-loop
KDN-FH-F 0.49 (4.14) 0.44 (4.07) 0.16 (3.54)

KDN-FH-∆ −43.67 (156.72) 0.60 (4.74) 0.50 (11.03)

KDN-VF-F 0.29 (3.19) 0.29 (3.13) 0.12 (2.60)

KDN-VF-∆ 1145.06 (3984.86) 3.54 (11.80) 2.32 (6.60)

with ground-truth initialization. Manipulation forces are
obtained by projecting the components of Di onto the local
reference frame following Eq. (19). Since the Newton-Euler
and Coulomb laws are not explicitly enforced by the RNNs,
the raw predictions are not guaranteed to result in the ob-
served motion. We depict the open-loop prediction process
in Fig. 5a. Using the SOCP described in Fig. 3 with the KDN
outputs instead of the force transducer measurements, the
sequence of raw predictions can be post-processed to yield
physically plausible force distributions in their vicinity. An-
other important point is that the training sequences are
physically coherent. Thus, repeatedly feeding incompatible
kinematics and forces into the KDN may result in growing
prediction errors. We tackle this issue by integrating the
SOCP in closed-loop with the KDN such that force pre-
dictions are consistently corrected between time steps. We
depict the closed-loop prediction process in Fig. 5b.

We compute the estimation errors (average and standard
deviation) for the four network architectures using open-
loop prediction, offline post-processing or closed-loop pre-
diction and report the results in Table 1. In general, post-
processing and closed-loop prediction perform better than
open-loop prediction. This is especially the case for the
networks estimating force variations ∆Di, as these tend
to be rather unstable and prone to drift. For instance, in
Fig. 6, the open-loop predictions rapidly drift away from
the net force and torque producing the target kinematics.
Additionally, the individual normal forces become nega-
tive, which would mean that fingertips pull rather than
press on the contact surface. Offline post-processing looks
for physically valid forces in the vicinity of negative raw
predictions, finally yielding distributions of minimal norm.
In contrast, closed-loop prediction can help the network
recover from incorrect predictions and maintain human-
like grasping forces. Overall, the networks predicting force
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Fig. 6. Open-loop, post-processed and closed-loop force predictions
for KDN-VF-∆ (normal components). In this example, the open-loop
estimation drifts away from physically plausible solutions (negative nor-
mal forces). Compatibility with the observed motion is enforced through
offline post-processing or closed-loop control at each time step.

distributions generally perform better than those estimating
force variations. For those, post-processing does not appear
to significantly improve the open-loop estimations, which
shows that these RNNs are rather successful at capturing
the relationship between kinematics and underlying forces.
Finally, the better accuracy of KDN-VF-F indicates that the
virtual finger model can be a useful tool to decouple the
static indeterminacy stemming from the thumb and antago-
nist fingers. Still, the two-stage architecture makes KDN-VF-
∆ more prone to drift since thumb force predictions cannot
be corrected alone before computing the antagonist forces.

5.2 Force Drift over Time

Due to the infinity of force distributions compatible with
a given motion, the force predictions are likely to deviate
from the transducer measurements over time. We quantify
this effect by splitting the experiments into sub-sequences of
maximum duration 1, 2, 4, 8, 16, 32 s (resp. 60, 120, 240, 480,
960, 1920 samples) and computing the resulting estimation
errors for the four architectures with ground-truth initializa-
tion and offline post-processing or closed-loop prediction.
For completeness, we reproduce the estimation errors over
the full length sequences (average duration 60.1 s, standard
deviation 3.8 s). We report the results in Table 2.

In line with the observations made on the full-length ex-
periments, KDN-VF-∆ is the worst-performing network for
every sequence duration, whereas KDN-VF-F is consistently

best-performing or closely behind. This indicates again that
decoupling thumb and antagonist redundancies is a viable
strategy, yet more unstable in the presence of force varia-
tion uncertainties. We also observed that KDN-FH-∆ yields
better results than its full force counterpart KDN-FH-F on
the 1 s sequence duration and 2 s to a lesser extent. Recall
that the ∆Di networks were introduced to accommodate
the possibility of having the same motion caused by an
infinity of force distributions. It appears here that KDN-FH-
∆ is better at matching the real force variations on short
sequences. Still, the applicability of this result on real ma-
nipulation tasks is limited due to the two following aspects.
First, for sequence lengths greater than 2 s, the accumulation
of ∆Di prediction errors becomes predominant. Second, the
accuracy of the predicted force sequence is contingent on its
initialization on the real forces being applied as measured
by force transducers, which, ultimately, the force estimation
framework aims at completely circumventing.

5.3 Force Sequence Initialization
Manipulation forces are sequentially computed based on an
initial distribution that can be adjusted freely. We assess the
force variability following non ground-truth initialization
for sequences of maximum duration 4.0, 8.0, 16.0 and 32.0 s.
Each sequence is initialized as follows. Using the average
and standard deviation µ,σ of each finger force throughout
the manipulation kinodynamics dataset, we pick a random
sample D̃0 following the normal distribution N (µ,σ). We
then correct D̃0 using the SOCP of Section 4.1. Thus, we
ensure that the resulting distribution D0 is compatible with
the initial kinematics K0. We report the force estimation
errors for random and ground-truth initialization in Table 3.

Expectedly, ground-truth initialization yields better force
estimates overall. Still, for each architecture, the perfor-
mance difference decreases with the sequence duration.
Indeed, even when starting from the same distribution, the
predicted sequence is likely to deviate from the transducer
measurements due to the infinity of force variations pro-
ducing the same motion. This mitigates the importance of
the force initialization over time. In the case of the best-
performing network, KDN-VF-F (closed-loop), the differ-
ence is actually minor even starting from 8.0 s sequences.
Finally, note that for any initial force distribution, the re-
sulting sequence is constructed to be physically plausible
given the observed motion and compatible with the forces
a human could likely apply, based on the manipulation
kinodynamics dataset. This allows the generation of force
sequences following different profiles for the same motion
(e.g., light or strong starting grasp). This method can also be
used to reinitialize the prediction model when the resulting
distributions are unreliable, as it may happen in the pres-
ence of motion tracking discontinuities.

6 FORCE SENSING FROM VISION

In the previous sections, we showed that the finger forces
applied during manipulation can be inferred based on the
kinematics of the object, as measured by a high-performance
AHRS. Now, we propose to estimate the object’s kinematics
from markerless visual tracking, thus circumventing the
need for any instrumentation whatsoever.
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TABLE 2
Force Estimation Drift Through Time

1.0 s 2.0 s 4.0 s 8.0 s 16.0 s 32.0 s Full length
KDN-FH-F, post-processed −0.21 (2.06) −0.21 (2.43) −0.13 (2.86) −0.04 (3.22) 0.07 (3.54) 0.19 (3.76) 0.44 (4.07)

KDN-FH-F, closed-loop −0.13 (2.20) −0.12 (2.47) −0.07 (2.80) 0.00 (3.07) 0.06 (3.24) 0.08 (3.33) 0.16 (3.54)

KDN-FH-∆, post-processed 0.00 (1.80) 0.15 (2.42) 0.36 (3.22) 0.56 (3.89) 0.68 (4.34) 0.56 (4.62) 0.60 (4.74)

KDN-FH-∆, closed-loop 0.02 (1.87) 0.11 (2.48) 0.27 (3.44) 0.45 (5.14) 0.58 (7.39) 0.57 (9.32) 0.50 (11.03)

KDN-VF-F, post-processed 0.07 (2.09) 0.13 (2.51) 0.20 (2.82) 0.25 (2.99) 0.27 (3.07) 0.28 (3.11) 0.29 (3.13)

KDN-VF-F, closed-loop 0.02 (1.86) 0.04 (2.16) 0.07 (2.38) 0.10 (2.50) 0.11 (2.56) 0.12 (2.58) 0.12 (2.60)

KDN-VF-∆, post-processed 0.43 (2.93) 0.87 (4.47) 1.64 (7.11) 2.37 (9.33) 2.90 (10.61) 2.94 (11.13) 3.54 (11.80)

KDN-VF-∆, closed-loop 0.41 (2.47) 0.76 (3.45) 1.24 (4.74) 1.69 (5.69) 1.99 (6.17) 2.15 (6.43) 2.32 (6.60)

TABLE 3
Influence of Force Prediction Initialization

4.0 s 8.0 s 16.0 s 32.0 s

Reference Random Reference Random Reference Random Reference Random
KDN-FH-F, PP −0.13 (2.86) −0.00 (3.42) −0.04 (3.22) 0.12 (3.60) 0.07 (3.54) 0.21 (3.76) 0.19 (3.76) 0.19 (3.80)

KDN-FH-F, CL −0.07 (2.80) 0.09 (3.36) 0.00 (3.07) 0.10 (3.43) 0.06 (3.24) 0.09 (3.42) 0.08 (3.33) 0.06 (3.36)

KDN-FH-∆, PP 0.36 (3.22) 0.34 (3.72) 0.56 (3.89) 0.52 (4.25) 0.68 (4.34) 0.64 (4.49) 0.56 (4.62) 0.52 (4.73)

KDN-FH-∆, CL 0.27 (3.44) 0.37 (4.08) 0.45 (5.14) 0.53 (5.75) 0.58 (7.39) 0.63 (7.35) 0.57 (9.32) 0.56 (9.59)

KDN-VF-F, PP 0.20 (2.82) 0.22 (3.01) 0.25 (2.99) 0.27 (3.08) 0.27 (3.07) 0.28 (3.13) 0.28 (3.11) 0.29 (3.14)

KDN-VF-F, CL 0.07 (2.38) 0.12 (2.61) 0.10 (2.50) 0.12 (2.63) 0.11 (2.56) 0.13 (2.63) 0.12 (2.58) 0.13 (2.63)

KDN-VF-∆, PP 1.64 (7.11) 1.79 (7.55) 2.37 (9.33) 2.37 (9.50) 2.90 (10.61) 2.70 (10.32) 2.94 (11.13) 2.99 (11.10)

KDN-VF-∆, CL 1.24 (4.74) 1.27 (5.11) 1.69 (5.69) 1.75 (5.86) 1.99 (6.17) 2.06 (6.29) 2.15 (6.43) 2.18 (6.47)

6.1 Model-Based Tracking

Along with the physical properties of the manipulated ob-
ject, the force estimation framework requires its kinematics
and the location of the contact points over which forces
are distributed. Object kinematics and contact points can be
attained by means of tracking the hand and the manipulated
object in 3D. Given such a successful 3D tracking, the
kinematics can readily be computed from the motion of the
object, and the contact points by reasoning about the prox-
imity of the object and the fingers of the hand. Achieving
hand-object tracking at the level of accuracy and robustness
that is required for visual force estimation is a challenging
task. We recorded experiments for quantitative evaluation
using a SoftKinetic DepthSense 325 sensor. In the recorded
sequences, the motion of the hand-object compound was
such that a wide range of linear and angular velocities was
explored. In practice, such motions frequently induce high
levels of motion blur and strong (in some cases, complete)
occlusions. There is also considerable noise in the depth
measurements provided by the sensor which, in some cases,
is systematic (e.g. slanted surface artifacts).

We used the 3D hand-object tracking method of [60].
This choice was derived from our experience in [6] which
showed the efficacy and flexibility of the Ensemble of Col-
laborative Trackers (ECT) when dealing with more than a
single object or hand. Through extensive quantitative exper-
iments, we found that ECT yields accurate object kinematics
estimates, as we discuss in Section 6.2. The accuracy of
the force estimates depends mostly on that of the contact
points. Indicatively, simulating a Gaussian noise of standard
deviation 5 mm (resp. 10 mm) on the true contact points
yields force reconstruction errors of zero mean (same net

forces) and 0.87 N (resp. 1.54 N) standard deviation. In our
preliminary experiments, the average contact point estima-
tion error was greater than 20 mm. It should be noted that
tracking the object alone fails due to the object occlusions
by the manipulating hand not being accounted for. To deal
with this problem, we capitalize on the observation that
in the scenarios we are interested in, the hand achieves
a firm grasp that changes only slightly when moving the
object around. Under this assumption, as soon as the hand
grasps the object, the hand and the object can be viewed as a
single rigid compound. Thus, in a first step, we track hand-
object interaction with [60]. We then select a frame where
the mutual hand-object occlusions are minimal. For that
particular frame, we execute anew the optimization step by
incorporating an extra term in the objective function that
favors a hand pose where the fingertips touch the object
at the known contact points. This leads to a hand-object
configuration that is most compatible to observations, while
respecting the contact point soft constraints. To arrive at this
configuration, both the configuration of the hand and the
object are revised. This configuration is then considered as a
rigid compound which is used to track the whole sequence
anew. The first tracking pass involves the optimization of 34
parameters per frame, 27 for the hand and 7 for the object.
The second pass corresponds to 7 parameters only: the rigid
transform of the compound.

6.2 Kinematics Estimation From Visual Tracking

With the camera calibrated intrinsically and extrinsically
such that the gravity vector is known, we record and process
12 tracking experiments using the following objects. First,
the instrumented device used in Section 3, in a configuration
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(a) Dataset obj. (b) Box. (c) Bottle. (d) Mug.

Fig. 7. The hand and the object are tracked as a rigid compound.

TABLE 4
Kinematics Estimation Errors from Tracking

Central Gaussian Algebraic
Trans. acc. [m · s−2] 0.31(25.36) −0.02(2.92) −0.05(3.03)

Rot. vel. [rad · s−1] 0.14(446.45) −0.05(30.94) 0.01(31.76)

Force [N] 1.18(8.94) 0.01(0.72) 0.01(0.75)

that does not appear in the manipulation kinodynamics
dataset (mass 279 g). Second, three objects used in daily
activities, 3D-printed and equipped with AHRS and force
transducers for ground truth: a cuboid box (856 g), a small
bottle (453 g), and a mug (174 g). We use the latter as an
application of the force model on non-prismatic grasps in
Section 7.2. We depict sample tracking results in Fig. 7.

Given the pose of the object throughout the experiment,
we estimate its first and second-order kinematics by numer-
ical differentiation. This process is rather delicate as noise in
the estimated trajectory generates spikes in its derivatives,
i.e. velocity and acceleration, therefore forces. The effects of
noise can usually be mitigated by smoothing the original
signal over several samples or using appropriate filters, e.g.
Gaussian. However, force profiles occurring in manipula-
tion tasks are naturally spiky (see Fig. 6), as simply moving
and stopping an object yields successive acceleration vectors
in opposite directions. Therefore, smoothing the trajectory
of the object comes at the expense of the ability to discern
sudden variations in acceleration profiles, which is crucial.

As an alternative to classical numerical differentiation
methods, we investigate the use of algebraic numerical
differentiators [61], [62] which do not assume any statistical
properties on the signal’s noise. We compare the kinematics
estimates to the AHRS measurements on translational accel-
eration and rotational velocity. In order to quantify the effect
on force estimation, we also compute the decomposition of
the force transducer measurements on AHRS and vision-
based kinematics. Denoting by Ts = 1/60 s the time period
between frames, we find an optimal Gaussian kernel of
standard deviation σ = 3Ts truncated at ±4σ. Similarly, the
(κ, µ) algebraic numerical differentiator performs best as a
filter of half width 4Ts with parameters κ = µ = 0.5. We
report the resulting kinematics estimation errors in Table 4.

On typical tracking sequences, smoothing techniques
appear necessary to compute reliable kinematics estimates.
Both the Gaussian and algebraic filters yield reasonable
force discrepancies despite possible tracking uncertainties
and discontinuities. Overall, while the Gaussian filter seems
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Fig. 8. Force estimates from AHRS measurements and visual tracking
with closed-loop KDN-VF-F and random initialization.

to perform slightly better than the algebraic filter, the latter
also requires significantly less samples per estimate. This
allows for a shorter lag for real time applications while also
better capturing high frequency force variations, at the cost
of a slightly larger sensitivity to tracking noise.

6.3 Force Prediction From Vision-Based Kinematics

Using a single camera, we track manipulation experiments
and estimate the object’s kinematics with algebraic filtering.
In Section 5, although the four network architectures are
trained on AHRS data, the object’s kinematics is used as
an input without consideration of the way it is measured.
Thus, the trained networks can seamlessly generate force
sequences from vision-based kinematics. In order to be
completely independent of ground-truth sensing, we use
the random initialization process described in Section 5.3.
We compute the resulting estimation errors with respect to
ground-truth force transducer measurements, along with,
for reference, force predictions derived from the AHRS
kinematics, none of these being used in the vision-based
estimation process. We report our results in Table 5.

Under the same initialization conditions, forces com-
puted from vision are comparable to forces computed from
AHRS measurements. The decrease in accuracy is most
noticeable on networks estimating force variations ∆Di due
to a higher tendency to drift, as discussed in Section 5,
but also additional uncertainties from visual tracking. We
depict an example of forces estimated from vision in Fig. 8.
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TABLE 5
Force Estimation Errors From Visual Tracking

Kinematics AHRS AHRS Vision
Initialization ground truth random random
KDN-FH-F, PP −1.10 (2.95) −1.12 (2.95) −1.18 (3.11)

KDN-FH-F, CL −1.37 (3.12) −1.37 (3.13) −1.25 (3.61)

KDN-FH-∆, PP 0.72 (3.38) 0.85 (3.42) 0.94 (3.39)

KDN-FH-∆, CL 1.21 (5.80) 2.27 (11.86) 3.50 (17.28)

KDN-VF-F, PP 0.18 (2.64) 0.14 (2.68) 0.15 (2.69)

KDN-VF-F, CL −0.01 (2.20) 0.02 (2.27) −0.04 (2.30)

KDN-VF-∆, PP 5.40 (27.61) 5.16 (23.06) 5.94 (24.54)

KDN-VF-∆, CL 2.20 (16.31) 3.87 (19.99) 7.37 (25.15)

Tracking discontinuities (e.g., lost hand-object pose), follow-
ing second-order differentiation, are perceived by the force
estimation framework as acceleration spikes and result in
sudden fingertip force variations. These errors accumulate
in the case of ∆Di networks since each prediction is di-
rectly relative to the preceding sample. When erroneous
kinematics can be identified, their impact can be mitigated
by reinitializing the prediction process based on the last
reliable sample. However, while doing so is straightforward
when AHRS measurements are available, it is difficult from
the tracked kinematics alone, since acceleration spikes are
not necessarily due to discontinuities but can also stem from
actual sudden motions. Overall, KDN-VF-F appears the
most resilient architecture to visual tracking uncertainties.

7 DISCUSSION

7.1 Visual Tracking Assumptions
In Section 6.1, we suppose the contact points known and use
them to compute a static grasp throughout the motion. Note
that our force estimation framework itself is independent of
the tracking method employed as long as reliable motion
and contact information can be provided. The difficulty for
us was to collect ground-truth measurements to validate
our approach. Therefore, we forced the positioning of the
fingertips at desired locations for both the real objects and
the visual tracking system. Indeed, to allow arbitrary finger
placement, the experimental apparatus should be covered
with an array of high-precision 3D force transducers (that
are not available in the required dimensions), or alterna-
tively with dedicated force sensing surfaces [63], generally
limited in accuracy and range (e.g., normal forces only).

Our force estimation framework can readily challenge
in-hand manipulation scenarios with more sophisticated
tracking systems (e.g., multi-camera). Again, assessing such
tasks is limited by the difficulty of measuring the actual
forces without obstructing the subject’s haptic sense, which
we consider essential in our demonstration. In effect, the
tracking method we describe does not introduce any con-
straint besides those relative to the ground-truth instrumen-
tation, while making it possible to monitor manipulation
forces using a single off-the-shelf depth sensor.

7.2 Beyond Prismatic Grasps
For the sake of completeness, we evaluate the force estima-
tion framework on a non-prismatic grasp. We construct a

mug-shaped instrumented device, pictured in Fig. 7d, and
arrange the force transducers on a circle, with the contact
normals pointing towards the center. We then compute force
distributions from visual tracking and AHRS measurements
using the model trained on prismatic grasps. We depict the
resulting predictions in Fig. 9. We observe the following.
First, by considering the hand and the object as a single rigid
compound, we are able to track the mug fairly accurately
using a single depth sensor, despite it being essentially
rotationally symmetric, except for a handle that is easily
occluded. Second, in general, the RNN predictions do not
follow the subtle force variations along the normal nk and
tangential directions txk as closely as the tangential direc-
tions tyk. Indeed, recall from Section 4.2 that the individual
tyk per finger are defined, uniformly, as oriented towards the
palm. This property is preserved in the case of the mug.
However, while for prismatic grasps the nk are collinear
with each other and perpendicular to the txk , couplings
appear between and among each set in the case of the
mug. Still, although RNN predictions and force transducer
measurements can quite differ, the SOCP ensures that the
final distributions are physically plausible based solely on
the observed kinematics and the object-grasp properties,
regardless of the RNN training dataset.

While we could imagine extending the force estimation
framework further by training new network architectures
on arbitrary grasps, this is difficult in practice. The ground-
truth instrumentation used in the manipulation kinodynam-
ics dataset captures 11 degrees of freedom for the contact
space (grasp width and 2D tangential position of each finger
on the tangential space). In contrast, for general grasps,
the instrumentation should allow 25 degrees of freedom (5
per finger, ignoring the transducer orientations about the
normal axes). Due to a greater contact space dimensionality,
it would require significantly more experiments to obtain
a dataset that is both diverse and extensive, as well as a
much heavier experimental setup to be able to fine-tune the
position and roll-pitch of each transducer independently.

7.3 Computational Performance
On a computer equiped with an Intel i7-4700MQ CPU
(quad-core 2.40GHz) and an NVIDIA GTX 780M GPU, we
apply the KDN-VF-F closed-loop architecture on the testing
dataset (39 experiments, total duration 2470 s, 60 samples
per second). We report the computation time in Table 6.
While at first the computation time appears greater than the
dataset duration, the decomposition per process shows that
the current implementation is actually rather sub-optimal.
In fact, the three core components of our approach take only
5.29 ms per sample. First, algebraic differentiators imple-
mented as finite impulse response filters are of minor impact
on the computation time. Second, RNN predictions are
parallelized on the GPU using the Torch7 framework [58].
Third, SOCP solving is done with the CVXOPT library [64].

In the current implementation, we construct the RNN
input vectors and SOCP constraint matrices within their
respective frameworks. A typical iteration is as follows:

1) Given the current kinematics and the SOCP cor-
rected forces Fi−1 at the previous step, we construct
the RNN input vector (Ki,Di−1).
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Fig. 9. Force estimates with non-prismatic grasp (mug).

2) The network produces a raw force prediction D(raw)
i .

3) We assemble SOCP constraint matrices from the
target kinematics and the cost function from D(raw)

i .
4) We solve the SOCP and get the corrected forces Fi.

Steps 1 and 2 are executed in Lua for Torch7, while steps 3
and 4 are executed in Python for CVXOPT. Both being inter-
preted languages explains part of the overhead in preparing
the data for each process. However, the majority of the
computation time is actually spent on managing the two in-
terpreters in succession, as represented by the Lua/Python
bridge value in Table 6, which measures the time elapsed
between steps 2 and 3, and between steps 4 and 1 (next
iteration). Note that no calculation is performed during that
time, only spent on switching between Lua and Python
contexts. For this reason, simply implementing our method
within a unified computational framework would certainly
yield a tremendous increase in performance enabling real-
time use. Other possible improvements at the numerical
level include refactoring data structures to reduce redun-
dancies and update constraint matrices only when needed,
initializing the SOCP search at the RNN predictions, and
rewrite the physical plausibility problem as a quadratic
program (QP) using a discretized friction cone.

8 CONCLUSION AND FUTURE WORK

Our work establishes that monitoring hand-object interac-
tion forces at the fingertip level, a problem that is tradi-
tionally addressed with costly, cumbersome and intrusive
force transducers, can be addressed in a cheap, reliable

TABLE 6
Computation Time Decomposition by Process

Total Per sample Per timestep
Experiment duration 2470.0 s 16.67 ms 100.00 %

Computation time 3521.4 s 23.76 ms 142.57 %

Algebraic diff. 22.3 s 0.15 ms 0.90 %

RNN prediction 120.4 s 0.81 ms 4.87 %

↪→ Data formatting 86.2 s 0.58 ms 3.49 %

SOCP correction 641.8 s 4.33 ms 25.98 %

↪→ Initialization 659.0 s 4.45 ms 26.68 %

Lua/Python bridge 1991.7 s 13.44 ms 80.64 %

and transparent way using vision. Based on the first large-
scale dataset on manipulation kinodynamics, the approach
we present estimates force distributions that are compatible
with both physics and real human grasping patterns. While
the case of static prismatic grasps may appear restrictive,
this limitation is only relative to the instrumentation re-
quired to collect ground-truth measurements, essential to
prove the validity of the approach. Provided such an exper-
imental setup, we expect that our method can be seamlessly
extended to arbitrary grasps. Note that, even without, the
current SOCP formulation is independent of the dataset
used to train the networks and always produces distribu-
tions that result in the observed motion. Finally, even limited
to prismatic grasps, the estimation of 3D forces for all five
fingers on arbitrary motions greatly extends the state of the
art in interaction capture. Using our approach, it is achieved
with a setup as simple as a single RGB-D camera, enabling
its use for monitoring of human activities and robot learning
from demonstration in daily settings.

Our approach is readily compatible with any method
providing accurate object kinematics. We present qualitative
results on alternative object trackers [65], [66] in the sup-
plementary material2, with the contact points handpicked
from the visual observations. When the situation allows
a richer setup, a multi-camera system can also be used
to track the hand and the object separately. Our future
work involves alleviating the limitations induced by the
ground-truth instrumentation. In order to monitor non rigid
grasps, we aim to apply the force estimation framework
in conjunction with tracking to guide the pose search as
an implicit model for grasp plausibility and realism [67].
Additionally, the generalization to arbitrary grasps could
be addressed by considering the variability of manipulation
forces with grasp and object properties as an inverse optimal
control problem. The manipulation kinodynamics dataset
could thus be used to refine the force optimization problem
with physiological criteria, e.g., grasp efficiency [68]. In the
long term, we plan to extend the force estimation framework
to general articulated bodies for bi-manual grasping and
whole-body interaction with the environment.
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