Spatial quantile predictions for elliptical random fields
Véronique Maume-Deschamps, Didier Rullière, Antoine Usseglio-Carleve

To cite this version:
Véronique Maume-Deschamps, Didier Rullière, Antoine Usseglio-Carleve. Spatial quantile predictions for elliptical random fields. Journées MAS 2016, Aug 2016, Grenoble, France. hal-01356081

HAL Id: hal-01356081
https://hal.archives-ouvertes.fr/hal-01356081
Submitted on 24 Aug 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Spatial quantile predictions for elliptical random fields

Véronique Maume-Deschamps, Didier Rullière, Antoine Usseglio-Carle
1 Institut Camille Jordan, Lyon
2 Laboratoire de Sciences Actuarielle et Financière, Lyon

Introduction

Kriging (see Krige (1951)) aims at predicting the conditional mean of a random field \(Z(t)\) given the values \(Z(t_1), \ldots, Z(t_n)\) of the field at some points \(t_1, \ldots, t_n \in T\), where typically \(T \subset \mathbb{R}^d\). It seems natural to predict, in the same spirit as Kriging, other functionalities. In our study, we focus on quantiles for elliptical random fields.

Elliptical Distributions

Cambanis et al. (1981) give the representation: the random vector \(X \in \mathbb{R}^d\) is elliptical with parameters \(\mu \in \mathbb{R}^d\) and \(\Sigma \in \mathbb{R}^{d \times d}\), if and only if

\[X = \mu + R \Lambda U \Sigma^{1/2}, \]

where \(\Lambda \Sigma = \Sigma\), \(U \in \mathbb{R}^{d \times d}\) is a \(d\)-dimensional random vector uniformly distributed on \(S^{d-1}\) (the unit disk of dimension \(d\)), and \(R\) is a non-negative random variable independent of \(U\). Furthermore, \(X\) is consistent if:

\[R \not\perp X \quad \text{(2)} \]

Table 1: Some consistent distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>(\sigma_1^2)</td>
</tr>
<tr>
<td>Student, (\nu > 0)</td>
<td>(\frac{\nu}{\nu + \nu})</td>
</tr>
<tr>
<td>Unimodal Gaussian Mixture</td>
<td>(\frac{\mu}{\sqrt{1 - \alpha}})</td>
</tr>
<tr>
<td>Laplace, (\lambda > 0)</td>
<td>(\frac{\lambda}{\sqrt{1 - \alpha}})</td>
</tr>
<tr>
<td>Uniform Gaussian Mixture</td>
<td>(\mu \in [0, 1])</td>
</tr>
</tbody>
</table>

Now, we consider \(X = (X_1, X_2)^T\) to be a consistent \((R, d)\)-elliptical random vector with \(R \sim \mathcal{N}(0, 1)\) and \(\Sigma = \begin{pmatrix} \Sigma_1 & \Sigma_2 \\ \Sigma_2 & \Sigma_2 \end{pmatrix}\), \(\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}\).

The conditional distribution \(X_2|X_1 = x_1\) has parameters:

\[\begin{align*}
\mu_{2|1} &= \mu_2 + \Sigma_{21}(\Sigma_{11}^{-1})(x_1 - \mu_1) \\
\Sigma_{2|1} &= \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}
\end{align*} \]

Furthermore, \(X_2|X_1 = x_1\) is elliptical, with radius \(R^*\) given by:

\[R^* = \frac{x_1 - \mu_1}{\sqrt{\Sigma_{11}^{-1}}} \]

Quantile Regression

Quantile regression, introduced by Koenker and Bassett (1978), approximates the conditional quantile as follows:

\[\Phi_q(x) = P(R \in \mathcal{U}^{(1)} \leq x) \]

where \(\beta^*\) and \(\beta^*_0\) are solutions of the following minimization problem

\[\beta^* = \arg \min_{\beta \in R} E[\Phi_q(x - \beta X - \beta_0)] \]

and where the scoring function \(\Phi_q(x)\) is

\[\Phi_q(x) = \frac{1}{x} \text{sign}(x) \text{sgn}(x) = 0 \]

We obtain such simple results for other elliptical distributions. It is why we propose, in what follows, two approaches.

Extremal quantiles

In this section, the aim is to establish a relation between \(\Phi_{q_1}\) and \(\Phi_{q_2}\) for extremal values of \(\alpha\). For that,

\[\left\{ \begin{array}{l}
\frac{1}{x} - \Phi_{q_1}(x) = \xi \\
\frac{1}{x} - \Phi_{q_2}(x) = \xi
\end{array} \right. \]

Under this assumption, we can define Extremal Conditional Quantiles Predictors:

\[\begin{align*}
\Phi_{q_1}(X_2|X_1 = x_1) &= \mu_2 + \xi \Sigma_{21}^{-1}(x_1 - \mu_1) \\
\Phi_{q_2}(X_2|X_1 = x_1) &= \mu_2 - \xi \Sigma_{21}^{-1}(x_1 - \mu_1)
\end{align*} \]

Table: Some examples

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(\gamma)</th>
<th>(\xi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Student, (\nu > 0)</td>
<td>(N + 1)</td>
<td>(N + 1)</td>
</tr>
<tr>
<td>Unimodal GM</td>
<td>1</td>
<td>(N + 1)</td>
</tr>
</tbody>
</table>

Figure 2: Q-Q plots for Student example

Abstrack: We denote:

\[R, d \]

Furthermore, \(X \in \mathbb{R}^d\), \(\Sigma \in \mathbb{R}^{d \times d}\), if and only if:

\[X = \mu + R \Lambda U \Sigma^{1/2}, \]

where \(\Lambda \Sigma = \Sigma\), \(U \in \mathbb{R}^{d \times d}\) is a \(d\)-dimensional random vector uniformly distributed on \(S^{d-1}\) (the unit disk of dimension \(d\)), and \(R\) is a non-negative random variable independent of \(U\). Furthermore, \(X\) is consistent if:

\[R \not\perp X \quad \text{(2)} \]

Table 1: Some consistent distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>(\sigma_1^2)</td>
</tr>
<tr>
<td>Student, (\nu > 0)</td>
<td>(\frac{\nu}{\nu + \nu})</td>
</tr>
<tr>
<td>Unimodal Gaussian Mixture</td>
<td>(\frac{\mu}{\sqrt{1 - \alpha}})</td>
</tr>
<tr>
<td>Laplace, (\lambda > 0)</td>
<td>(\frac{\lambda}{\sqrt{1 - \alpha}})</td>
</tr>
<tr>
<td>Uniform Gaussian Mixture</td>
<td>(\mu \in [0, 1])</td>
</tr>
</tbody>
</table>

Figure 2: Q-Q plots for Student example

References

