DES APPLICATIONS GÉNÉRATRICES DES NOMBRES PREMIERS ET CINQ PREUVES DE L'HYPOTHÈSE DE RIEMANN

M Sghiar 1, *
* Corresponding author
Abstract : I will prove that there exists one application $\psi(\psi^-,\psi^+)$ on $\mathbb{R}^2$ such that $\mathcal{P} = \{\pm2,\pm3 \} \cup 6\times\mathcal{F^-}+1 \cup6\times\mathcal{F^+}-1$ where : $ \mathcal {P} $ is the set of relatively prime numbers, $\mathcal{F^-} = \mathbb{Z}\cap( \psi^+ ( \mathbb{Z}^*\times \mathbb{Q}\backslash\mathbb{Z})\backslash \psi^+(\mathbb{Z}^*\times \mathbb{Z}^*))$ and $\mathcal{F^+} =\mathbb{Z}\cap( \psi^- ( \mathbb{Z}^*\times \mathbb{Q}\backslash\mathbb{Z})\backslash \psi^-(\mathbb{Z}^*\times \mathbb{Z}^*) )$. And I will give an algorithm that allows both to generate prime numbers and confirm that $ \mathcal {P} $ is indeed determined by the mapping $ \psi (\psi ^ - , \psi ^ +) $ that I will apply in some proofs of the Riemann hypothesis .
Liste complète des métadonnées

Cited literature [5 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01356061
Contributor : Mohamed Sghiar <>
Submitted on : Thursday, November 3, 2016 - 11:19:20 AM
Last modification on : Monday, April 9, 2018 - 12:20:05 PM
Document(s) archivé(s) le : Saturday, February 4, 2017 - 1:13:07 PM

File

La preuve de l'hypothèse de R...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01356061, version 1

Collections

Citation

M Sghiar. DES APPLICATIONS GÉNÉRATRICES DES NOMBRES PREMIERS ET CINQ PREUVES DE L'HYPOTHÈSE DE RIEMANN. Pioneer Journal of Algebra Number Theory and its Applications, 2015, 10 (1-2), pp.1-31. ⟨http://www.pspchv.com/content_PJNTA-vol-10-issues-1-2.html⟩. ⟨hal-01356061⟩

Share

Metrics

Record views

359

Files downloads

520