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Abstract

With the progress of mantle convection modelling over the last decade, it now becomes possible to
solve for the dynamics of the interior flow and the surface tectonics to first order. We show here that
tectonic data (like surface kinematics and seafloor age distribution) and mantle convection models
with plate-like behaviour can in principle be combined to reconstruct mantle convection. We present
a sequential data assimilation method, based on suboptimal schemes derived from the Kalman filter,
where surface velocities and seafloor age maps are not used as boundary conditions for the flow, but
as data to assimilate. Two stages (a forecast followed by an analysis) are repeated sequentially to
take into account data observed at different times. Whenever observations are available, an analysis
infers the most probable state of the mantle at this time, considering a prior guess (supplied by
the forecast) and the new observations at hand, using the classical best linear unbiased estimate.
Between two observation times, the evolution of the mantle is governed by the forward model of
mantle convection. This method is applied to synthetic 2-D spherical annulus mantle cases to
evaluate its efficiency. We compare the reference evolutions to the estimations obtained by data
assimilation. Two parameters control the behaviour of the scheme: the time between two analyses,
and the amplitude of noise in the synthetic observations. Our technique proves to be efficient in
retrieving temperature field evolutions provided the time between two analyses is 10 Myr. If the
amplitude of the a priori error on the observations is large (30 per cent), our method provides a better
estimate of surface tectonics than the observations, taking advantage of the information within the
physics of convection.

1. Introduction

Global tectonics is a surface expression of
mantle convection [Bercovici, 2003]: the mo-
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tions of continents and seafloor are generated
by forces acting within the mantle and the litho-
sphere. For example, Ricard et al. [1989] and
Alisic et al. [2012] obtained a consistent de-
scription of surface kinematics by converting the
long wavelength heterogeneities of seismic ve-
locity into buoyancy forces. Mantle convection
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studies also attest to this link, showing for ex-
ample that a downwelling in a context of large-
scale convection draws continents to aggregate
[Zhong, 2001, Rolf et al., 2014].

Reconstructing the convective history of the
Earth’s mantle is a a long-standing problem in
geosciences [Bunge et al., 1998]. Indeed, an ac-
curate determination of mantle temperature and
velocity fields evolution only for the last 200 My
would already lead to a better understanding of
ore deposits formation, water resources distribu-
tion, the evolution of the geodynamo on geolog-
ical time scales or deep material properties. The
geodynamics community has taken advantage of
the link between mantle convection and tecton-
ics to build a first approach to reconstruct the
convection history of the past 100 My. For this
approach, plate tectonics theory is used to de-
scribe surface kinematics. By driving convection
currents at the surface with plate kinematic re-
constructions, it is possible to propose a scenario
of the evolution of mantle heterogeneities. Re-
sults so obtained proved to be relatively consis-
tent with long wavelength seismic tomography
or/and the geoid [Bunge and Grand, 2000, Fla-
ment et al., 2013]. These 3D spherical convec-
tion models are called mantle circulation models
[Bunge et al., 2002], as a reference to oceanog-
raphy. They require very fine parametrization in
order to generate internal structures consistent
with both the physics of convection and geo-
physical observations [Bower et al., 2015]. To
go one step further, several groups used tomo-
graphic models as data, in addition to plate re-
constructions [Bunge et al., 2003, Ismail-Zadeh
et al., 2007, Liu and Gurnis, 2008]. A temper-
ature field of the present-day Earth’s mantle is
generated from these tomographic models, and
the past mantle circulation is retrieved following
various methods such as backward advection,
variational methods and quasi-reversibility meth-
ods (see Ismail-Zadeh and Tackley [2010] for a
full report on these methods). There are two
drawbacks in this methodology, both difficult to
overcome. First, the convection models used so
far do not naturally produce Earth-like tecton-
ics: they generate either sluggish tectonics at
the surface or a stagnant lid when larger viscos-
ity contrasts are prescribed [Solomatov, 1995].
Second, although tectonic data are the most

important source of information (they are time-
dependent, unlike seismic data), they are used
only to drive the flow, not as data to match. To
drive the flow, the kinematics needs to be known
at every time-step of the calculation. This is not
the case for plate tectonic reconstructions, even
though Gurnis et al. [2012] designed a proce-
dure to interpolate the plate tectonics geometry
between times at which it is known.

Significant progress has been made in the past
10 years on modelling convection that produces
more realistic surface tectonics. Convection with
a pseudo-plastic rheology generates surface tec-
tonics with a plate-like behaviour [Moresi and
Solomatov, 1998, Moresi et al., 2000, Stein
et al., 2004, Bercovici, 2003, Tackley, 2000,
Van Heck and Tackley, 2008, Bercovici and Ri-
card, 2014]. Recent models display seafloor
spreading and continental drift comparable to
that of the Earth to first order: seafloor age dis-
tributions and the time scale of spreading fluc-
tuations are consistent with what has been in-
ferred for the Earth for the last 200 My [Coltice
et al., 2012, 2013]. This opens the way to pro-
ducing a mantle circulation model using con-
vection models with plate-like behaviour, un-
der the observational constraint provided by tec-
tonic data. This constraint is not to be enforced
through kinematic boundary conditions imposed
at every time step. Instead, it should be taken
into account in a statistically consistent fashion,
whereby the prediction due to the model and the
observations are combined in a way that respects
the uncertainties affecting both.

We explore here this possibility using a con-
trolled case, and present a proof of concept. We
have developed a sequential data assimilation
method which is a suboptimal scheme based on
the Kalman filter (see Todling and Cohn [1994]
for a review of suboptimal schemes based on the
Kalman filter). Such data assimilation method-
ology provides the best linear unbiased estimate
of the temperature field and surface velocities
at times data are available, and a prediction of
the evolution of the system state between those
times. Using synthetic tests in spherical annu-
lus geometry [Hernlund and Tackley, 2008], we
show that our data assimilation method is effi-
cient for reconstructions over 200 My with data
gaps of 5− 10 My and relative uncertainties on
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surface observations below 30%. This method
also allows the refinement of surface tectonics,
taking advantage of the information within the
physics of convection.

In the following, we first describe the general
approach to Kalman Filtering in Section 2. Sec-
tion 3 provides details on the definition of the
different operators and vectors forming the back-
bone of a sequential data assimilation frame-
work: the physical model, the data and the state
for mantle convection, as well as the observa-
tion operator. Section 4 presents our sequential
data assimilation algorithm and the adjustments
used for the reconstruction of mantle convec-
tion. Then, we present in Section 5 an evalu-
ation of the method with a series of synthetic
experiments, which leads to the discussion of
section 6.

2. The Extended Kalman Filter

We introduce in this section the Extended
Kalman Filter that we adapt and apply to the
convection reconstruction problem. We use here
classical notations, taken from Ide et al. [1997].
Our goal is to estimate the evolution of the man-
tle temperature field, using information from
a mantle convection model and tectonic data
including global kinematics and seafloor ages.
The following is a rather general description
of the Extended Kalman Filter; similar devel-
opments can be found in Ghil and Malanotte-
Rizzoli [1991], Kalnay [2003], Wunsch [2006] for
meteorology and oceanography and in Fournier
et al. [2010] for geomagnetism, for example.

Data assimilation aims at estimating the state
of a dynamical system and its evolution for
a given period of time, combining information
from observations and a physical model. The
evolution of the state of the system is described
by the set of true state vectors, storing the cho-
sen scalar fields that are discretized:

{
xt
1,x

t
2, ...,x

t
nt

}
, (1)

the subscripts {1, 2, ..., nt} being the discrete
time steps.

Likewise, the observations are defined as a set
of column vectors

{
yot1 ,y

o
t2
, ...,yotn

}
with {t1, t2, ..., tn} ⊂ {1, 2, ..., nt}. (2)

The true state and the observations are linked
linearly by the observation operator H

∀ti ∈ {t1, t2, ..., tn}, yoti = Hxt
ti

+ εoti , (3)

where εoti is the observation error at the timestep
ti. The precise value of εoti is unknown. How-
ever, it is possible to model it as a random vec-
tor and estimate its probability density function
(PDF). We assume εoti follows a centred Gaus-
sian statistics, and its associated covariance ma-
trix

Rti = Covar(εoti ) = 〈εoti (εoti )T 〉 (4)

is called the observation error covariance ma-
trix. The operator []T means transpose. The
Extended Kalman Filter belongs to the Sequen-
tial Data Assimilation techniques. It consists of
integrating the observation vectors one after the
other into a numerical model, when they become
available. Fig. 1 gives an overview of this pro-
cedure. The initialization, at timestep t1, pro-
vides an a priori guess of the state of the system.
Then two steps called analysis and forecast are
performed sequentially, every time a new obser-
vation vector becomes available, until all the ob-
servations have been taken into account. Hence
the name of the technique: sequential data as-
similation. The analysis corrects the current es-
timate of the system state by considering the
new observations. The forecast provides an es-
timation of the evolution of the system until the
next time new observations are available. The
evolution of the estimated state should converge
towards the true state as more observations are
assimilated.

2.1. Initialization

The Extended Kalman Filter algorithm starts
at the timestep t1, when the first observations
are available. Before taking into account the
first observations, an a priori state of the system
has to be estimated. It is called the background
state xb. The relationship between the back-
ground state and the true state at t1 is

xb = xt
t1

+ εb, (5)

where εb is the background state error. εb is a
random vector with 〈εb〉 = 0 and Covar(εb) =
P b.
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Figure 1: Principle of Sequential Data Assimilation. The initialization at time t1 sets the background state xb (green
dot at t1). xb is corrected by taking into account new observations, leading to the first analyzed state xa

t1 (blue dot
at t1), which is closer to the true state xt

t1 (red cross at t1). The evolution of the state (green line) is then computed

by the model M until t2, leading to a new forecast state xf
t2

(green dot). A new analyzed state xa
t2 is computed

considering new observations. The sequence is repeated until all observations have been taken into account. The aim
of data assimilation is to get as close as possible to the true state evolution (red line).

The background state vector is considered as
the forecast state vector at timestep t1, written
xft1 and its covariance matrix P b is the forecast

error covariance matrix at t1, written P f
t1

.

2.2. Analysis and forecast sequence

At ti, a new estimate of the state of the sys-
tem is calculated considering yoti , Rti , x

f
ti

and

P f
ti

. This step is called analysis, the new esti-
mate being the analyzed state xati . The rela-
tionship between the analyzed state and the true
state is

xa
ti

= xt
ti

+ εati , (6)

where εati is the analysis error at ti. ε
a
ti is mod-

elled as a random vector following a Gaussian
law, and its covariance P a

ti is the analysis er-
ror covariance matrix. The analyzed state xati is
chosen so that

xati is a linear combination of xfti and yoti ,

Tr(P a
n) is minimised,

〈εan〉 = 0.

These conditions lead to the classical
Best Linear Unbiased Estimate (see Ghil and
Malanotte-Rizzoli [1991] for example)

xa
ti

= xf
ti

+Kti

[
yoti −Hx

f
ti

]
, (7)

Kti = (HP f
ti

)T
[
H(HP f

ti
)T +R

]−1
, (8)

P a
ti

= (I −KtiH)P f
ti
, (9)

whereKti is the Kalman gain at ti. If the proba-
bility density functions of the errors on the fore-
cast state and the observed data are Gaussian
and the observation operator is linear, then xati
is not only the estimate of minimum variance
but as well the most likely state: in this case,
the analysis will be optimal.

The evolution of the estimated state of the
system from ti to ti+1, the next timestep ob-
servations are available, is computed using the
direct numerical model M:

xf
ti+1

=M
(
xa
ti

)
+ ηti

. (10)

Its associated covariance matrix is

P f
ti+1

= MP a
ti
MT +Qti

, (11)
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where M is the tangent linear model, i.e. the
linearised version of the operator M and Qti is
the model error covariance matrix. Equations 10
and 11 describe the forecast step. The estimated
state of the system at a timestep n xfn is called
the forecast state and P f

ti+1
is the forecast error

covariance matrix at timestep ti+1. P f
ti+1

takes
into account both the propagation of errors of
the analyzed state at timestep ti, ε

a
ti and the

model errors ηti . We assume a perfect model in
this study, so that

∀ti, ηti
= 0. (12)

3. Convection model, Mantle State Vector
and Tectonic Data

In this section, we describe in detail whatM,
H, x and y refer to in our mantle convection
context.

3.1. Convection Model with Plate-Like Be-
haviour

The forward model M is our source of prior
information. It solves the equations of conserva-
tion of mass, momentum and energy with classi-
cal simplifications for mantle convection: infinite
Prandtl number and Boussinesq approximation.
We further assume an isochemical mantle, and
non-dimensionalize the equations to thermal dif-
fusion scales (for a full development of the equa-
tions, see Ricard [2007] for example). We obtain

∇ · u = 0, (13)

∇ ·
[
µ
(
∇u+ (∇u)T

)]
−∇p+ RaTer = 0, (14)

DT

Dt
= ∇2T +H, (15)

where u, p, T and t are the non-dimensional ve-
locity, dynamic pressure, temperature and time,
respectively. We work in spherical coordinates
(r, θ, φ) of unit vectors (er, eθ, eφ). Ra is the
Rayleigh number and H is the non-dimensional
internal heating rate. The models presented here
have 10% basal heating and 90% internal heat-
ing.

The temperatures at the top and bottom
boundaries are set to Ta and Tb. The surface
and the base of the model are shear-stress free.

The dynamic viscosity µ varies with tempera-
ture and stress following the equation

µ =
(
µ−1
T + µ−1

y

)−1
, (16)

µT decreasing exponentially with temperature
(according to Arrhenius law), and divided by β
when reaching the solidus:

µT = exp

(
EA

T + T1
−
EA

2T1

)
if T < Ts, (17)

µT = β−1 exp

(
EA

T + T1
−
EA

2T1

)
if T > Ts. (18)

T1 is the temperature for which µT = 1, EA is
the activation energy and Ts = Ts0 +∇rTs(ra−
r) with ra the surface value of r. Ts models the
variation of solidus with depth and is tuned so
that the viscosity drop is located at the base of
the top boundary layer. This results in a weaker
asthenosphere and favours plate-like behaviour
[Richards et al., 2001, Tackley, 2000].
µy is defined by

σyield = σY + (ra − r).∇rσY , µy =
σyield

2ε̇
, (19)

with σY , ∇rσY and ε̇ being the yield stress at
the surface, the depth-dependence of the yield
stress and the second invariant of the strain rate
tensor respectively. The strain rate tensor is
linked to the velocity by

ε̇ =
1

2

[
∇u+ (∇u)T

]
. (20)

Solutions are computed using StagYY [Tack-
ley et al., 1993], a finite-volume, multigrid con-
vection code. We use a spherical annulus grid
which provides results closer to the spherical grid
than a cylindrical geometry [Hernlund and Tack-
ley, 2008]. The grid is refined in the radial di-
rection near the upper boundary of the model.
In the following, the longitudinal coordinate of
a point is written φm, with m ∈ {1, 2, ...,M}
and its radial coordinate is written rn with n ∈
{1, 2, ..., N}, r varying from rb to ra. The value
of the parameters used for this work are given in
Table 1.

Since this work is a proof of concept, we chose
a fairly simple model, with equation governing
the flow relying on strong assumptions (incom-
pressible, isochemical mantle). The Rayleigh
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Table 1: Values of the parameters of the forward models

Symbol Meaning model 1 model 2 model 3

Ra Rayleigh number 106 106 107

H Non-dimensional internal heating rate 20.5 13.5 20.5

M Resolution of the grid in the longitude direction 384 384 512

N Resolution of the grid in the radial direction 48 48 64

ra Radius of the top of the domain 2.2 2.2 2.2

rb Radius of the bottom of the domain 1.2 1.2 1.2

Ta Temperature at the top of the domain 0 0 0

Tb Temperature at the bottom of the domain 0.9 1.3 1

EA Activation Energy 23.03 23.03 23.03

T1 Temperature at which µT = 1 1 1 1

β Factor of viscosity reduction for partial melting 10 10 10

Ts0 Solidus Temperature at r = ra 0.6 0.6 0.6

∇rTs Radial gradient of the solidus temperature 2 2 2

σY Yield Stress 1.104 1.104 4.104

∇rσY Radial gradient of the yield stress 0.025 0.025 0.025

number is 106 which is one or two orders of mag-
nitude lower than that of the Earth, but high
enough to ensure chaotic convection. The vis-
cosity law self-consistently generates plates at
the surface, as it can be seen from the surface
velocity in Fig.10. Ignoring many more complex-
ities does not mean they are not fundamental
for reconstructing Earth mantle evolution, but
we focus in this manuscript on the data assimi-
lation methodology.

3.2. The State of the mantle

Given Equations 13 to 15 above, the field vari-
ables describing the state of the Earth’s mantle
x are velocity, temperature and pressure. Iner-
tial forces are negligible for mantle convection,
which means that the velocity and pressure fields
can be deduced from the temperature field at
any time given the viscosity law and other pa-
rameters, as shown in the diagnostic Equations
13 and 14. Since it is possible to compute u
and p from the sole knowledge of T , x should
be restricted to T alone.

3.3. The Data: Surface Heat Flux and Surface
velocities

As a first approach, the data yo we use are
not direct measurements per se, but plate re-
construction models. For instance, Seton et al.
[2012] or Shephard et al. [2013] proposed plate

tectonics reconstructions for the last 200 My, us-
ing the continuously closing plates methodology
[Gurnis et al., 2012] so that a reconstruction can
be numerically computed for any time between a
given ti and the subsequent ti+1. These recon-
structions integrate paleomagnetic, paleobiolog-
ical and geological data to provide continuous
maps of surface velocity and seafloor age as well
as the position and geometry of continents. It
is this type of data that is used today in con-
vection reconstructions with imposed boundary
conditions. One fundamental difference between
these methods and our sequential assimilation
method is that the latter naturally takes into
account uncertainties in the reconstructions. A
second difference is that we do not need the sur-
face data to be known at all times.

Plate reconstructions provide estimates of the
velocity at any location on the surface of the
Earth in the approximation of the plate tecton-
ics theory, as well as the age of the seafloor.
In the model we use in this manuscript, surface
heat flux is an excellent proxy for the age of the
seafloor [Coltice et al., 2012]. Consequently, we
propose to consider surface heat flux and surface
velocity as the data to assimilate. However, with
more sophisticated models, small scale convec-
tion would require an explicit computation of the
age of the seafloor.

At each time ti, the data vector for the present

6



study will be

y = [qs(φ1), . . . , qs(φN ), Vs(φ1), . . . , Vs(φN )]T , (21)

where qs(φm) and Vs(φm) are the surface heat
flux and tangential velocity values at longitude
φm, respectively. Hence, for the model param-
eters set of Table 1, the data vector contains
2N = 768 values.

3.4. The Observation Operator and the Aug-
mented State

As described by Equation 3, the link between
the state of the system x and the data y has
to be expressed in the form of a linear equation.
This is straightforward for surface heat flux. At
a given longitude φm, the surface heat flux is
approximated by a first order discretization of
Fourier’s law

∀φm q(φm) = −k
T (φm, rN )− T (φm, rN−1)

rN − rN−1
, (22)

where k is the thermal conductivity, which is 1
for our non-dimensional framework.

However, the link between the velocity field
and the temperature field is highly nonlinear,
because of our choice of rheology. This is why
we consider an augmented state of the mantle,
containing both temperature and surface veloc-
ity fields:

x =[T (φ1, r1) , . . . , T (φM , r1), T (φ1, r2), . . . , (23)

T (φM , rN ), V (φ1), . . . , V (φM )], (24)

where T (φm, rn) is the temperature value at lon-
gitude φm and radius rn and V (φm) is the sur-
face tangential velocity value at longitude φm.
For the model parameters set of Table 1, the
state vector contains NM +N = 18816 values.

4. Sequential Data Assimilation Algorithm
for Mantle Convection

We describe here the steps of our sequential
algorithm, which are

an initialization, which evaluates the back-
ground state xb and its error covariance
matrix P b,

an analysis which estimates{
xfti ,P

f
ti
,yoti ,R

o
ti

}
→
{
xati
}
,

a forecast, which computes{
xati
}
→
{
xfti+1

,P f
ti+1

}
.

4.1. Initialization

The background state xb and its associated
covariance matrix P b describe an estimate of
the state of the system when no observation is
yet available. xb components correspond to the
average temperature field and surface velocities
of the mantle. P b contains the two-point spa-
tial correlation of the temperature field and sur-
face velocity field, as described by Balachandar
[1998].

To estimate xb and P b, we use a set of
K = 200 states of the system xk with k ∈
{1, ...,K}, computed with the mantle convec-
tion code. These states are extracted from a free
run of the convection model (i.e. unconstrained
by data). To ensure decorrelation between the
states, the time between two snapshots is equiv-
alent to 5 Lyapunov times. The Lyapunov time
is the e-folding time for the growth of an ini-
tial error in a dynamic system. In the calcu-
lations we describe below, we obtain a typical
Lyapunov time of 140 My, similar to the Lya-
punov times computed in 3D spherical convec-
tion models [Bello et al., 2014].

The background state is

xb = 〈x〉 =
1

K

K∑
k=1

xk (25)

and the error covariance matrix is

P b = Covar(x) =
1

K − 1

K∑
k=1

(
xk − xb

)(
xk − xb

)T
.

(26)

The probability density functions of all the vari-
ables are also estimated, to compare them to
Gaussian probability density functions. Indeed,
the best linear unbiased estimate used during
analysis is optimal only in the linear Gaussian
case, as described in section 2.

7



As noted before, the initial setting of the
model is spherically symmetric. As a conse-
quence

∀(φ, r), 〈T (φ, r)〉 = 〈T (0, r)〉, (27)

∀(φ1, φ2, r1, r2), Cov(T (φ1, r1), T (φ2, r2)) =

Cov(T (0, r1), T (φ1 − φ2, r2)), (28)

∀(φ1, φ2, r1, r2), Cov(T (φ1, r1), T (φ2, r2)) =

Cov(T (0, r1), T (φ2 − φ1, r2)). (29)

Likewise

∀φ, 〈Vs(φ)〉 = 〈Vs(0)〉, (30)

∀(φ1, φ2), Cov(Vs(φ1), Vs(φ2)) =

Cov(Vs(0), Vs(φ1 − φ2)), (31)

∀(φ1, φ2, r1),

Cov(T (φ1, r1), Vs(φ2)) =

Cov(T (0, r1), Vs(φ2 − φ1)), (32)

Cov(T (φ1, r1), Vs(φ2)) =

− Cov(T (0, r1), Vs(φ1 − φ2)). (33)

These symmetries are enforced during the com-
putation of xb and P b, which decreases the
number K of states of the system needed to
obtain converged statistics. For our test case,
the covariance matrix P b contains (NM +
N)2 = 188162 = 354, 041, 856 components.
The symmetries in the covariances dramatically
reduce the number of independant components
to N/2(M + 1)2 = 3, 557, 400.

From xb and P b, a background data vector
yb and its associated covariance matrix Rb are
defined as

yb =Hxb, (34)

Rb =HP bHT . (35)

Figs 2 and 3 represent the PDF of surface
velocity, surface heat flux and temperature for
different depths for our test model described in
Section 3.1. Surface velocities (Fig. 2 left) have
a Gaussian PDF which is consistent with the
approximation we made. On the contrary, the
PDFs of temperature (Fig. 3) are more com-
plex. For temperature values close to the sur-
face, the PDFs are highly skewed and have a
strong kurtosis. This behaviour is due to the
strongly nonlinear rheology at the surface of the
model (kurtosis), and the isothermal boundary
conditions (skewness). As a consequence, the
estimation performed during analysis will not be
optimal.

xb, P b, yb and Rb are used to standardize
the state x and data y for the analysis step. We
define their corresponding standard score state
x̃ and standard score data ỹ by

x̃ =
(
Sb
)−1 (

x− xb
)
, (36)

ỹ =
(
Sb

y

)−1 (
y − yb

)
, (37)

where Sb is the diagonal matrix containing the
standard deviations of each component of the
background state and Sby the diagonal matrix
containing the standard deviations of each com-
ponent of the background data,

Sb = Diag(P b)1/2, (38)

Sb
y = Diag(Rb)1/2. (39)

The standard score observation operator H̃ is
then

H̃ = (Sb
y)−1HSb. (40)

The standardized background state x̃b and its

associated covariance matrix P̃
b

are then

x̃b =0, (41)

P̃
b

=(Sb)−1P b(Sb)−1. (42)

The covariance matrix P̃
b
, associated with

the standardized background state corresponds
as well to the correlation matrix of the back-
ground state. Equations 28 to 33 are also valid
for correlations values, i.e. for the components

of P̃
b
.

Equations 28 and 29 show that the correlation
between any couple of temperature variables can
be summed up by plotting only the correlations

∀r1, r2 ∈ [rb, ra]2, ∀∆φ ∈ [0, π], (43)

Cor(T (0, r1), T (∆φ, r2)) (44)

Hence, for a given r1, the two points spa-
tial temperature-temperature correlations can
be mapped onto a half-spherical annulus. Fig. 4
represents these correlation maps for different
values of r1: r1 = rb (Fig. 4(a)), r1 = (ra +
rb)/2 (Fig. 4(b)) and r1 = ra (Fig. 4(c)).
Fig. 4(a) shows that bottom temperatures have
strong correlations with neighbouring tempera-
tures, up to 0.6 at a distance corresponding to
a third of the domain depth. A fourth order
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convection pattern is also notable, with bottom
temperature values anticorrelated with tempera-
tures at a longitude of +90◦ and correlated with
values at a longitude of +180◦. The mid-mantle
temperature (Fig. 4b) has an ellipsoidal zone of
high correlation, which is the result of the dom-
inant vertical motion in this part of the domain.
Finally the top temperatures have a zone of cor-
relation which extends towards the longitudinal
direction, corresponding to the dominant hori-
zontal motion at the surface of the domain. The
anticorrelation between the top boundary layer
and the rest of the domain is also remarkable.

Equation 32 shows that the correlation be-
tween any couple of temperature-surface veloc-
ity variables can be summed up by plotting only
the correlations

∀r ∈ [rb, ra], ∀∆φ ∈ [0, 2π], Cor(Vs(0), T (∆φ, r)) (45)

Hence, the two points spatial temperature-
velocity correlations can be mapped onto a
spherical annulus. Fig. 5 represents this correla-
tion map. Fig. 5 shows that surface velocities are
weakly correlated with temperature, with a max-
imum correlation value of 0.4. Nevertheless, the
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Figure 5: Map of the two-point spatial correlations of
temperature and velocity. The arrow indicate the an-
chor point. The map represents the correlation between
the surface velocity value at the anchor point and the
temperature values on the rest of the domain. Consid-
ering the symmetries of correlations described on equa-
tions 32, only the correlations ∀r ∈ [rb, ra], ∀∆φ ∈
[0, 2π], Cor(Vs(0), T (∆φ, r)) are shown.
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correlations between surface velocity and tem-
perature at the bottom are not negligible, and
this is mainly due to the sinking of slabs to the
bottom of the model.

Although we ignore the non-Gaussianity of
some distributions, second order statistics suc-
ceed in summing up the main features of the
convection model dynamics.

Furthermore, the matrix P̃
b

is eigendecom-
posed leading to

P̃
b

= V ΛV T . (46)

where V contains the eigenvectors of P̃
b

and
Λ its eigenvalues. The background correlation

matrix P̃
b

is reduced to

P̃
b
r = V rΛrV

T
r (47)

where Λr contains only the 1928 largest eigen-
values, which account for 99.98% of the cumu-

lative variance of P̃
b
. V r is composed of the

corresponding eigenvectors. The reduction of
the correlation matrix is equivalent to assuming
that the correlations associated with the lowest
eigenvalues and corresponding eigenvectors are
not meaningful. This technique, described by
Cane et al. [1996], not only lightens the compu-
tational cost, but also corrects the state of the
system only in those directions followed by the
dynamical model.

We can now describe the first standard score
forecast state as

x̃f
t1

= 0, (48)

P̃
f
t1

= P̃
b
r = V rΛrV

T
r . (49)

4.2. Analysis

At every time ti, i ∈ {1, ..., n}, new observed
data yoti are available. These observations are
assumed to be unbiased, which means 〈εoti〉 =
0. An error covariance matrix Rti is associated
with these observations. The observation error
covariance matrix R is assumed here to be the
same for any time. R and yoti are standardized

with respect to yb and Sby

ỹoti =
(
Sb

y

)−1 (
yoti − y

b
)
, (50)

R̃ =
(
Sb

y

)−1
R
(
Sb

y

)−1
. (51)

Independently, a prior estimate of the state is
computed. It is the forecast state xfti , assumed

to be unbiased (〈εfti〉 = 0). Its associated er-

ror covariance matrix is P f
ti

. P f
ti

and xfti are

standardized with respect to xb and Sb

x̃f
ti

=
(
Sb
)−1 (

xf
ti
− xb

)
, (52)

P̃
f
ti

=
(
Sb
)−1

P f
ti

(
Sb
)−1

. (53)

To further simplify this problem, we assume
that

P̃
f
ti
≈ P̃ b ≈ V rΛrV

T
r . (54)

Under this assumption, the reduced state
Kalman filter is given by

K̃r = (H̃P̃
f
ti

)T
[
H̃(H̃P̃

f
ti

)T + R̃
]−1

. (55)

The result of the analysis is finally rescaled
using the forecast standard deviation

xa
ti

= xf
ti

+ Sf
ti
K̃r

[
ỹoti − H̃x̃

f
ti

]
. (56)

4.3. Forecast

The forecast state at time ti+1, xfti+1
is com-

puted by the convection code STAGYY, taking
xati as starting state.

The associated covariance matrix P f
ti+1

is es-
timated by assuming

P f
ti+1

=Sf
ti+1

V rΛrV
T
r S

f
ti+1

(57)

Sf
ti+1

=αSf
ti
. (58)

The coefficient α is estimated by considering er-
rors on data and using the fact that the error on
forecast data and on observed data are uncorre-
lated:

α =

√√√√Tr(Covar(Hxf
ti+1
− yoti+1

)−R)

Tr(Covar(Hxf
ti
− yoti )−R)

. (59)

5. Synthetic Experiments

We test here our sequential assimilation algo-
rithm on synthetic cases.The parameters chosen
for the model 1 are described in Table 1, along
with the parameters of two additional models:
model 2, which has a higher bottom heat flux
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to surface heat flux ratio (37%), and model 3,
which has a higher Rayleigh number (107). The
time in the evolutions computed is rescaled as
classically done, using the transit time of the
mantle as the relevant scaling time (see Gurnis
[1986] for example). The Earth’s mantle transit
time tEt estimates the average time spent by a
particle to move from the surface to the core-
mantle boundary. For the Earth, it is evaluated
by considering the thickness of the mantle DE

and the root mean square of surface velocities
vErms

tEt =
DE

vErms

. (60)

vErms is obtained from plate tectonics reconstruc-
tions (Shephard et al. [2013], Seton et al. [2012],
for example). tMt , the transit time for the model
can be computed by the same procedure. The
rescaling of time for a computed evolution is

t = t∗
tEt
tmt

, (61)

where t∗ is the non-dimensional time. This
rescaling is designed so that the time of the evo-
lution can compare to that of the Earth, even if
the vigour of convection differs.

5.1. Setup of the Experiments

We test our data assimilation method on syn-
thetic experiments. They consist of two phases.

First, we synthesize a true state evolution{
xt1,x

t
2, ...,x

t
nt

}
and corresponding observed

data sets
{
yot1 ,y

o
t2 , ...,y

o
tn

}
. This is done

by computing a convection evolution spanning
600 My and considering it as the true state evo-
lution

{
xt1,x

t
2, ...,x

t
nt

}
. From this evolution, we

extract sets of surface heat flow and surface ve-
locities at regular intervals ∆t. These data are
randomly noised to produce

{
yot1 ,y

o
t2 , ...,y

o
tn

}
.

We set the average amplitude of the random
noise as a fraction γ of qrms and Vrms, the root
mean squares of surface heat flux and velocity,
respectively. The observed error covariance ma-
trix is then

R = γ2


q2rms ... 0 0 ... 0

0 ... 0 0 ... 0
0 ... q2rms 0 ... 0
0 .. 0 V 2

rms ... 0
0 ... 0 0 ... V 2

rms

 . (62)

Second, we apply the assimilation algorithm
using the synthetic data

{
yot1 ,y

o
t2 , ...,y

o
tn

}
.

Then, we compare the result of the assimi-

lation,
{
xf1 ,x

f
2 , ...,x

f
nt

}
with the true state{

xt1,x
t
2, ...,x

t
nt

}
.

For each set of model parameters, we com-
pute 21 mantle convection evolutions starting
from different initial conditions to produce 21
possible true state evolutions. For model 1, we
test the assimilation for each evolution with 10
different pairs of parameters of data assimila-
tion (∆t, γ). ∆t is varying from 1 My to 50 My
and γ from 5% to 50%. For Model 2 and 3,
we test the assimilation for each evolution with
∆t = 10 My and γ = 10%. The exact com-
binations of parameters tested are presented in
Table 2. Table 2 defines as well the name of the
different assimilations that we will use in the fol-
lowing.

5.2. Quality of the data assimilation estimate

We evaluate the quality of the data assimi-
lation scheme on its ability to retrieve the true
temperature fields and to match surface data.

Fig. 6 shows examples of the final forecast
state (second column) for evolutions with dif-
ferent parameters, after 300 My of data assim-
ilation: t10γ10 (31 observation times, model
1), t50γ10 (7 observation times, model 1),
t10γ10Q40 (31 observation times, model 2) and
t10γ10Ra7 (31 observation times, model 3).
The two first cases are done using the same
model parameters, so we display the data as-
similation results of the same evolution for bet-
ter comparison. The true temperature fields for
each case are displayed on the first column. The
local error on the third column of Fig. 6 is the
absolute value of the error at each coordinate
(φm, rn)

εfT (φm, rn) = |T f (φm, rn)− T t(φm, rn)|. (63)

Below the boundary layer, the locations of pos-
itive temperature anomalies are better retrieved
for t10γ10 than for t50γ10. The general ge-
ometry of slabs at the bottom is representative
of the true state, even though some details are
missing. The geometry of upwellings is retrieved
for t10γ10, but only their approximate location
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Figure 6: Comparison of the results of data assimilation after 300 My for four cases. First row: data assimilation
with a ∆t = 10 My (experiment t10γ10), second row: data assimilation with a ∆t = 50 My (experiment t50γ10),
third row: data assimilation with a ∆t = 10 My (experiment t10γ10Q40) and fourth row: data assimilation with a
∆t = 10 My (experiment t10γ10Ra7). The first column displays the true temperature field for each experiment, the
second column shows the analyzed temperature field, and the third column is the associated error multiplied by 10
and represented using the same color scale than the field itself, in order to ease visual inspection.
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Table 2: Values of the parameters of the assimilation for synthetic experiments.

name of experiment Rayleigh number Heat flux ratio ∆t (My) γ (%) number of synthetic experiments

t1γ10 106 10% 1 10 21

t5γ10 106 10% 5 10 21

t10γ5 106 10% 10 5 21

t10γ10 106 10% 10 10 21

t10γ30 106 10% 10 30 21

t10γ50 106 10% 10 50 21

t15γ10 106 10% 15 10 21

t20γ10 106 10% 20 10 21

t50γ10 106 10% 50 10 21

t10γ10Q40 106 37% 10 10 21

t10γ10Ra7 107 26% 10 10 21

is well estimated for t50γ10. Some minor posi-
tive anomalies are missing at the bottom of the
domain for both cases. The relative error shows
that although the geometry of the temperature
field is reasonably well recovered, the actual
temperature values for down- and upwellings are
not as accurately estimated. This tendency is
especially noticeable for t50γ10. Overall, the
convection pattern is correctly estimated, but for
t50γ10 slabs are blurred. The structures are also
well recovered for t10γ10Q40 and t10γ10Ra7.
We can see that the general shape of the hot up-
wellings is well estimated for both cases, except
on one upwelling, on the bottom right corner of
the t10γ10Ra7 experiment, where the hot up-
welling with two branches is estimated as only
one bigger upwelling. The structure of slabs are
also reasonnably well estimated. The value of
the errors for both t10γ10Q40 and t10γ10Ra7
are higher than those of t10γ10, on some local-
ized regions.

We compute the spatial average error of
the temperature field for each timestep i ∈
{1, 2, ..., nt}

εfT (i) =

√√√√√√√√
M∑

m=1

N∑
n=1

(T f
i (φm, rn)− T t

i (φm, rn))2∆V (φm, rn)

M∑
m=1

N∑
n=1

T t
i (φm, rn)2∆V (φm, rn)

,

(64)

where ∆V (φm, rn) is the volume of the cell cen-
tred on (φm, rn). For each combination of ∆t

and γ, εfT (i) is averaged over 21 synthetic ex-
periments differing only by their initial condi-

tions for the model 1. The synthetic experiments
t10γ10Q40 (higher bottom to surface heat flux
ratio) and t10γ10Ra7 (higher Rayleigh number)
showed respectively 20 and 19 successes out of
21. We identify a data assimilation experiment
as failing if there is a time after which the global
error εfT is consistently increasing when analy-
ses are performed. The three failure cases show
a consistently increasing difference between ob-
served data and forecast data, making them easy
to identify even without the knowledge of the
true state evolution. Picking another random
noise of the same magnitude for each of the
three experiments that failed produced a suc-
cessful data assimilation trial. Hence, pecu-
liar random noise structure could prevent ac-
curate retrieval by the methodology presented
here. We compute the average evolution of er-
rors for synthetic experiments t10γ10Q40 and
t10γ10Ra7 taking into account only the suc-
cesses, ie 20 experiments for t10γ10Q40 and 19
for t10γ10Ra7. Hence, the estimation of the
error is not specific to a case that is easier to re-
trieve than others. On every curve, the analysis
times are characterized by a sudden drop of the
error (see Figs 7, 8 and 9). This is remarkable
for the first analysis, at time 0, where the error
is reduced by a factor of two for any set of pa-
rameters tested. These results show that taking
into account only the second order statistics is
efficient at correcting a forecast state and im-
proving the estimate of the true state.
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Figure 7: Evolution of the average relative error on the forecast temperature field with γ = 10% and ∆t = 1, 5, 10,
15, 20 and 50 My. Note that the scale on the y-axis is logarithmic.

As observed in Figs 7, 8 and 9, the gen-
eral evolution of errors with time follows three
phases: an error reduction phase, which may be
followed by an error stabilization phase around
the lower value, and finally an error growth
phase. The duration and existence of each phase
depends on the chosen combination of ∆t, γ and
the model parameters.

Fig. 7 shows the evolutions of errors for data
assimilations with noise on observations of 10%
and different frequencies of analyses: t1γ10,
t5γ10, t10γ10, t15γ10, t20γ10 and t50γ10.
The error reduction phase lasts between 300 to
400 My (2 to 2.5 Lyapunov times) for all cases
except for the extreme case of t50γ10 (50 My
representing one third of the Lyapunov time).
For the first 100 My of assimilation, the shorter
the time between 2 analyses, the faster the er-
rors decrease.

If analysis intervals are equal to or longer
than 15 My, growth of the error happens within
600 My of assimilation. In contrast, for t1γ10,
t5γ10 and t10γ10, no error growth occurs, and
errors are stable at around 5% after 200 My.
Throughout the assimilation, errors for t1γ10

become greater than the errors for t5γ10. This
is due to the method used for updating forecast
errors in our scheme. Indeed, their estimation is
based on the comparison between observed and
forecast surface data. A 1 My interval between
analyses does not allow the possible errors made
internally to be propagated onto the surface. It
follows that the error on the forecast is under-
estimated for short intervals of analysis, leading
to results that are not as good as for longer in-
tervals of analysis.

Fig. 8 shows the evolutions of errors for data
assimilations with analyses every 10 My and dif-
ferent errors on observations: t10γ5, t10γ10,
t10γ30 and t10γ50. For levels of noise in obser-
vation ranging from 5 to 30%, the error reduc-
tion phase lasts more than 300 My. Even when
observations are noised as much as 50%, data
assimilation keeps errors to values lower than
10% on the estimate of the temperature field
over the first 100 My. Fig. 8 shows that low
levels of noise in observations (5 to 10%) give
results of similar quality.

The error evolutions for t10γ10Ra7 and
t10γ10Q40 are shown in Fig. 9, along with the
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16



evolution of errors of t10γ10. The error for
t10γ10Ra7 is on average smaller than the er-
ror for t10γ10. On the contrary, the error for
t10γ10Q40 is on average bigger than the error
of t10γ10. We note as well that, between two
analyses, the errors are increasing much more for
t10γ10Ra7 than for the other cases.

Fig. 10 demonstrates that our data assimila-
tion scheme provides a posteriori a better esti-
mate of surface data than the a priori observa-
tion for extreme cases. Indeed, for t10γ50, after
100 My of data assimilation, the a posteriori re-
trieved surface heat flux and surface velocities
are better estimates of the true values than the
ones used as the observations.

We conducted here synthetic experiments,
where the true state is known, and the result of
data assimilation can be compared to this true
state evolution. However, in a data assimilation
using real observations, the true state of the sys-
tem is unknown. In this case, it is necessary to
use other diagnostics to evaluate the quality of
the assimilation. One diagnostic is based on the
study of the innovation, which is the difference
between the observed data yoi and the forecast

data Hxfi ,

di = yoi −Hx
f
i . (65)

The simplest evaluation is to consider the evo-
lution of the cumulative mean innovation

dk = ‖
k∑

i=1

di‖ (66)

which is supposed to converge to zero if the
scheme is unbiased [Talagrand, 2003].

Fig. 11 shows the cumulative mean innova-
tion for the different parameters, as a function
of the number of analyses. The cumulative
mean innovation is decreasing through time for
all cases, showing that our scheme is unbiased.
This should not come as a surprise, since the ob-
servations and the model are governed exactly by
the same physics.

6. Discussion

We chose a sequential method because of its
relative ease of implementation compared to al-
ternative methods such as variational data as-
similation (see Talagrand [1997], Evensen [2007]

for discussions on both methodologies). More-
over, sequential data assimilation has proved to
be efficient in solving a wide range of geophysical
problems (Aubert and Fournier [2011], Hoteit
and Pham [2004] for example). We opted for a
suboptimal scheme based on the Kalman filter
instead of driving the flow with surface velocities
so as to exploit the surface information a step
further. The initial condition, or first guess, is
given as a compromise between a 1D tempera-
ture profile and the inversion of the first data
available. Then, the whole temperature field
is updated whenever observations are available.
This means our models are less sensitive to ini-
tial conditions than mantle circulation models in
which plate velocities are imposed as boundary
conditions.

The specificity of sequential data assimilation
is that the estimated state of the mantle im-
proves through time, as more data are assimi-
lated into the model (Fig. 1). This raises an is-
sue since the information at hand for the Earth
tends to improve in accuracy as it gets closer to
present-day: classical sequential data assimila-
tion schemes are not able to extend the recent
information back in time. This difficulty can be
overcome by implementing Kalman smoothers
[Cohn et al., 1994, Cosme et al., 2010, Nerger
et al., 2014] which use time correlations to up-
date the previous states with new observations.
Applying these techniques would also enable us
to add tomographic models as observations in
mantle circulation models, and to propagate this
information back in time. However, one of the
benefits of the method we developped would be
to provide an image of the present state of the
Earth mantle which is independant from seismic
data, and would give the opportunity to work on
the interpretation of tomographic models.

Our sequential assimilation technique gives
encouraging results for our test cases: data
assimilation gradually reduces the distance be-
tween the true models and the estimated ones
for the first 300 My, even for highly noised data
(up to 30% of noise). The analysis is based
on a linear correction, the amplitude of which
depends on the distance between the predicted
data and the observed data. The linearity of the
correction is an approximation that is efficient as
soon as the prediction is close enough to the ob-
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Figure 10: Comparison between true, observed and analyzed surface heat flux (left) and surface velocities (right) after
100 My of assimilation with the parameters t10γ50

time (My)

C
um

ul
at

iv
em

ea
ni

nn
ov

at
io

n

1 My
5 My

10 My
15 My

20 My
50 My

6.101

4.101

2.101

1.101

1
0 100 200 300 400 500 600

time (My)

5%
10%

30%
50%

0 100 200 300 400 500 600

C
um

ul
at

iv
em

ea
ni

nn
ov

at
io

n

6.101

4.101

2.101

1.101

1

Figure 11: Evolution of the cumulative mean innovation as a function of the number of analyses. On the left: for
model 1 with γ = 10% and ∆t = 1, 5, 10, 15, 20 and 50 My; on the right: for Model 1 with ∆t = 10 My and γ = 5,
10, 30 and 50%

18



servation. When these two are too different, the
analysis tends to over-correct the state, which
leads to an unrealistic analyzed state. The al-
gorithm is stable as long as the time between
two observations is short enough: if it is 15 My
and greater the estimated temperature field will
eventually diverge from the true temperature
field. If the time between two analyses is too
long, the linear approximation for correcting the
state field is not valid any more. The tempera-
ture field is over-corrected and this leads to an-
alyzed temperatures inconsistent with the phys-
ical model.

We evaluate hereafter how the required ∆t
and γ in our test cases compare to the corre-
sponding values available for Earth’s data: time
between two plate reconstruction stages and un-
certainty on plate kinematics and seafloor age
maps. The seafloor spreading isochrons used for
tectonic reconstructions are based on the iden-
tification of magnetic anomalies [Müller et al.,
2008]. This gives a strong constraint on the mo-
tion of plates at least every 10 My, except for the
Cretaceous superchron spanning between 83.5
to 125 Ma. Other geological arguments have
been provided to infer plate evolutions for this
period [Torsvik et al., 2009]. For more recent
times (the last 20 My), more precise surveys of
magnetic anomalies have led to regional recon-
structions with a temporal resolution of around
1 My [Merkouriev and DeMets, 2006]. More-
over, Gurnis et al. [2012] developed a way to
estimate kinematic states between two stages of
reconstructions. With this method, having data
to assimilate at least every 10 My is ensured,
although interpolated solutions could miss pe-
culiar changes in plate motions, and errors on
the reconstructed states propagate into the in-
terpolated states.

Regarding these errors, noise in plate tec-
tonic reconstructions is difficult to estimate since
the process involves taking into account various
types of data and human syntheses. Hence, un-
certainties on plate reconstructions increase as
we go back in time, since less data are available
and more interpretation is required. The accu-
racy of reconstructions also varies in space. For
instance the evolution of the Atlantic for more
than 100 My is well known, however, the eastern
Pacific before 60 My is mostly unknown because

the oceanic seafloor has subducted. Efforts to
estimate errors on plate tectonic reconstructions
have been directed to the estimation of errors on
present maps of oceanic sea floor [Müller et al.,
2008], and on the noise reduction in finite ro-
tations deduced from them [Iaffaldano et al.,
2014]. Both of these works show that the er-
ror of age maps is smaller than 10% for recent
times (< 50 My). However, errors back in time
are more difficult to estimate since accuracy for
certain plates decreases (like those in the east-
ern Pacific as discussed before for instance), and
an error on the angular velocity or the position
of the Euler pole would constrain the errors on
velocities over the whole plate domain [Molnar
and Stock, 1985]. These errors would have to
be propagated to seafloor age maps.

As successful as it may appear, the method
presented here has several limitations. First,
our technique does not take into account non-
linearities of the model physics, and the non-
Gaussianity of the distribution of temperature,
heat flux and velocity values. Indeed, we com-
puted only second order statistics to estimate
the link between temperatures and velocities.
However, the method we present here already
captures the essential features of mantle con-
vection, and provides accurate convection recon-
structions with the approximations made.

In this study, we assumed a perfect model
(with η = 0 as stated in Equation 12) . How-
ever, this would not be the case for applying the
technique with Earth data. Model equations as-
sume simplifications of the physics, detailed in
Ricard [2007]. Any parametrization we may use
would have shortcomings. The most important,
least known, ingredient is thought to be rheol-
ogy, which is a strong limitation according to
Worthen et al. [2014]. Applying our method to
Earth data would help evaluate the forecasting
power of the state-of-the-art convection mod-
els. Explicitly introducing a model error term
in the data assimilation scheme could be a way
to improve the reconstructions [Evensen, 2007].
Also, we used heat flux as a proxy for seafloor
age because there is no small scale convection
in our test cases. For Earth data, monitoring
age with tracers, giving the exact estimate of
seafloor age would be required. The state vec-
tor and observation matrix would differ slightly,
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but the technique would still apply. Complexify-
ing the direct model used in data assimilation (ie
having a 3D model at higher Rayleigh number,
with a more complex rheology and a multi com-
ponent system) will as well increase dramatically
the size of the data assimilation problem. In par-
ticular, the state covariance matrix will reach a
size at which the direct computations carried out
in this paper will be extremely heavy. One solu-
tion would be to take advantage of the structure
and properties of the covariance matrix (sym-
metries, periodicity) to design faster algorithms.
The method could also be modified to avoid the
computation of the covariance matrix and cal-

culate directly the smaller matrix H̃P̃
f

ti .

7. Conclusion

We have applied sequential data assimilation
methodology to reconstruct mantle convection
using surface data (velocity and heat flux as a
proxy for seafloor age). This work is a first ap-
proach to test the efficiency of assimilating sur-
face data to recover the evolution of convect-
ing structures. Our technique belongs to the
suboptimal schemes of sequential data assimila-
tion based on the Kalman filter. We modified
the optimal interpolation method to update the
forecast error covariance matrix.

Our scheme of sequential data assimilation
proves to be efficient in recovering the tempera-
ture field of a convective system with plate-like
tectonics at its surface over several 100 My. The
only observations used were surface heat fluxes
and surface velocities. We tested the robustness
of the method by conducting synthetic exper-
iments in 2D spherical annulus geometry. We
obtained accurate results, even for the location
of plumes at the base of the models, for peri-
ods of at least 300 My provided the time be-
tween analyses is shorter than 15 My and the
noise in observation is lower than 30%. These
requirements are satisfactory, since current plate
reconstruction models already provide estimates
for velocities and ages at least every 10 My and
with a fine accuracy for the past 60 My, and
possibly beyond.

Application to the Earth would first involve
the use of 3D-spherical sophisticated models,
with high resolution, high convective vigour,

continents and a more realistic rheology. In 3D
the ratio of number of data points to unknowns
would be the same as in 2D spherical annulus
geometry by definition. However, increasing the
resolution of our model would make this ratio
deteriorate, which could be compensated by in-
creasing the correlation between closer nodes.
Moreover, although convection models can ac-
count for complex parametrizations, their limi-
tations could introduce errors in the reconstruc-
tions.

These difficulties should not stop the exploita-
tion of the method: if successful, the convection
reconstruction would provide a new image of
the mantle, alternative to seismic tomography,
which would appear as an independent source
of information and assess the quality of the esti-
mate of the state of the mantle at present day;
if unsuccessful, it would provide a quantitative
evaluation of forward models and help us decide
how to improve them.
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