Skip to Main content Skip to Navigation
Conference papers

Bandit Contextuel pour la Capture de Données Temps Réel sur les Médias Sociaux

Thibault Gisselbrecht 1, 2, * Sylvain Lamprier 2 Patrick Gallinari 2
* Corresponding author
2 MLIA - Machine Learning and Information Access
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : Social media usually provide streaming data access that enable dynamic capture of the social activity of their users. Leveraging such APIs for collecting data that satisfy a given pre-defined need may constitute a complex task, that implies careful stream selections. On large social media, this represents a very challenging task due to the huge number of potential targets, the intrinsic non-stationarity of user's behavior, and restricted access to the data. We propose an approach that anticipates which profiles are likely to publish relevant contents and dynamically selects a subset of accounts to follow at each iteration using a contextual bandit algorithm. We conduct experiments on Twitter that demonstrate the empirical effectiveness of our approach in real-world settings.
Complete list of metadata

Cited literature [10 references]  Display  Hide  Download
Contributor : Thibault Gisselbrecht Connect in order to contact the contributor
Submitted on : Tuesday, August 23, 2016 - 2:00:25 PM
Last modification on : Wednesday, January 12, 2022 - 3:47:18 AM
Long-term archiving on: : Thursday, November 24, 2016 - 12:31:44 PM


Files produced by the author(s)


  • HAL Id : hal-01355408, version 1


Thibault Gisselbrecht, Sylvain Lamprier, Patrick Gallinari. Bandit Contextuel pour la Capture de Données Temps Réel sur les Médias Sociaux. Semaine du Document Numérique et de la Recherche d'Information (SDNRI 2016), Mar 2016, Toulouse, France. pp.57-72. ⟨hal-01355408⟩



Record views


Files downloads