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Abstract—Visual SLAM (Simultaneous Localization
and Mapping from Vision) concerns both the spatial and
temporal fusion of sensory data in a map when moving
a camera in an unknown environment. This paper con-
cerns the construction of landmarks-based stochastic map,
using Extended Kalman Filtering in order to fuse new
observations in the map, when considering heterogeneous
landmarks. It is evaluated how this combination allows to
improve the accuracy both on the map and on the camera
localization, depending on the parametrization selected for
points and straight lines. It is analyzed using a simulated
environment, so knowing perfectly the ground truth, what
are the better landmark representations. Experiments on
image sequences acquired from a camera mounted on
a mobile robot, were already presented: it is detailed
here a new front end where segment matching has been
improved.

I. INTRODUCTION

SLAM was introduced twenty-five years ago as a
function required for a robot, to build a map from
observations acquired by embedded sensors, while ex-
ploring an unknown environment, . It has been pro-
posed many formal approaches to deal with the fusion
of observations in the map (estimation, optimization,
interval analysis...), and many representations for the
environment (landmarks, grids, raw data...) [1]. While
it is built, the map must allow the robot to estimate its
pose; so many SLAM approaches are only devoted to
build a landmarks-based map, i.e. a sparse model made
with distinctive and characteristic entities located in the
3D space, which correspond without ambiguity, to some
observed features.

Visual SLAM has been studied since 12 years [2],
using at first an estimation framework. It could find
applications not only in robotics, but also for the intro-
duction of new services using smart devices equipped
with a camera (smart phones, Kinect...). Landmarks
are typically 3D points or 3D lines, that are observed by
points or segments features in images; one observation
does not allow to initialize such a landmark, while a 3D
point is observed by an optical ray (i.e. a 3D straight

line), and a 3D line is observed by an interpretation
plane.

So in order to initialize such landmarks with their
minimal euclidean parameters, it is necessary to wait for
other observations. It is the reason why the first strategy
proposed in [2] [3] applied a delayed initialization; a
landmark was added in the map only when it was known
in the euclidean space. This approach is unable to use
landmarks that are very far from the robot. So several
parametrizations have been proposed for points [4][5] or
lines [6] landmarks, for their undelayed initialization,
i.e. they are added in the map as soon as they are
observed. Sold and al [7] have analyzed the pros and
cons of several representations for 3D points and 3D
lines, before they can be triangulated with a sufficient
accuracy.

Here this analysis is made more complete using an
heterogeneous map, where points and lines are both
initialized as soon as they are detected from features
extracted in images acquired by a camera moved in
the environment. It is now known [8] that optimization-
based methods like PTAM [9] or methods based on the
g20 library [10] allow to avoid the possible divergence
of methords based on estimation, due to linearization
of the observation model. Nevertheless here the fusion
is performed from an EKF-based SLAM method, as a
very light approach that can be integrated on dedicated
architecture using co-design methodology, to be used
on small aerial vehicles.

In the next section it is recalled the different
parametrization proposed for points and lines land-
marks. Then the sections III and IV summarize the way
landmarks are initialized as soon as they are observed,
and then updated from next observations. Finally, It is
analyzed in section V, what are the best landmarks rep-
resentations when a heterogeneous map is built. Also,
in the section VI, it is shown some results obtained on
image sequences acquired from a mobile robot moving
on a road close to buildings.



II. LANDMARK PARAMETERIZATION

In [7], Sola et al. introduce an undelayed landmark
initialization (ULI) for different points and lines param-
eterizations. It consists on substituting the unmeasured
degrees of freedon by a Gaussian prior that handles
infinite uncertainty but that is still manageable by EKF.

For point and line landmark , uncertainty has distinct
implications. For points, there is uncertainty in depth
and it covers all the visual ray until infinity. Infinite
straight lines handles uncertainty in two degrees of
freedom, which correspond to a depth that should be
covered up to infinity, and all possible orientations.

A. 3D point parameterizations

This section explains some point parameterizations.
The aspects included in each description refer to the
parameterization itself, camera projection, coordinate
transformation, and back-projection.

1) Euclidean point: The parameters of an Euclidean
point consist on its Cartesian coordinates.

Lop=p=lryz] eR?

The projection to camera frame is given by the
following equation:

u=KR" (p—T) e P? )

where,

a, 0 wug
K= [ 0 a, v 1
0O 0 1

R and T are the rotation matrix and translation
vector that define the camera C. Underlined vectors like
u represent homogeneous coordinates.

2) Homogeneous point: Homogeneous points are
conformed by a 4-vector, which is composed by the
3D vector m and scalar p.

m
p

In order to convert from homogeneous to Euclidean
coordinates, the following equation is applied:
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In the camera frame, m is the director vector of the
optical ray, and p has a linear dependence to the inverse
of the distance d defined from the optical center to the
point.

p =1zl

This allows to express the unbounded distance
of a point along the optical ray from 0 to infinity,
into this bounded interval in parameter space p €
(0, [l [ /diin]-

The frame transformation of an homogeneous point
is performed according to the next equation:
R T
p:HpC:{O 1]pc7 3)
where super-index C indicates the frame to which

the point is refered, and matrix H sepecifies the frame
to which the point is transformed.

The projection of a point into the image frame is
performed with the following expression:

u=KRT (m - Tp) e P~ 4)

Expressing an homogeneous point in the camera
frame, the projected image point is u = Km°, and
pC is not measurable. Back-projection is then:

m¢ =K lu

The complete homogeneous point parameterization
is given in the following equations:

where p¢ must be given as prior and represents
inverse-distance from the origin of coordinates.

Homogeneous point parameterization is shown in
figure 1.
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Figure 1: Homogeneous point parameterization.

3) Anchored homogeneous point: In order to im-
prove linearity, an anchor is added as a reference to
the optical center at initialization time of the landmark.



Thus, the landmark is a 6-vector that includes the anchor
3D coordinates, the Cartesian coordinates of the point
with respect to the anchor, and an inverse-depth scalar.

Po
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P
The convertion from anchred homogeneous point to
Euclidean coordinates can be achieved by the following
equation:

m
P=po+ —. (6)
p

The projection and frame transformation process is
given in the next expression:

u=KR" (m— (T —pg)p) € P~ (7

The complete anchores homogeneous point param-
eterization is the following:

Po T
Liagp=| m |=| RK'u [, (8)
p p*

where p¢ must be given as prior.

Anchored homogeneous point parameterization is
shown in figure 2.
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Figure 2: Anchored homogeneous point parameteriza-
tion.

B. 3D line parameterizations

In this section, some line parameterizations are cov-
ered. The description of projection to image frame, bi-
linear transformation and back-projection are included.

1) Pliicker line: A line in P2 defined by two points
a = [aa)’ and b = [bb]" can be represented as
homogeneous 6-vector, known as Pliicker coordinates:

n
\%
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where n = a X b, n = ab — ba, n,v € R3, and
having the following Pliicker constraint: nTv = 0.

Geometrically speaking, n is the vector normal to
the plane 7 containing the line and the origin, and
v is the director vector from a to b. The Euclidean
orthogonal distance from the line to the origin is given
by ||n||/||v]]- Thus, ||v]| is the inverse-depth, analogous
to p of homogeneous points. Pliicker line geometrical
representation is shown in figure 3.

Figure 3: Pliicker line geometrical representation.

Pliicker coordinates transformation from camera
frame is performed as shown next:

R [T].R c
LPLHL;L[O Hr? }{‘V‘C}

The whole transformation and projection process for
Pliicker coordinates in terms of R, T, n, and v is:

1=K-RT-(n—-Txv)C )

where K is the instrinsic projection Pliicker matrix
defined as:

Qy 0 0
K= 0 iy 0
—QpUp QU Oy Oy

When Pliicker coordinates are expressed in camera
frame, projection is only obtained by

1=K -n© (10)

@

Line’s range and orientation expressed in v~ are not

measurable.

For Pliicker line back projection, vectors n¢ and v©
are computed according to these expressions:

nc=xK"1.1
ve=01-e1+B2-e

where 1,8, € R and {e1,e,n“} are mutually
orthogonal.



Defining 3 = (81, 32) € R?, vector v can be also
expressed as:

where v© € 7€ for any value of 3.

Pliicker line back projection is shown in figure 4.

Figure 4: Pliicker line back-projection.

The complete Pliicker line parameterization is the
following:

n© K1
EIR LTI
RK~11+ T x RES
RES ’
where § must be provided as a prior.
2) Anchored Homogeneous-points line: Another

way of representing a line is by the endpoints that
define it. Departing from the anchored homogeneous
point parameterization, an homogeneous-point line is an
11-vector defined as follows:

Po
m;
Lagpr =] P
mo
P2
For each point, the transformation and projection of
a pinhole camera is , as previously stated,

c Rll

u, = KR (m; — (T - po) p:) (12)

An homogeneous 2D line is obtained by the cross
product of two points lying on it, ] = u; X u, and thus,

1=KR" ((my x my) — (T — po) x (p1my — pomy)).

13)

Comparing this result to what was obtained for
Pliicker coordinates, it can be seen that the product
m; X my is a vector orthogonal to the plane 7,
analogous to the Pliicker sub-vector n. Also, the term
(p1mg — pomy) is a vector joining the two support
points of the line, therefore related to Pliicker sub-vector
V.

Figure 5 shows this parameterization.

>
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Figure 5: Anchored homogeneous-points line parame-
terization.

III. LANDMARK INITIALIZATION

Points are stacked as a 2-vector containing Cartesian
coordinates in pixel space, and are modeled as a Gausian
variable.

u{Z}NN{u,U}

In homogeneous coordinates,

o[ ]-vaw=n{[1].[¥ §])

In the case of lines, they can be expressed as
bounded segments by means of their endpoints in a 4-
vector, also with a Gaussian probability distribution.

s=|w | ~vss=v{ 0] O]

The probability distribution function for infinite lines
like Pliicker, pdf N {I,L}, uses the homogeneous line
representation previously shown, and the Gaussian dis-
tribution defined by :

T = _ _ _ T, - T
l=1, x Uy, and L = [0,], Uln,], +[0,], U[u,],

The uncertainty in 3D points and lines coming from
projection is kept and modeled in inverse-distance priors
p¢ and B¢ through Gaussian variables. The origin of
each of these priors must be inside the 20 of the their
probability density functions.

For points and point supported lines, the minimum
distance must match the upper 20 bound, thus:



p—no,=0, 0<n<2
p+ 20, =1/dmin
Being n = 1, leads to,
p = 1/3dwmin, and o, = 1/3dmin

The probability distribution function of a point sup-
ported line is defined as t© ~ A {t; T}, with:

- 2
“[£]2-[5 3]
o 0 o,

Pliicker lines prior 3¢ ~ A {B ; B} take the follow-
ing values:

B = [ 1/3gmin ], and
B[O et

This penalizes lines at the back of the camera.

A. Undelayed landmark initialization algorithm

The ULI algorithm, as presented in [7] is composed
by the followings steps:

1)  Identify mapped magnitudes x ~ N {x, P}.
2)  Identify measurements z ~ N {z, R}, where z
is either point or line (i.e. u or s respectively).
3) Define Gaussian prior 7 ~ N {m;1} for
unmeasured degree of freedom. 7 can either
be p¢, t¢ or BC.
4)  Back-project the Gaussian measurement and
get landmark mean and Jacobians.
L=g(Caz7)
Ge = ‘%(g:’éz%’ G. = %

G,=%
TICz,®
5)  Compute landmarks co- and cross-variances.
P.r = GcPccG! + G,RG," + G,IIG]
Prx = GcPcx = Ge [Pcc Pew]
6)  Augment SLAM map

— 9
C,z,7
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IV. LANDMARK UPDATE

The landmark update process starts by projecting all
landmarks to the image plane, and selecting those with
higher uncertainty to be corrected. In the case of points,
the observation function h() applies an homogeneous to
Euclidean transformation h2e() to the transformation +
projection proceses previously presented.

z = h2e(u) = { Z;?Zi } € R2

Innovation y is then computed as
Innovation mean: y = z — h (X)
Innovation covariance: Y = R +H-P-HT

where R = U the measurement noise covariance

and Jacobian H = % .
X IxX

For lines, observation function computes the orthog-
onal distances from the detected endpoints u; to a line

L
17w, /12 + 13
1" u,/\/12+13
Being the EKF innovation, the difference between
the actual measurement and the expectation y = z —
h (x), z is the orthogonal distance from the endpoints
to the line defined by them. Thus

y=0-h(x)

A landmark is found consistent if the squared Ma-
halanobis distance M D2 of innovation is smaller than
a threshold M D2th

MD2=yT .Y~ 'y < MD2th

zZ = e R?

Being that the case, landmark is updated
Kalman gain: K=P -H-Y!
State update: X +— x+ K -y
Covariance update: P+~ P -K -H-P

V. EXPERIMENTAL RESULTS

This section presents the results of the simula-
tion experiments performed for comparing the different
point and lines parameterizations with heterogeneous
approches that combine points and lines in the same
map.

The experiments were performed in MATLAB®),
departing from the EKF-SLAM toolbox [11] and adding
the heterogeneous functionality.

The following parameterizations were evaluated:

e  Anchored Homogenenous Point (AHP)

e  Pliicker Line (PL)

e  Anchored Homogenenous Point Line (AHPL)
e AHP + PL

e AHP + AHPL

The environment consisted on a house conformed by
23 lines and an array of 16 points distributed equally



among the walls of the house. The environment for the
simulation is shown in figure 6.

The robot performs a circular trajectory of 5 m of
diameter, with a pose step of 8 cm and 0.09°. the linear
noise is 0.5 cm and the angular noise 0.05°

Figure 6: Environment world of the simulation experi-
ments.

In addition to the heterogeneous landmark handling
of the toolbox, two more considerations were integrated
to evaluate the performance of the parameterizations in
a more realistic way. The first one was the transparency
of the objects in the scene. Normally, the objects in
the simulaton enviroment of the toolbox are transparent,
allowing to have an almost complete view of the land-
marks during all the time steps. An aspect graph was
implemented in order to see only the visible surfaces of
the house from each camera position. Also, by default
the algorithm is aware of loops, so it automatically
performs feature matching, which allows to have a more
accurate position estimation. It was modified in order
to have the capability of initializing the landmarks as
new ones on each turn and evaluate the performance in
that case too. Thus, four different setup conditions were
considered:

e  Transparent objects with loop acquaintance.
e  Transparent objects without loop acquaintance.
e  Opaque objects with loop acquaintance.

e  Opaque objects without loop acquaintance.

Figure 7 shows the sensor view considering transpar-
ent objects, while figure 8 shows the case with opaque
objects. Figure 9 gives an example of the environment
displayed after a complete turn with Pliicker line +
inverse depth point parameterization. It displays in green
the line landmarks estimated, and in blue the point land-
marks. Real, predicted, and estimated robot trajectories
are displayed in blue, red, and green respectively.

A trajectory of 5 turns was performed for each
parameterizaton and each condition mentioned earlier.

Figure 9: Image of the environment after performing a
complete turn with Pliicker line + inverse depth point
parameterization.

The position error of the robot for each case is shown
in figures 10, 11, 12, and 13.

Among the parameterizations, the highest error cor-
respond to Pliicker line. The best performance cor-
respond to the anchored parameterizations, both for
points and lines. It can be seen the improvement effect
in Pliicker line parameterization by the addition of
points. Even for the anchored parameterizations, already
having a relatively well performance while working
independently, the heterogeneity brings benefits, in such
a way that the combination of both AHP and AHPL is
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Figure 11: Transparent objects without loop acquain-
tance position estimation errors.
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the one with the least error along the major part of the
simulated trajectories.
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Figure 13: Opaque objects without loop acquaintance
position estimation errors.

VI. REAL IMAGES

The evaluation on real images is on the way; some
results have been already presented, especially in [12].
Here the contribution concerns the integration of the
LSD segment detector presented in [13] and a moving
edge tracker based on [14] [15].

Figure 14 shows a set of frames of a sequence that
have been processed for the tracking of automatically
detected linear segments, and the detecton of points.

VII. CONCLUSION

This paper intends to prove the benefits of consid-
ering heterogeneous landmarks when building a map
from an EKF-based visual SLAM method. Using only
monocular vision, only partial observations of land-
marks are provided by features extracted from images;
here it is used undelayed initialization of landmarkslike
it was proposed initially by Soladnd al [5] [6] for points
and segments. It has been shown using simulated data,
how the choice of the landmarks representation has
an impact on the map accuracy. Finally the best ones
considering the construction of map with heterogeneous
landmarks, are Anchored Homogeneous Points and An-
chrored Homogeneous-PointsLines.

Experiments with real images are on the way, and
some preliminary results have been presented on line
tracking using different sequences acquired in urban
environment. In the future works, constraints will be ex-
ploited in the map, typically when points and segments
are extracted from the same facades.
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