
HAL Id: hal-01354589
https://hal.science/hal-01354589

Submitted on 18 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation of the parallel machine scheduling
problem with additional unit resources

Emmanuel Hébrard, Marie-José Huguet, Nicolas Jozefowiez, Adrien Maillard,
Cédric Pralet, Gérard Verfaillie

To cite this version:
Emmanuel Hébrard, Marie-José Huguet, Nicolas Jozefowiez, Adrien Maillard, Cédric Pralet, et al..
Approximation of the parallel machine scheduling problem with additional unit resources. Discrete
Applied Mathematics, 2016, 215, pp.126-135. �10.1016/j.dam.2016.07.003�. �hal-01354589�

https://hal.science/hal-01354589
https://hal.archives-ouvertes.fr

Approximation of the Parallel Machine Scheduling
Problem with Additional Unit Resources

Emmanuel Hebrarda,∗, Marie-Jośe Hugueta,∗, Nicolas Jozefowieza, Adrien
Maillardb, Cédric Praletb,∗, Gérard Verfaillieb

aLAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
bONERA – The French Aerospace Lab, F-31055, Toulouse, France

Abstract

We consider the problem of minimizing the makespan of a schedule onm paral-

lel machines ofn jobs, where each job requires exactly one ofs additional unit

resources. This problem collapses toP ||Cmax if every job requires a different

resource. It is therefore NP-hard even if we fix the number of machines to2 and

strongly NP-hard in general.

Although very basic, its approximability is not known, and more general cases,

such asscheduling with conflicts, are often not approximable. We give a(2 −

2
m+1

)-approximation algorithm for this problem, and show that when the deviation

in jobs processing times is bounded by a ratioρ, the same algorithm approximates

the problem within a tight factor1 + ρ
(m−1)

n
.

This problem appears in the design of download plans for Earth observation

satellites, when scheduling the transfer of the acquired data to ground stations.

Within this context, it may be required to process jobs by batches standing for the

∗Corresponding author
Email addresses:hebrard@laas.fr (Emmanuel Hebrard),huguet@laas.fr

(Marie-Jośe Huguet),jozefowiez@laas.fr (Nicolas Jozefowiez),
cedric.pralet@onera.fr (Cédric Pralet)

Preprint submitted to Elsevier June 28, 2016

set of files related to a single observation. We show that there exists a(2 − 1
m
)-

approximation algorithm respecting such batch sequences.Moreover, provided

that the ratioρ, between maximum and minimum processing time, is bounded by

⌊ s−1
m−1
⌋, we show that the proposed algorithm approximates the optimal schedule

within a factor1 + s−1
n

.

Keywords: Scheduling, Approximation, Additional resource

1. Introduction

We consider the problem of scheduling a set ofn jobs onm parallel ma-

chines. Moreover, each job requires exactly one ofs additional resources. These

additional resources have a unit capacity, hence no two jobsrequiring the same

resource can be scheduled in parallel. The objective is to minimize the overall

makespan of the schedule.

This problem occurs in numerous applications where an exclusive resource

must be shared. Our particular motivation, however, comes from the problem of

planning the download of acquisitions made by agile observation satellites (Pralet

et al., 2014).

When a satellite makes an observation, the acquired data is compressed and

stored onboard, waiting to be downloaded once a communication link with a

ground station is established. The data of an acquisition corresponds to a set

of exactlys files, each one corresponding to a frequency (observations are multi-

frequency optic recordings). There ares memory banks, and every file of a given

observation is stored on a different one.

When flying over a ground station, some of the data stored on thememory

banks can be downloaded. The objective is to download as manyfiles as possible,

2

possibly weighted by some priority function.

The satellite has a communication link with a ground stationonly for a short

period calleddownload window. The problem we consider is, given a subset of

the files stored onboard, whether it is possible to download them all within the

download window, or in other words, whether the optimal makespan is less than a

given constant. Typically, this problem will be solved as a subproblem of a larger

problem, including the selection of the subset of files to be downloaded.

Since there arem independent download channels, this problem is equiva-

lent to parallel machine scheduling. Each file is a job, and weknow exactly the

duration of its download: it is linearly dependent on the size of the file (vary-

ing according to the type of observation and to the compression). Any file can

be downloaded through any download channel, and on every channel, downloads

must be sequential. We must therefore allocate the files to channels and sequence

all the tasks on every channel.

Moreover, in a given memory bank, files can be read, and thus downloaded,

only one at a time. We can therefore view the set of files storedon the same mem-

ory bank as a set of jobs sharing the same mutually exclusive resource. In other

words, we can model our problem as schedulingn jobs (files) onm machines

(download channels) subject tos resources (memory banks), where all demands

and capacities are unit.

Example 1. Consider two acquisitions,Ia andIb, composed of5 files to be down-

loaded to the ground. For each acquisition, each file is stored in a given memory

bank (resource),R1, R2, R3, R4 or R5. There are then10 jobs to be downloaded.

For instance, joba1 stands for the file of acquisitionIa stored on memory bank

R1. Job processing times and resource allocations are shown inFigure 1, and two

3

possible download plans using three download channels (machines),M1,M2,M3

are shown in Figure 2.

Memory bank: R1 R2 R3 R4 R5

Acq. Ia
jobs: a1 a2 a3 a4 a5

processing time: 3 4 3 3 3

Acq. Ib
jobs: b1 b2 b3 b4 b5

processing time: 3 3 3 2 4

Figure 1: An instance with two acquisitions using five memorybanks (additional

resources)

Resources: R1 R2 R3 R4 R5

M1 a3 b3 a5 b5

M2 a2 b2

M3 a1 b1 a4 b4

a3 a5 b5

a2 b2 b3

a1 b1 a4 b4

Figure 2: Two feasible solutions for the instance shown in Figure 1.

This problem is a generalization ofP ||Cmax which is strongly NP-hard (Blazewicz

et al., 1983; Garey and Johnson, 1978). Moreover, the particular case of2 parallel

machines is also NP-hard since the problemP2||Cmax is NP-hard, though pseu-

dopolynomial.

In a recent survey (Edis et al., 2013), the authors give an overview of parallel

machine scheduling with additional resources. To this purpose, the fieldβ of the

classical three-field notationα|β|γ for scheduling problems was extended to take

into account additional resources in parallel machine scheduling (Blazewicz et al.,

4

1983). In particular,β = resλσδ indicates that each job requiresδ units of up to

λ resources, each of capacityσ. A dot “.” instead of one such value denotes that

it is part of the input.

The problem we consider is a subproblem ofP |res.11|Cmax where each job

requires exactly one additional resource. Alternatively,one can see thes unit re-

sources ass dedicated parallel machines, and them parallel machines as a single

cumulative resource of capacitym (jobs require exactly one unit of the cumulative

resource in this case). This alternative is a subproblem ofPD|res1.1|Cmax where

again each job requires exactly one additional resource. There is no known ap-

proximation algorithm for eitherP |res.11|Cmax or PD|res1.1|Cmax (Edis et al.,

2013) however we show one for the subproblem considered in this paper.

Notice thatPD2|res1..|Cmax is polynomially solvable (Kellerer and Struse-

vich, 2003), which means that our problem has a polynomial time algorithm if

there are no more than 2 additional resources. Moreover, theeven more general

problemPD|res1..Int|Cmax
1 has a(3 + ǫ)-approximation algorithm (Grigoriev

and Uetz, 2009).

Finally, it is also a particular case of the problem ofscheduling with conflicts

(SWC) (Even et al., 2009). In this problem,n jobs should be scheduled onm par-

allel machines such that the makespan is minimized. Moreover, as in our case, two

conflicting jobs cannot be processed concurrently. However, whereas in our case

two jobs are conflicting if and only if they require the same resource, in SWC the

set of conflicts can be an arbitrary graph. In other words we consider the particular

case of SWC where the conflict graph is a set of disjoint cliques. The positive re-

1The notationInt indicates that the processing time of a job depends on the number of units

of resources it receives.

5

sults can therefore be inherited from SWC. For instance, it is polynomial for two

machines (m = 2) and processing times in{1, 2} (Even et al., 2009), and there is

a 4
3
-approximation algorithm for processing times in{1, 2, 3}. However, results

are mainly negative: SWC is NP-hard when the processing times are in{1, 2, 3}

even for two machines (Bendraouche and Boudhar, 2012), and APX-hard when

they are in{1, 2, 3, 4} (Even et al., 2009).

The main contributions of the paper are as follows. Firstly,we give an al-

gorithm that approximates the optimal solution for the problem described above

within a tight factor1+ ρ
(m−1)

n
, whereρ is the ratio between maximum and mini-

mum processing times. Secondly, we show that the same procedure is a(2− 2
m+1

)-

approximation algorithm in general, however, we show that this factor is tight only

for m ≤ 2. Finally, we consider the case where jobs must be inserted bybatches

involving jobs that require distinct additional resources. These batches correspond

to all the files constituting a single acquisition in our observation satellite plan-

ning application. We show that if the ratioρ between maximum and minimum

processing time is less than or equal to⌊ s−1
m−1
⌋ then the optimal schedule can be

approximated within a factor1 + s−1
n

.

Throughout the paper, we use the following notations and conventions:

n: the number of jobs, denoteda1, . . . , an

res(a): the resource required by joba

pa: the processing time of joba, whereaspmin andpmax stand for

the minimum and maximum processing times, respectively

sa andea: the start and end times of joba in the schedule, respectively

6

m: the number of machines, denotedM1, . . . ,Mm

eM : the end time of the last job scheduled on machineM

emin andemax: the completion time of the last job on the machine finishing first

and last, respectively. That is,emin = min({eMj
| 1 ≤ j ≤ m})

andemax = max({eMj
| 1 ≤ j ≤ m})

s: the number of additional resources, denotedR1, . . . , Rs.

L: the cumulated processing time of the jobs(
∑n

i=1 pai)

R: denotes the set of jobs requiring this resource.

L(R): stands for the load of the resourceR, (
∑

a∈R pa)

The rest of the paper is organized as follows. In Section 2, wegive some

general results on an enqueueing heuristic method that can be applied for both

online and offline scheduling. This heuristic shall be used in all other algorithms.

Then, in Section 3, we prove approximation results for offline scheduling prob-

lems. Last, in Section 4, we consider the case of batch scheduling.

2. Online Scheduling

To solve our problem, we consider greedy heuristics which iteratively insert a

job a into a partial scheduleS. We can define these heuristics as an ordering on

the jobs and an insertion procedure called ENQUEUE shown in Algorithm 1. This

procedure shall be reused in all subsequent heuristics.

The algorithm ENQUEUE considers a joba and a partial scheduleS. An in-

variant of this algorithm is that trailing jobs (i.e., the last jobs on their respective

machines) require distinct resources. Therefore, the resource required bya is ei-

ther required by a single trailing job, in which casea will follow that job on the

7

same machine; or no trailing job requires the same resource,and it will be inserted

at the back of one of the first available machines.

Algorithm 1: ENQUEUE(schedule : S,job : a)

if there exists a machineMj whose last job inS requiresres(a) then

inserta at the back of machineMj in S

else

inserta at the back of a machine with mimimum completion time inS

In the following lemma, we show that the schedules obtained by applying

the insertion procedure ENQUEUE on every job of any set, and in any order, are

feasible and dense. In other words, there is no idle time between the first and last

job on any machine in such schedules. From this, we can deducean approximation

factor of(2 − 1
m
) inherited by all algorithms introduced in this paper. Moreover,

the density property will be useful in subsequent proofs. Inparticular, it entails an

upper bound on the makespan:

Lemma 1. Letσ be the makespan of a dense solution, thenσ ≤ L− (m−1)emin.

PROOF. Immediate from the fact that one machine finishes at timeσ, andm − 1

machines finish at or after timeemin.

Lemma 2. A schedule obtained by a sequence of calls toENQUEUE is feasible

and dense, and for every machineM , all jobsa processed onM with ea ≥ emin

require the same resources.

PROOF. We prove this proposition by induction on the number of jobsn. For 1

job, it trivially holds. Now, we suppose that it holds forn jobs, and show that it

also holds forn+ 1 jobs.

8

Let RM be the unique resource such that every job scheduled on machineM

and finishing later thanemin requiresRM (or ∅ if eM = emin). Observe that since

the schedule is feasible, there are no two machinesM1,M2 such thatRM1
= RM2

unlesseM1
= eM2

= emin (hence for any joba, there is at most one machineMj

such thatRMj
= res(a)). When inserting then + 1-th job a, there are two cases

(illustrated in Figure 3):

Case 1:6 ∃j ∈ [1, . . . ,m] s.t., res(a) = RMj
.

Job a is processed on a machineM whose last job finishes first. It can start

immediately after this last, i.e., at timeemin, since there is no resource conflict

with res(a) on the interval[emin, emax]. Now, emin and maybeemax can increase

because of this insertion. In all machines butM , this does not invalidate the

induction hypothesis. OnM , there is now at most a single job on the interval

[emin, emax], hence the induction hypothesis is also verified.

Case 2:∃j ∈ [1, . . . ,m] s.t., res(a) = RMj
.

Job a is processed on the machineMj such thatres(a) = RMj
. It can start

immediately after the last job of this machine, sinceeMj
≥ emin, and there is no

other machineMi such thateMj
≤ eMi

andRMj
= RMi

. Observe that in this case

RMk
remains unchanged for every machineMk, hence the induction hypothesis is

also verified.

Theorem 1. If σ is the makespan of a schedule obtained by calling the procedure

ENQUEUEon every job, then there is a resourceR such thatσ ≤ L
m
+(1− 1

m
)L(R).

PROOF. The schedule is dense thusσ+emin(m−1) ≤ L by Lemma 1. Moreover,

let R be the resource associated with a job finishing at timeσ and letM be the

9

Resources: R1 R2 R3 R4

M1 a1 a5

M2 a2 a4 a9

M3 a3 a6 a7 a8

emin emax

a10 a11

Figure 3: Illustration of the proof of Lemma 2. Joba10 falls into the second

insertion case whilst joba11 falls into the first case.

machine used for this job. By Lemma 2, all jobs on interval[emin, σ] for machine

M require resourceR, and henceL(R) ≥ σ− emin. Therefore, we haveσ+(σ−

L(R))(m− 1) ≤ L.

Corollary 1. A succession of calls to the procedureENQUEUE, one for every job,

in any order, is a(2− 1
m
)-approximation algorithm.

PROOF. Letσ be the makespan of a schedule obtained by a succession of calls to

ENQUEUEandσ∗ be the optimal makespan. Sinceσ∗ ≥ L
m

and for every resource

R, σ∗ ≥ L(R) we have by Theorem 1σ ≤ σ∗ + m−1
m

σ∗.

Notice that this Theorem holds for the on-line version of theproblem since

no assumption is made about the order in which jobs are given to Algorithm 1.

Moreover, the procedure ENQUEUE is optimal if s ≤ m since in that case two

jobs requiring different resources would never be processed on the same machine.

In Example 2, we show that the given ratio is tight for any value ofm.

Example 2. Then jobs to be scheduled on the set ofm parallel machines consist

of m− 1 jobs with processing timem− 1, m− 1 jobs with processing time1 and

1 job with processing timem, all requiring a different resource (that iss = n).

10

If we use ENQUEUE in input order, we obtain a makespanσ = 2m − 1.

However, it is possible to obtain the optimal makespanσ∗ = m by processing the

longest job alone on a machine, and on eachm−1 remaining machine, exactly one

job with processing timem− 1 and one job with processing time1. We illustrate

this example forn = 7 jobs,m = 4 parallel machines ands = 7 resources in

Figure 4.

Resources: R1 R2 R3 R4 R5 R6 R7

M1 a1

M2 a2

M3 a3

M4 a4 a5 a6 a7

M1 a1 a4

M2 a2 a5

M3 a3 a6

M4 a7

Figure 4: Illustration of Example 2, form = 4 machines. The schedule on the

left is obtained by calling ENQUEUE on a1 up toa7 in lexicographic order. The

schedule on the right is optimal.

3. Offline Scheduling

In this section, we study the greedy heuristic called MAX LOAD, shown in

Algorithm 2. This heuristic gives a better approximation ratio than ENQUEUE

thanks to the order in which it explores the jobs. It makes itschoice based on the

current load of a resource, that is the sum of the processing time of jobs requiring

this resource that are not yet scheduled. At each step, it selects the resourceR

with the maximum current load. Then, the joba requiringR and having the

maximum processing time is selected and is added to the partial schedule using the

11

insertion procedure ENQUEUE. We show that the greedy heuristic MAX LOAD is a

(2− 2
m+1

)-approximation algorithm for the parallel machine scheduling problem

with additional unit resources. Moreover, the approximation factor tends to1

when the ratio between maximum and minimum processing time of any job is

bounded by a constant.

Algorithm 2: MAX LOAD(set of jobs : T)

S ← ∅

while T 6= ∅ do

letR be a resource with maximum load
∑

a∈R∩T pa

pick a joba ∈ R ∩ T with maximumpa, and remove it fromT

ENQUEUE(S, a)

returnS

In order to prove the approximation result, we first introduce some notations

for sequences of jobs requiring the same resource.

Let
−→
R (a) denote the sequence of all jobs requiringR in the order they are

selected by MAX LOAD, i.e., by non-increasing processing time, starting froma

(included). We can extend the notion of load to such sequences: L(
−→
R (a)) =

∑

ai∈
−→
R (a)

pai.

Moreover, let[s, e] be an interval. We say that[s, e] is astretchof the resource

R if at any time in[s, e], there is a job requiringR in process.

Lemma 3. Leta1, a2 be two jobs requiring the resourcesR1 andR2, respectively,

and letsa, ea be the start and end times of a joba. If L(
−→
R1(a1)) > L(

−→
R2(a2)) and

if sa1 ≤ ea2 ≤ ea1, then[sa2 , ea1] is a stretch ofR1.

12

PROOF. First, observe thatL(
−→
R1(a1)) > L(

−→
R2(a2)) implies that one of the two

following propositions holds:

1. a1 starts at least as early asa2.

2. a1 follows directly another job ofR1 on the same machine.

Indeed,a1 must be inserted beforea2. It can either go on the earliest finishing

machine, which guarantees that proposition 1 will be satisfied; or on the machine

that ends with a job ofR1, if it exists, which satisfies proposition 2.

Now, suppose that the claim is false, i.e., there is a window in [sa2 , ea1] with

no job requiringR1 in process, and leta′1 be the job ofR1 directly following that

window. It precedes (or is)a1, thereforeL(
−→
R1(a

′
1)) > L(

−→
R2(a2)). However, this

is a contradiction sincea′1 satisfies neither of the two propositions above.

Now, we can prove an intermediate theorem bounding the gap between the

endemin of the dense part of the schedule and the total makespanσ.

Lemma 4. If pmax is the maximum processing time of a job, and if the schedule

returned byMAX LOAD is not optimal, then the completion times of the last jobs

on any pair of machines are less thanpmax apart.

PROOF. We assume that the conclusion does not hold, that is,emax−emin > pmax,

and we show that it contradicts the premise.

Without loss of generality, we assumeeM1
≤ . . . ≤ eMm

. By Lemma 2, we

know that[emin, emax] is a stretch of a single resource that we shall callRm on the

machineMm. Let am be the first job requiringRm finishing in this stretch (i.e.,

such thateam ≥ emin). Moreover, leta1 be the last job on machineM1 and letR1

be its resource. Since
−→
R1(a1) involves only one joba1 we haveL(

−→
R1(a1)) ≤ pmax

13

and sinceemax − emin > pmax and [emin, emax] is a stretch ofRm, we have

L(
−→
R1(a1)) < L(

−→
Rm(am)). Therefore by Lemma 3, we know that[sa1 , emax]

is a stretch ofRm. By the same argument we can extend this stretch over all

jobs directly precedinga1 and requiring the same resourceR1. Let a′m anda′1 be

the first jobs of these extended stretches, forRm andR1, respectively. We have

L(
−→
R1(a

′
1)) + pmax < L(

−→
Rm(a

′
m)), because the stretch onRm is longer than the

one onR1 by at leastemax − emin > pmax.

Now, let a2 be the last job ofM1 that does not requireR1 and letR2 be its

resource (a2 directly precedesa′1). Since we switched from that job to a job ofR1,

we know thatL(
−→
R2(a2)) − pa2 ≤ L(

−→
R1(a

′
1)). Therefore we haveL(

−→
Rm(a

′
m)) >

L(
−→
R2(a2)). Now, we can use Lemma 3 again to stretch onRm over that stretch

on R2. This argument can be applied to extend the stretch onRm over every

preceding job onM1. Since the schedule is dense by Lemma 2, the stretch onRm

can be extended to time0 and hence we have shown that there is a job requiring

the resourceRm in process at all times. It follows that ifemax − emin > pmax,

then the schedule is optimal.

Theorem 2. If σ is the makespan of a schedule obtained by the procedureMAX LOAD,

then eitherσ is optimal orσ ≤ L
m
+ (1− 1

m
)pmax.

PROOF. The schedule is dense thusσ+emin(m−1) ≤ L by Lemma 1. Moreover,

by Lemma 4, eitherσ is optimal orσ−emin ≤ pmax, and henceσ+(σ−pmax)(m−

1) ≤ L.

Corollary 2. If pmax

pmin
≤ ρ then MAX LOAD approximates the optimal schedule

within a factor1 + ρm−1
n

.

14

PROOF. By Theorem 2, ifσ is the makespan of a schedule returned by MAX LOAD

andσ∗ is the optimal makespan, we have:σ ≤ σ∗ + (1− 1
m
)pmax.

However, we haveL
n
≥ pmin henceρL

n
≥ pmax, and sinceσ∗ ≥ L

m
then

ρmσ∗

n
≥ pmax. We inject this into the first inequality to obtain:σ ≤ σ∗ +

ρm−1
n

σ∗.

Lemma 5. Let aj be a job starting strictly aftert ≥ 0 in a schedule returned by

MAX LOAD. Either there exists a job processed at timet and requiring the same

resource asaj, or every job in process at timet has been inserted beforeaj.

PROOF. Suppose that there is no job processed at timet and requiring the same

resource asaj, and consider a jobai processed att. If they are processed on the

same machine, it follows immediately thatai had been inserted beforeaj.

Otherwise, suppose thataj has been inserted beforeai, and lete′min ande′max

be the earliest and latest machine completion times just before the insertion of

ai. Sinceai starts att or before we havee′min ≤ t. Now sinceaj was inserted

beforeai, it finishes before or ate′max, and since it starts aftert, it is included in

the interval[e′min, e
′
max] and we havee′min ≤ t < e′max.

However, the job processed at timet on the same machine asaj does not

require the same resource asaj, which contradicts Lemma 2.

Theorem 3. MAX LOAD is a (2− 2
m+1

)-approximation algorithm.

PROOF. Suppose that the schedule returned by MAX LOAD has a makespanσ >

(2 − 2
m+1

)σ∗. It entailss > m > 1 andK = σ − emin > 0 since otherwise

MAX LOAD is optimal. By Lemma 2 we know that[emin, σ] is a stretch on some

resourceRm+1 on a machineM1. Therefore, we haveL(Rm+1) ≥ K. This

15

stretch must have started at a timet greater than0, otherwise the schedule would

be optimal. So there exists a time point in[0, t) such that none of the jobs in

process at that time requireRm+1. Moreover, there arem such jobs, all with

distinct resources, since the schedule is dense up untilemin > t. By Lemma 5, we

know that these jobs have all been inserted before the first job am+1 of the stretch

of Rm+1. It follows that each one of thesem resources has a load of at leastK.

The total load (L =
∑n

i=1 pai) is therefore at least(m + 1)K, and thusσ∗ ≥

m+1
m

(σ− emin) or emin ≥ σ− m
m+1

σ∗. The claim now follows from Lemma 1 and

from σ∗ ≥ L
m

.

In Example 3, we show that this ratio is tight only form ≤ 2 (for m = 2 we

have a tight ratio of4
3
). However, it tends to2, and is not tight, whenm grows.

Example 3. Consider a problem withm parallel machines,m + 1 resources and

the following jobs:

resource jobs processing time

R1 a1, . . . , am−1

∀1 ≤ i ≤ m(m− 1), pai = p
R2 am, . . . , a2m−2

.

Rm a(m−1)2 , . . . , am(m−1)

Rm+1 am(m−1)+1, . . . , am2 ∀m(m− 1) + 1 ≤ i ≤ m2, pai =
p

m

MAX LOAD might enqueue all jobs of resourcesR1 to Rm before enqueueing

any job requiringRm+1 since the load ofRm+1 is equal top. The makespan

obtained with this insertion order is equal tomp. Indeed, on each machine there

arem − 1 jobs of any one resource inR1 to Rm. Moreover, every job requiring

the last resourceRm+1 will be scheduled on the same machine, which completion

time is thusmp.

16

However, it is possible to obtain a makespan of(m − 1)p + p

m
by interleav-

ing the jobs requiring resourceRm+1 with jobs requiring other resources. More

precisely, jobam(m−1)+i should be theith job on machineMi, with all other jobs

on that machine being those requiring resourceRi. We illustrate this example in

Figure 5. The difference betweenσ andσ∗ is thus:

mp − ((m− 1)p +
p

m
) = (1−

1

m
)p

which shows that Theorem 2 provides a tight bound for any value ofm. However,

the ratio betweenσ andσ∗ is:

mp

(m− 1)p + p

m

= 1 +
m− 1

m(m− 1) + 1

This lower bound is equal to the upper bound given by Theorem 3for m ≤ 2,

however, it is strictly smaller form > 2.

Resources: R1 R2 R3 R4 R5

M1 a1 a2 a3

M2 a4 a5 a6

M3 a7 a8 a9

M4 a10 a11 a12 a13 a14 a15 a16

M1 a13 a1 a2 a3

M2 a4 a14 a5 a6

M3 a7 a8 a15 a9

M4 a10 a11 a12 a16

Figure 5: Illustration of Example 3, form = 4 machines. The schedule on the

top is obtained by calling MAX LOAD. The schedule on the bottom is optimal.

17

4. Batch Scheduling

In our acquisitions download planning application presented in Section 1, jobs

are grouped bybatchesof s jobs, each one requiring a different resource. In this

application, jobs represent files and a batch is a set of files linked to an acquisition,

resources correspond to memory banks and parallel machinesto telecommunica-

tion channels. Indeed, it is preferred to group the downloadof all the files of an

acquisition for at least three reasons. First, if for some reason the download is

interrupted, any acquisition for which a single file is not yet downloaded is lost.

By grouping all the files of an acquisition, we reduce the probability of these oc-

currences. Second, some acquisitions have higher priorityand we might want to

download them first if possible. Third, all files of a single acquisition must be

downloaded during the same fly-by of the chosen ground station. We therefore

consider a “pseudo” on-line version of the problem where jobs arrive by batches:

we must completely schedule a batch before moving to the nextone.

Example 4. Consider again Example 1. Now we assume that jobs are given in

two batches, containing the5 files of acquisitionsIa andIb, respectively. Figure 6

is a feasible solution for this setting.

M1 a3 a5 b5

M2 a2 b1 b4

M3 a1 a4 b2 b3

Figure 6: A batch solution of the instance shown in Figure 1.

It is therefore important, in our application, to have an efficient method, al-

beit following a predefined batch order. By Theorem 1, we know that using the

18

insertion procedure ENQUEUE in any order is a(2− 1
m
)-approximation.

The greedy heuristic ENQUEUEBATCH, given in Algorithm 3, follows the

given batch order, and uses the ENQUEUE in any order within a batch.

Algorithm 3: ENQUEUEBATCH(set of batches : B)

while B 6= ∅ do

removeβ fromB

while β 6= ∅ do

Pick and remove a joba from β

ENQUEUE(S, a)

returnS

We assume that we haven = αs jobs each requiring one ofs resources, and

each resource supplies for exactlyα jobs. In other words, we haveα batches of

s jobs. Under these assumptions, we show that if all jobs have relatively similar

processing times, i.e., ifρ = pmax

pmin
≤ ⌊ s−1

m−1
⌋, then ENQUEUEBATCH approximates

the optimal schedule within a factor1 + s−1
n

.

Theorem 4. If pmax ≤ ⌊
s−1
m−1
⌋pmin and ifσ is the makespan of a schedule obtained

by procedureENQUEUEBATCH, then eitherσ is optimal, orσ ≤ L
m
+(1− 1

m
)pmax.

PROOF. We first prove the following proposition by induction onα (this proof is

illustrated in Figure 7):

If there areα batches ofs jobs, the schedule returned by ENQUEUEBATCH is

such thatemax − emin ≤ pmax.

If there is no job at all, this property trivially holds.

19

Resources: R1 R2 R3 R4 R5 R6 R7

a1

a7

eα+1

1
eα+1

4
≤ eαi

> pmax

≤ 2pmax

a2 a3

a4

a5

a6

M1

M2

M3

M4

Figure 7: Illustration of the proof of Theorem 4 withs = 7 andm = 4 and
pmax

pmin
≤ ⌊ s−1

m−1
⌋ = 2. We start from the hypothesis thateα+1

4 − eα+1
1 > pmax. There

is a single job of batchα + 1 allocated to machineM4, and at most⌊ s−1
m−1
⌋ −

1 = 1 job allocated to machineM1. The5 remaining jobs must be allocated to

2 machines, hence one machine (sayM2) receives at least3 jobs (all requiring

distinct resources). When enqueing the last of these jobs, the machineM1 must

have been in process because it was not chosen. Therefore,eα+1
4 − eα+1

1 ≤ pmax.

Now we suppose that it is true forα batches and we show that it is also true

for α + 1. Let eαj be the end timeeMj
of machineMj after inserting theαth

batch. Without loss of generality, we supposeeα+1
1 ≤ . . . ≤ eα+1

m , and we assume

that the induction hypothesis is falsified at stepα + 1, i.e.,eα+1
m − eα+1

1 > pmax.

Sinceeα+1
m − eα+1

1 > pmax and since no job is larger thanpmax, it means that the

penultimate job of machineMm finishes later than the last job of machineM1.

Therefore, the penultimate and last jobs of machineMm must require the same

resource, hence belong to a different batch.

It follows that only one job of batchα + 1 is on machineMm. Henceeα+1
m −

pmax ≤ eαm. Therefore, since by induction hypothesiseαmax − eαmin ≤ pmax, the

20

following inequalities hold:

∀1 ≤ i < m, eαi ≥ eα+1
m − 2pmax (1)

Moreover, since a single job of batchα + 1 is allocated to machineMm, the

s− 1 other jobs must be distributed amongst machinesM1 to Mm−1.

If ⌊ s−1
m−1
⌋ jobs or more have been allocated to machineM1, we haveeα+1

1 ≥

eα1 + ⌊ s−1
m−1
⌋pmin. By applying inequality (1), we haveeα+1

1 ≥ eα+1
m − 2pmax +

⌊ s−1
m−1
⌋pmin, henceeα+1

1 ≥ eα+1
m − pmax, which would contradict the induction

hypothesis. Therefore, at most⌊ s−1
m−1
⌋ − 1 jobs have been allocated to machine

M1. In other words, among thes jobs of the batch, one has been assigned to

machinem and at most⌊ s−1
m−1
⌋ − 1 to machineM1, so there ares − ⌊ s−1

m−1
⌋ jobs

to distribute over them − 2 other machines. It follows that at least one machine

will be allocated strictly more than⌊ s−1
m−1
⌋ jobs, because the following relation is

a tautology:

s− ⌊ s−1
m−1
⌋ > ⌊ s−1

m−1
⌋(m− 2)

⇔ s > ⌊ s−1
m−1
⌋(m− 1)

⇐ s > s− 1

Now, letMj be the machine that was allocated at least⌊ s−1
m−1
⌋ + 1 jobs (1 < j <

m). Consider the schedule when adding the(⌊ s−1
m−1
⌋ + 1)th job of batchα + 1 on

machineMj. Since this is not the first job of the batch to be allocated to machine

Mj, it cannot require the same resource as the previous one. Therefore machine

M1 must finish later than the start of this(⌊ s−1
m−1
⌋ + 1)th job on machineMj. In

other words, we haveeα+1
1 ≥ eαj + ⌊ s−1

m−1
⌋pmin. By applying inequality (1) as

above, we haveeα+1
1 ≥ eα+1

m −pmax. Therefore, the assumption that the induction

hypothesis does not lift toα + 1 is contradicted.

21

Now, by Lemma 2 and the induction above, we have that the schedule returned

by ENQUEUEBATCH is dense and such thatemax−emin ≤ pmax. We can therefore

apply Lemma 1 (withσ = emax) and we have:

σ ≤ σ∗ + (1−
1

m
)pmax (2)

Corollary 3. If pmax ≤ ⌊
s−1
m−1
⌋pmin thenENQUEUEBATCH approximates the op-

timal schedule with a ratio1 + s−1
n

.

PROOF. If the makespan of the schedule produced by ENQUEUEBATCH is not

optimal, then we can write from Theorem 4 and fromL ≤ mσ∗:

σ ≤ σ∗ + (1−
1

m
)pmax (3)

Moreover, we haveL
n
≥ pmin hence⌊ s−1

m−1
⌋L
n
≥ pmax, that is⌊ s−1

m−1
⌋mσ∗

n
≥

pmax and thereforem(s−1)
(m−1)n

σ∗ ≥ pmax. We inject this into inequality (3) to obtain:

σ ≤ σ∗ + (s−1)(m−1)σ∗

n(m−1)
= (1 + s−1

n
)σ∗, which concludes our proof.

If the ratioρ = pmax

pmin
is strictly greater than⌊ s−1

m−1
⌋ then the gap between the

makespan of a schedule returned by Algorithm 3 and the optimal makespan cannot

be bounded by a function ofpmax. We show that however small the gap between

the ratiopmax

pmin
and⌊ s−1

m−1
⌋ is, there exist instances for which this gap is arbitrarily

large. Given an instanceI, that is, a pair(m, s) and a sequence of batches of

jobs, letσI andσ∗
I denote, respectively, the makespan of a schedule returned by

Algorithm 3 and the optimal makespan.

Theorem 5. ∀ǫ, γ > 0 and for anym > 1, there exists an instanceI such that
pmax

pmin
≤ ⌊ s−1

m−1
⌋+ ǫ andσI > σ∗

I + γ.

22

Resources: R1 R2 R3 R4 R5

M1

M2

M3

M1

M2

M3

36 40

Figure 8: Illustration of the proof of Theorem 5, withm = 3, ǫ = 1
2

andγ =

4. There are6 batches of5 jobs with unit processing time, then12 batches in

which the job requiring resourceR1 is of length2.5. The schedule returned by

Algorithm 3 (top) has a makespan of40, whereas the optimal schedule (bottom)

has a makespan of36.

Proof. Let x be a integer such thatx(m − 1) > γ, and letk =
⌈

1
ǫ

⌉

. We build an

example (see Figure 8) with2m− 1 resources and(1 + k)xm batches of2m− 1

jobs.

In the firstxm batches, all jobs have a processing time1. On each of thekxm

subsequent batches, the jobs of the resourcesR2, . . . , R2m−1 also have processing

time1, but the job requiring resourceR1 has processing time2 + 1
k
.

After inserting the firstxm batches, the schedule is dense by Lemma 2. More-

over, since all processing times are equal and sincem dividesxm, the completion

time on every machine is exactlyx(2m − 1). Now, in the lastkxm batches, the

sum of the processing times of the jobs requiringR1 iskxm(2+ 1
k
). Therefore, the

23

schedule returned by Algorithm 3 has a total makespan of at least3xm−x+2kxm.

However, we can build an optimal schedule as follows: on a machineM , we

put only the jobs requiring the resourceR1. The makespan on this machine will

thus bexm+kxm(2+ 1
k
) = 2xm+2kxm. Then, on them−1 remaining machines,

we schedule thexm(2m−2)+kxm(2m−2) remaining jobs. Since they all have a

processing time of1, it is easy to see that they can be scheduled within a makespan

of 2xm+ 2kxm, which is therefore the overall optimal makespanσ∗.

We can verify that we indeed haveσ − σ∗ = (3xm − x + 2kxm) − (2xm +

2kxm) = x(m− 1) > γ.

In our application, there are 3 download channels (m = 3) and 5 memory

banks (s = 5). It follows that Algorithm 3 is a1 + 4
n
-approximation if no file is

more than twice larger than any other. Unfortunately, this condition is not guaran-

teed to hold in our application. Indeed, the hypothesis of our industrial partner was

a maximum ratio of1
4

between minimum and maximum image sizes. However, if

the compression rates have a normal distribution, the procedure ENQUEUEBATCH

should often be efficient. Indeed if the standard deviation is of 5
6

or less, we can

expect that most of the images will have a size in the range[5
3
, 10

3
], which satisfies

the condition of Theorem 3.

5. Conclusion

We have introduced a heuristic insertion algorithm for parallel machine schedul-

ing problems with additional unit resources which is a(2− 2
m+1

)-approximation.

Second, we have shown that if the maximum processing timepmax and minimum

processing timepmin of a job are such thatpmax ≤ ρpmin for a given value ofρ,

then the approximation factor tends toward1 when the size of the problem grows.

24

Algorithm Condition Absolute properties Approx. ratios

ENQUEUE none σ ≤ L
m
+(1− 1

m
)maxR L(R) 2− 1

m

MAX LOAD none σ ≤ L
m
+(1− 1

m
)pmax or σ = σ∗

2− 2
m+1

1 + pmax

pmin

m−1
n

ENQUEUEBATCH
pmax

pmin
≤ ⌊ s−1

m−1⌋ σ ≤ L
m
+(1− 1

m
)pmax or σ = σ∗ 1 + s−1

n

Table 1: Summary of the results obtained (note that for the results given in the

“absolute properties” column, we always haveL
m
≤ σ∗).

Next, we have shown that a slightly different heuristic restricted to proceed

along a predefined batch order is a(2− 1
m
)-approximation. Moreover, if the ratio

between maximum and minimum processing timeρ is bounded by⌊ s−1
m−1
⌋, then

the approximation factor becomes1+ s−1
n

. All the results obtained are summarized

in Table 1. They are important in a planning application for observation satellites.

Acknowledgments

The motivation for this work originates from a study supported through a

grant from CNES and Astrium (contract4500166027 “Planification Flexible”).

We would especially like to thank Jean Jaubert (CNES), PierreBlanc-Paques (As-

trium) and Thierry Desmousceaux (Astrium).

References

Mohamed Bendraouche and Mourad Boudhar. Scheduling jobs on identical ma-

chines with agreement graph.Computers & Operations Research, 39(2):382 –

390, 2012.

25

Jacek Blazewicz, Jan Karel Lenstra, and Alexander H.G. Rinnooy Kan. Schedul-

ing subject to resource constraints: classification and complexity. Discrete Ap-

plied Mathematics, 5:11–24, 1983.

Emrah B. Edis, Ceyda Oguz, and Irem Ozkarahan. Parallel machine scheduling

with additional resources: Notation, classification, models and solution meth-

ods.European Journal of Operational Research, 230:449–463, 2013.

Guy Even, Magńus M. Halld́orsson, Lotem Kaplan, and Dana Ron. Scheduling

with conflicts: online and offline algorithms.Journal of Scheduling, 12(2):

199–224, 2009.

Michael R. Garey and David S. Johnson. “Strong” NP-Completeness Results:

Motivation, Examples and Implications.J. ACM, 25(3):499–508, 1978.

Alexander Grigoriev and Marc Uetz. Scheduling jobs with time-resource tradeoff

via nonlinear programming.Discrete Optimization, 6(4):414–419, 2009.

Hans Kellerer and Vitaly A. Strusevich. Scheduling problems for parallel dedi-

cated machines under multiple resource constraints.Discrete Appl. Math., 133

(1-3):45–68, November 2003.

Cédric Pralet, Ǵerard Verfaillie, Adrien Maillard, Emmanuel Hebrard, Nicolas

Jozefowiez, Marie-José Huguet, Thierry Desmousceaux, Pierre Blanc-Paques,

and Jean Jaubert. Satellite Data Download Management with Uncertainty about

the Generated Volumes. InICAPS (application track), 2014.

26

