N
N

N

HAL

open science

Approximation of the parallel machine scheduling
problem with additional unit resources

Emmanuel Hébrard, Marie-José Huguet, Nicolas Jozefowiez, Adrien Maillard,
Cédric Pralet, Gérard Verfaillie

» To cite this version:

Emmanuel Hébrard, Marie-José Huguet, Nicolas Jozefowiez, Adrien Maillard, Cédric Pralet, et al..
Approximation of the parallel machine scheduling problem with additional unit resources. Discrete

Applied Mathematics, 2016, 215, pp.126-135. 10.1016/j.dam.2016.07.003 . hal-01354589

HAL Id: hal-01354589
https://hal.science/hal-01354589
Submitted on 18 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01354589
https://hal.archives-ouvertes.fr

Approximation of the Parallel Machine Scheduling
Problem with Additional Unit Resources

Emmanuel Hebrafd, Marie-Jog& Huguet*, Nicolas Jozefowiez Adrien

Maillard®, Cédric Pralet*, Gerard Verfailli@

3L AAS-CNRS, Univergétde Toulouse, CNRS, INSA, Toulouse, France
PONERA — The French Aerospace Lab, F-31055, Toulouse, France

Abstract

We consider the problem of minimizing the makespan of a adleeshm paral-
lel machines of: jobs, where each job requires exactly ones@dditional unit
resources. This problem collapsesRYC,,.. if every job requires a different
resource. It is therefore NP-hard even if we fix the number a¢immes t® and
strongly NP-hard in general.

Although very basic, its approximability is not known, andrageneral cases,

such asscheduling with conflictsare often not approximable. We give(a —

2
m+1

in jobs processing times is bounded by a ratithe same algorithm approximates

the problem within a tight factor + p 1.

)-approximation algorithm for this problem, and show thaewthe deviation

This problem appears in the design of download plans fornEatvservation
satellites, when scheduling the transfer of the acquirdd ttaground stations.

Within this context, it may be required to process jobs bghas standing for the

*Corresponding author
Email addresseshebr ar d@ aas. fr (Emmanuel Hebrardhuguet @ aas. fr
(Marie-Jo& Huguet)j ozef owi ez@ aas. fr (Nicolas Jozefowiez),
cedric. pral et @nera. fr (Cédric Pralet)

Preprint submitted to Elsevier June 28, 2016

set of files related to a single observation. We show thaetbgists a2 — L)-
approximation algorithm respecting such batch sequenkiseover, provided
that the ratigp, between maximum and minimum processing time, is bounded by

L;L‘_llj, we show that the proposed algorithm approximates the apsechedule

within a factorl + =1

Keywords: Scheduling, Approximation, Additional resource

1. Introduction

We consider the problem of scheduling a setnofobs onm parallel ma-
chines. Moreover, each job requires exactly one afiditional resources. These
additional resources have a unit capacity, hence no tworgdpsiring the same
resource can be scheduled in parallel. The objective is tonmie the overall
makespan of the schedule.

This problem occurs in numerous applications where an sik@uwesource
must be shared. Our particular motivation, however, comas the problem of
planning the download of acquisitions made by agile obsenvaatellites (Pralet
etal., 2014).

When a satellite makes an observation, the acquired dataripressed and
stored onboard, waiting to be downloaded once a commuaitditik with a
ground station is established. The data of an acquisitioresponds to a set
of exactlys files, each one corresponding to a frequency (observatiensalti-
frequency optic recordings). There arenemory banks, and every file of a given
observation is stored on a different one.

When flying over a ground station, some of the data stored omgraory

banks can be downloaded. The objective is to download as filasys possible,

possibly weighted by some priority function.

The satellite has a communication link with a ground statinly for a short
period calleddownload window The problem we consider is, given a subset of
the files stored onboard, whether it is possible to downlb&ant all within the
download window, or in other words, whether the optimal nsgles is less than a
given constant. Typically, this problem will be solved asibgroblem of a larger
problem, including the selection of the subset of files to bermoaded.

Since there aren independent download channels, this problem is equiva-
lent to parallel machine scheduling. Each file is a job, anckmnev exactly the
duration of its download: it is linearly dependent on theesid the file (vary-
ing according to the type of observation and to the compoa$siAny file can
be downloaded through any download channel, and on evennehadownloads
must be sequential. We must therefore allocate the filesdonredis and sequence
all the tasks on every channel.

Moreover, in a given memory bank, files can be read, and thusidaded,
only one at a time. We can therefore view the set of files storetthe same mem-
ory bank as a set of jobs sharing the same mutually excluss@urce. In other
words, we can model our problem as schedulinppbs (files) onm machines
(download channels) subject taesources (memory banks), where all demands

and capacities are unit.

Example 1. Consider two acquisitiong, and/,, composed of files to be down-
loaded to the ground. For each acquisition, each file is dtiora given memory
bank (resource)k,, Ry, R3, R4 Or R5. There are them0 jobs to be downloaded.
For instance, jolu; stands for the file of acquisitiof, stored on memory bank

R;. Job processing times and resource allocations are shokigune 1, and two

3

possible download plans using three download channelshimes), M, M;, M;
are shown in Figure 2.

Memory bank:| Ry Rs Rs Ry Rj

jObS: ai as as ay as

Acq. I,)]
processing time] 3 4 3 3 3

jObS: by by bg by b5

Acq. I,

processing time] 3 3 3 2 4

Figure 1. An instance with two acquisitions using five memayks (additional

resources)

Resources: [&] [r]| [m] [B] [B]

M7 b e | 87 s b
My a2 | b | N
Mo b e] Lo oo e e

Figure 2. Two feasible solutions for the instance shown guFe 1.

This problem is a generalization 8f|C,,... which is strongly NP-hard (Blazewicz
et al., 1983; Garey and Johnson, 1978). Moreover, the péaticase of parallel
machines is also NP-hard since the problgaj|C,,.. is NP-hard, though pseu-

dopolynomial.

In a recent survey (Edis et al., 2013), the authors give arvaaxe of parallel
machine scheduling with additional resources. To this psepthe field3 of the
classical three-field notatian| 3|~ for scheduling problems was extended to take

into account additional resources in parallel machinedugley (Blazewicz et al.,

4

1983). In particularjs = res\od indicates that each job requirésnits of up to
A resources, each of capacity A dot “.” instead of one such value denotes that
it is part of the input.

The problem we consider is a subproblemijf-es.11|C,,.,. where each job
requires exactly one additional resource. Alternativehg can see theunit re-
sources as dedicated parallel machines, and theparallel machines as a single
cumulative resource of capacity (jobs require exactly one unit of the cumulative
resource in this case). This alternative is a subproblem/ofres1.1|C,,... where
again each job requires exactly one additional resourcereTis no known ap-
proximation algorithm for eitheP|res.11|C,,q. OF PD|res1.1|C,,.. (Edis et al.,
2013) however we show one for the subproblem consideredsipéper.

Notice thatP D2|resl..|C,.q. iS polynomially solvable (Kellerer and Struse-
vich, 2003), which means that our problem has a polynonma talgorithm if
there are no more than 2 additional resources. Moreoveguwde more general
problemP D|resl..Int|C,,q.* has a3 + ¢)-approximation algorithm (Grigoriev
and Uetz, 2009).

Finally, it is also a particular case of the problemscheduling with conflicts
(SWC) (Even et al., 2009). In this problemjobs should be scheduled enpar-
allel machines such that the makespan is minimized. Moreasen our case, two
conflicting jobs cannot be processed concurrently. Howevieereas in our case
two jobs are conflicting if and only if they require the samsowrce, in SWC the
set of conflicts can be an arbitrary graph. In other words wsicier the particular

case of SWC where the conflict graph is a set of disjoint ckqUde positive re-

1The notation/nt indicates that the processing time of a job depends on théeuof units

of resources it receives.

sults can therefore be inherited from SWC. For instancs,pblynomial for two
machines# = 2) and processing times ifil, 2} (Even et al., 2009), and there is
a g-approximation algorithm for processing times{in 2,3}. However, results
are mainly negative: SWC is NP-hard when the processingstame in{1, 2, 3}
even for two machines (Bendraouche and Boudhar, 2012), andhsPckwhen
they are in{1,2,3,4} (Even et al., 2009).

The main contributions of the paper are as follows. Firstlg, give an al-
gorithm that approximates the optimal solution for the peabdescribed above
within a tight factorl + o™= wherep is the ratio between maximum and mini-

n

mum processing times. Secondly, we show that the same prm:m:h@—miﬂ)-
approximation algorithm in general, however, we show thigtfactor is tight only
for m < 2. Finally, we consider the case where jobs must be insertdzhtohes
involving jobs that require distinct additional resourcékese batches correspond
to all the files constituting a single acquisition in our alvs¢éion satellite plan-
ning application. We show that if the ratjpbetween maximum and minimum
processing time is less than or equal[- | then the optimal schedule can be

approximated within a factar + 5;—1

Throughout the paper, we use the following notations angemations:

n: the number of jobs, denoteq, .. ., a,
res(a): the resource required by jab
pq. the processing time of job, wherea®,,.;, andp,,., stand for
the minimum and maximum processing times, respectively

s, ande,: the start and end times of jabin the schedule, respectively

m: the number of machines, denotéf, ..., M,,
ey the end time of the last job scheduled on machihe
emin @Nde, ... the completion time of the last job on the machine finishirgj fi

and last, respectively. Thatis,;, = min({ey; |1 < j < m})
ande, ., = max({ey, | 1 < j <m})

s: the number of additional resources, denatid. . ., R,.

L: the cumulated processing time of the jdBsS’"_, p.,)
denotes the set of jobs requiring this resource.

L(R): stands for the load of the resourBe (>, Pa)

The rest of the paper is organized as follows. In Section 2give some
general results on an enqueueing heuristic method that eapplied for both
online and offline scheduling. This heuristic shall be usedlii other algorithms.
Then, in Section 3, we prove approximation results for afflscheduling prob-

lems. Last, in Section 4, we consider the case of batch stihgdu

2. Online Scheduling

To solve our problem, we consider greedy heuristics whtatively insert a
job a into a partial schedul&. We can define these heuristics as an ordering on
the jobs and an insertion procedure calledd®EUE shown in Algorithm 1. This
procedure shall be reused in all subsequent heuristics.

The algorithm BNQUEUE considers a jola and a partial schedul8. An in-
variant of this algorithm is that trailing jobs (i.e., thestgobs on their respective
machines) require distinct resources. Therefore, theuresaequired by: is ei-

ther required by a single trailing job, in which casevill follow that job on the

same machine; or no trailing job requires the same resoanckt will be inserted

at the back of one of the first available machines.

Algorithm 1: ENQUEUE(schedul e : S,j ob : a)

if there exists a machin&/; whose last job irS requiresres(a) then
‘ inserta at the back of maching/; in S
else

t inserta at the back of a machine with mimimum completion timeSin

In the following lemma, we show that the schedules obtaing@plying
the insertion procedureN®QUEUE on every job of any set, and in any order, are
feasible and dense. In other words, there is no idle time d&tvthe first and last
job on any machine in such schedules. From this, we can dedfusgproximation
factor of (2 — 1) inherited by all algorithms introduced in this paper. Moreg
the density property will be useful in subsequent proofgdrticular, it entails an

upper bound on the makespan:
Lemma 1. Leto be the makespan of a dense solution, theq L — (m — 1)e -

PrROOE Immediate from the fact that one machine finishes at timandm — 1

machines finish at or after timeg,;,,.]

Lemma 2. A schedule obtained by a sequence of callEt@UEUE is feasible
and dense, and for every maching, all jobsa processed o/ with e, > €.,

require the same resources.

PROOF We prove this proposition by induction on the number of jabg-or 1
job, it trivially holds. Now, we suppose that it holds ferjobs, and show that it

also holds fom + 1 jobs.

Let R, be the unique resource such that every job scheduled on neathi
and finishing later than,,;,, requiresR,; (or () if e;; = e,,:»). Observe that since
the schedule is feasible, there are no two machidgs\/, such thatR,;, = Ry,
unlessey;, = em, = enin (N€Nce for any jola, there is at most one machiné;
such thaty;; = res(a)). When inserting the: + 1-th job a, there are two cases

(illustrated in Figure 3):

Case1:4j € [1,...,m] s.t., res(a) = Ry,.

Job a is processed on a maching whose last job finishes first. It can start
immediately after this last, i.e., at timg,;,, since there is no resource conflict
with res(a) on the intervale, i, €maz]. NOW, €,,,;, and maybe,,,.. can increase
because of this insertion. In all machines Bt this does not invalidate the
induction hypothesis. O@/, there is now at most a single job on the interval

lemin, €maz), hENCe the induction hypothesis is also verified.

Case 2:3j € [1,...,m] s.t., res(a) = Ry;.

Joba is processed on the machidé; such thatres(a) = Ry;,. It can start
immediately after the last job of this machine, sirgg > e,.:,»,, and there is no
other machine\/; such that,,, < ey, andR,;, = Ry;,. Observe that in this case
Ry, remains unchanged for every machig, hence the induction hypothesis is

also verified.]

Theorem 1. If o is the makespan of a schedule obtained by calling the praeedu

ENQUEUEON every job, then there is a resouBesuch thatr < L+(1—-1)L(R).

1
m

PROOF The schedule is dense thws-¢,,;,(m—1) < L by Lemma 1. Moreover,

let R be the resource associated with a job finishing at tand letM be the

9

Resources: [&] [r:] [#] [&/]

L |
M a7 7705772727 /AA\
|
] | (I ILIIIII T
M| a2 | as | o | Loao | > s 7]

‘ l/
Mglﬁ, g I aaf l az Iasl

Emin Emaz

Figure 3: lllustration of the proof of Lemma 2. Jal, falls into the second

insertion case whilst job,; falls into the first case.

machine used for this job. By Lemma 2, all jobs on intefal,,, o] for machine
M require resourc®, and hencé.(R) > o — e,,:,. Therefore, we have + (o —

L(R))(m —1) < L. O

Corollary 1. A succession of calls to the procedl#f®QUEUE, one for every job,

in any order, is a2 — %)-approximation algorithm.

PROOF Leto be the makespan of a schedule obtained by a successionfacall
ENQUEUEands* be the optimal makespan. Sinee > # and for every resource

R, 0* > L(R) we have by Theorem & < o* + 15", O

Notice that this Theorem holds for the on-line version of pineblem since
no assumption is made about the order in which jobs are gweigorithm 1.
Moreover, the procedureNQUEUE is optimal if s < m since in that case two
jobs requiring different resources would never be proakesghe same machine.

In Example 2, we show that the given ratio is tight for any eaddim.

Example 2. Then jobs to be scheduled on the setofparallel machines consist
of m — 1 jobs with processing time: — 1, m — 1 jobs with processing timé and

1 job with processing timen, all requiring a different resource (thatdis= n).

10

If we use ENQUEUE in input order, we obtain a makespan= 2m — 1.
However, it is possible to obtain the optimal makespar- m by processing the
longest job alone on a machine, and on eachl remaining machine, exactly one
job with processing timen — 1 and one job with processing tinie We illustrate

this example fom = 7 jobs, m = 4 parallel machines angl = 7 resources in

Figure 4.
Resources: [&] [r| [7] [m] [&] [&]] [#:]
M] AT 2
My w2 | My[w2 Ts]
Msl///85 Ms s ||
M, [er Tas T e e My [e

Figure 4: lllustration of Example 2, for. = 4 machines. The schedule on the
left is obtained by calling EQUEUE on a; up toa; in lexicographic order. The

schedule on the right is optimal.

3. Offline Scheduling

In this section, we study the greedy heuristic calledXNLOAD, shown in
Algorithm 2. This heuristic gives a better approximatioticahan ENQUEUE
thanks to the order in which it explores the jobs. It makeslisice based on the
currentload of a resource, that is the sum of the processing timebsfiiequiring
this resource that are not yet scheduled. At each step,attsethe resourc&
with the maximum current load. Then, the jebrequiring R and having the

maximum processing time is selected and is added to thajsetiedule using the

11

insertion procedure BEQUEUE. We show that the greedy heuristicAML OAD is a
(2 — 37)-approximation algorithm for the parallel machine schedyproblem
with additional unit resources. Moreover, the approxioratiactor tends ta
when the ratio between maximum and minimum processing tifreny job is

bounded by a constant.

Algorithm 2: MAXxLoAD(set of jobs:T)
S« 10
while 7 # () do

let R be a resource with maximum 1034, _ 7 Pa

pick a joba € RN T with maximump,, and remove it frony"

ENQUEUE(S, a)

returnS

In order to prove the approximation result, we first introelsome notations
for sequences of jobs requiring the same resource.

Let ﬁ(a) denote the sequence of all jobs requiriRgn the order they are
selected by MXLOAD, i.e., by non-increasing processing time, starting from
(included). We can extend the notion of load to such seqwenbeﬁ(a)) =
zaieﬁ(a) Da; -

Moreover, lets, e] be an interval. We say thét, e] is astretchof the resource

R if at any time in[s, e, there is a job requiring in process.

Lemma 3. Letay, a, be two jobs requiring the resourcég and R,, respectively,
and lets,, e, be the start and end times of a jablf L(ﬁi(al)) > L(ﬁg(@)) and

if 54, < eq, < eq,,then[s,,, e,, | is a stretch ofR;.

12

PROOF. First, observe thaL(El)(al)) > L(]?Q(ag)) implies that one of the two

following propositions holds:

1. a, starts at least as early as

2. a; follows directly another job of2; on the same machine.

Indeed,a; must be inserted beforg,. It can either go on the earliest finishing
machine, which guarantees that proposition 1 will be satistor on the machine
that ends with a job oRy, if it exists, which satisfies proposition 2.

Now, suppose that the claim is false, i.e., there is a window,j,, e,,] with
no job requiringR; in process, and let;, be the job ofR; directly following that
window. It precedes (or is),, thereforeL(ﬁi(a’l)) > L(ﬁg(az)). However, this

is a contradiction since) satisfies neither of the two propositions above. [

Now, we can prove an intermediate theorem bounding the gapebe the

ende,,;, of the dense part of the schedule and the total makespan

Lemma 4. If p,... IS the maximum processing time of a job, and if the schedule
returned byMAXLOAD is not optimal, then the completion times of the last jobs

on any pair of machines are less thap,. apart.

PROOF We assume that the conclusion does not hold, that,is,— €min > Pmaz;
and we show that it contradicts the premise.

Without loss of generality, we assumg, < ... < ep,,. By Lemma 2, we
know that[e, .., emaz] IS @ Stretch of a single resource that we shall 8g)lon the
machineM,,. Leta,, be the first job requiringz,, finishing in this stretch (i.e.,
such thak,, > e...x). Moreover, letn; be the last job on machin; and letR;

be its resource. Sin(ﬁl}(al) involves only one jola; we haveL(]?i(al)) < Prmaz

13

and siNCeeuzx — €min > Pmae @NA [€1in, €maz) 1S @ stretch ofR,,, we have
L(Ei(al)) < L(R_>m(am)). Therefore by Lemma 3, we know that,,, €,4.]
is a stretch ofR,,. By the same argument we can extend this stretch over all
jobs directly preceding; and requiring the same resourBe. Leta/ anda be
the first jobs of these extended stretches,Rgr and R, respectively. We have
L(Ei(a’l)) + Prnaz < L(}?m(a;n)), because the stretch dp, is longer than the
one onR; by atlease, ... — €min > Pmac-

Now, letas, be the last job of\/; that does not requir®; and letR, be its
resourcedy, directly precedes’). Since we switched from that job to a job Bf,
we know thatL(Eg(aQ)) — Day < L(ﬁi(a’l)). Therefore we havé(}?m(a;l)) >
L(ﬁg(@)). Now, we can use Lemma 3 again to stretch/gn over that stretch
on R,. This argument can be applied to extend the stretctRgnover every
preceding job onl/;. Since the schedule is dense by Lemma 2, the stretdk,on
can be extended to timeand hence we have shown that there is a job requiring

the resourcer,, in process at all times. It follows that &,.. — €nin > Pmaz

then the schedule is optimal. O

Theorem 2. If o is the makespan of a schedule obtained by the procédurel OAD,

then eithers is optimal oro < £ 4+ (1 — L)p, ..

1
m

PROOF The schedule is dense thuis-¢,,;,(m—1) < L by Lemma 1. Moreover,
by Lemma 4, eithes is optimal oro —e,,;, < Prnaz, @aNd hence+ (o —ppaz) (Mm—
1) < L. O

Corollary 2. If i@ < p thenMAXLOAD approximates the optimal schedule

within a factor1 + p=—1.

14

PROOF By Theorem 2, it is the makespan of a schedule returned byx\ 0AD
ando* is the optimal makespan, we have< o* + (1 — L)py00.

However, we havet > p,,;, hencepZ > p,..., and sinces* > £ then

me"* > pmaz- We inject this into the first inequality to obtaim: < o* +
prtor, =

Lemma 5. Leta; be a job starting strictly after > 0 in a schedule returned by
MAXLOAD. Either there exists a job processed at timend requiring the same

resource as.;, Or every job in process at timehas been inserted beforg.

PROOF Suppose that there is no job processed at tirmed requiring the same
resource as;, and consider a job; processed at If they are processed on the
same machine, it follows immediately thgthad been inserted befose.

Otherwise, suppose thaj has been inserted befosg and lete!,,;,, ande!

min max

be the earliest and latest machine completion times jusireghe insertion of

man

a;. Sinceq; starts att or before we have;,,, < t. Now sincea; was inserted

beforeq;, it finishes before or at’ and since it starts after it is included in

max?

and we have’

min

the intervalle! .., e

maaﬁ]

/
<t < €

However, the job processed at timen the same machine as does not

require the same resourcegswhich contradicts Lemma 2. O
Theorem 3. MAXLOAD is a (2 — 25)-approximation algorithm.

PROOF Suppose that the schedule returned by 0AD has a makespan >
(2 — miﬂ)a*. It entailss > m > 1 andK = o — e,;n > 0 Since otherwise
MAXLOAD is optimal. By Lemma 2 we know th&t,,;,, o] is a stretch on some

resourceR,,,; on a machinelM;. Therefore, we havé.(R,,,;) > K. This

15

stretch must have started at a timgreater thard, otherwise the schedule would
be optimal. So there exists a time point[int) such that none of the jobs in
process at that time requi®,, ;. Moreover, there are: such jobs, all with
distinct resources, since the schedule is dense upayptil> ¢. By Lemma 5, we
know that these jobs have all been inserted before the flvst jo, of the stretch
of R,,.1. It follows that each one of these resources has a load of at le&st

The total load [= 3" | p,,) is therefore at leastn + 1) K, and thusr* >
mT“(a — €min) OF €pin > 0 — —=0". The claim now follows from Lemma 1 and
fromo* > L. O

In Example 3, we show that this ratio is tight only far < 2 (for m = 2 we

have a tight ratio o§). However, it tends t@, and is not tight, whem grows.

Example 3. Consider a problem witln parallel machinesy + 1 resources and

the following jobs:

resource| jobs processing time
Ry ary -5 Gm—1
R2 Ay -+ oy A2m—2

Vi<i<m(m-—1), p,, =p

R, A(m—1)25 -+ -y Am(m—1)

Rm+1 Am(m—1)+15 -« - » Am?2 vm<m - 1) +1<:i< m27 Pa; = %

MAXLoAD might enqueue all jobs of resourcBs to R,, before enqueueing
any job requiringR,, .1 since the load of?,,. is equal top. The makespan
obtained with this insertion order is equalig. Indeed, on each machine there
arem — 1 jobs of any one resource iR; to R,,. Moreover, every job requiring
the last resourc&,,, . ; will be scheduled on the same machine, which completion

time is thusmp.

16

However, it is possible to obtain a makespar(af — 1)p + £ by interleav-
ing the jobs requiring resource,,,; with jobs requiring other resources. More
precisely, joba,,,—1)4+; should be the™ job on machine\z;, with all other jobs
on that machine being those requiring resouRgeWe illustrate this example in

Figure 5. The difference betweerands* is thus:

1

mp = ((m = 1)p+)= (1= —)p

which shows that Theorem 2 provides a tight bound for anyevafun. However,
the ratio between ando™* is:

mp 14 m—1
(m—1p+2 m(m—1)+1

This lower bound is equal to the upper bound given by Theordor 3. < 2,

however, it is strictly smaller fom > 2.

Resources: |&u] |[r:| [&s| [B| |85]

M| @ | a2 | a3 |

My o | % | as |
M v T]
M :|: T e e fee)
M, |ars @ | a2 | as |

M| o B p” | - |

O T i o

Myl a2 an e s

Figure 5: lllustration of Example 3, fan = 4 machines. The schedule on the

top is obtained by calling Mx LoAD. The schedule on the bottom is optimal.

17

4. Batch Scheduling

In our acquisitions download planning application preedmn Section 1, jobs
are grouped byatchesof s jobs, each one requiring a different resource. In this
application, jobs represent files and a batch is a set of filked to an acquisition,
resources correspond to memory banks and parallel madainelecommunica-
tion channels. Indeed, it is preferred to group the downlwiaall the files of an
acquisition for at least three reasons. First, if for somesoa the download is
interrupted, any acquisition for which a single file is not gewnloaded is lost.
By grouping all the files of an acquisition, we reduce the pbaliig of these oc-
currences. Second, some acquisitions have higher pramiiywe might want to
download them first if possible. Third, all files of a singlegatsition must be
downloaded during the same fly-by of the chosen ground statde therefore
consider a “pseudo” on-line version of the problem wheres jalsive by batches:

we must completely schedule a batch before moving to thearext

Example 4. Consider again Example 1. Now we assume that jobs are given in
two batches, containing thefiles of acquisitiond, and1,, respectively. Figure 6

is a feasible solution for this setting.

M 7Zes 7 e e
M2| a2 I by t b 1
Mslpga a7 v [6]

Figure 6: A batch solution of the instance shown in Figure 1.

It is therefore important, in our application, to have ancefint method, al-

beit following a predefined batch order. By Theorem 1, we knloat tising the

18

insertion procedure ®EQUEUEIN any order is 42 — %)-approximation.
The greedy heuristic FQUEUEBATCH, given in Algorithm 3, follows the

given batch order, and uses the @ EUE in any order within a batch.

Algorithm 3: ENQUEUEBATCH(set of batches : B)
while B # () do

removes from B

while 8 # 0 do

Pick and remove a job from

ENQUEUE(S, a)

returnS

We assume that we have= as jobs each requiring one afresources, and
each resource supplies for exactlyjobs. In other words, we have batches of

s jobs. Under these assumptions, we show that if all jobs helatively similar

processing times, i.e., if = 2mee < | ==L then ENQUEUEBATCH approximates

Pmin m—1

the optimal schedule within a factor+ L.

Theorem 4. If p,0. < L%mem and ifo is the makespan of a schedule obtained

by procedureENQUEUEBATCH, then eithew is optimal, oro < %—i—(l—%)pm(w.

PrRoOOF We first prove the following proposition by induction an(this proof is
illustrated in Figure 7):
If there arex batches ok jobs, the schedule returned b]w&UEUEBATCH is

such thak,ae — €min < Pmaz-

If there is no job at all, this property trivially holds.

19

Resources: [&] [#]| [#] [&] [&] [&] [&]

My

Mo a2 | 1113

s 3

My i |EEEEEEEEEEEZ‘??EEEEEEEEEEEE
< e a1 a+1

Figure 7: lllustration of the proof of Theorem 4 with= 7 andm = 4 and

bmaz < | S=L| — 9 \We start from the hypothesis thgt™ — e¢*! > p,..... There

Pmin — m—1

is a single job of batclw + 1 allocated to machiné/,, and at mosq;‘_llj —
1 = 1 job allocated to machin@/;. The5 remaining jobs must be allocated to
2 machines, hence one machine (Sdy) receives at least jobs (all requiring
distinct resources). When enqueing the last of these jobantchine)/; must

have been in process because it was not chosen. Therefote; ¢S < prnae.

Now we suppose that it is true far batches and we show that it is also true
for o + 1. Letef be the end time:,,, of machine); after inserting thent™®
batch. Without loss of generality, we suppe$e’ < ... < e%*!, and we assume
that the induction hypothesis is falsified at step- 1, i.e.,e®™ — et > priga.
Sinceett — et > p,... and since no job is larger thar,,., it means that the
penultimate job of machin@/,, finishes later than the last job of maching.
Therefore, the penultimate and last jobs of machifig must require the same
resource, hence belong to a different batch.

It follows that only one job of batch + 1 is on machineV,,. Hencee?™ —

Pmaz < €%. Therefore, since by induction hypothesis,, — €., < Pmaz, the

20

following inequalities hold:

VI<i<m, e >en™ = 2pman (1)

m

Moreover, since a single job of bateh+ 1 is allocated to machiné/,,,, the
s — 1 other jobs must be distributed amongst machihgdo M,,,_;.

If | <=L] jobs or more have been allocated to machidg we havee{™" >
e + | ==]pmin. By applying inequality (1), we havef*! > e — 2p,q, +
| ==L | prin, henceef™ > et — p..., which would contradict the induction
hypothesis. Therefore, at mop&%llj — 1 jobs have been allocated to machine
M. In other words, among the jobs of the batch, one has been assigned to
machinem and at mos{ == | — 1 to machine)/;, so there are — | =] jobs
to distribute over then — 2 other machines. It follows that at least one machine
will be allocated strictly more that\;;_llj jobs, because the following relation is

a tautology:

s— 2] > 12 (m = 2)
o s> 2L (m—1)

= s>s—1

Now, let M/; be the machine that was allocated at Ie{aﬁ%j +1ljobs(l <j <
m). Consider the schedule when adding thé=. | + 1)*" job of batcha + 1 on
machine)/;. Since this is not the first job of the batch to be allocated azimmne

M;, it cannot require the same resource as the previous oneefdhe machine

M, must finish later than the start of this=== | 4 1)* job on machine\/;. In

other words, we have!*! > e + | ==L |pnin. By applying inequality (1) as

m—1

above, we have{™ > ¢t —p ... Therefore, the assumption that the induction

hypothesis does not lift to + 1 is contradicted.

21

Now, by Lemma 2 and the induction above, we have that the sddeeturned
by ENQUEUEBATCH is dense and such that.. — e.in < Pmas- We can therefore
apply Lemma 1 (withr = e,,,,.) and we have:

1
o< o* + (1 - _)pmax (2)
m

O

Corollary 3. If pree < | ==L |pmin thenENQUEUEBATCH approximates the op-

m—1

timal schedule with a ratid + *-*.

PROOF If the makespan of the schedule produced bhyQHEUEBATCH is not
optimal, then we can write from Theorem 4 and frénx mo*:

1
o< o + (1 - _)pma:p (3)
m

Moreover, we have: > p,.;, hence| ==L |L > p_ . thatis|2=L|me >
Dmaz @NM therefor({;ff—;;za* > pmaz- We inject this into inequality (3) to obtain:

o <o+ % = (1+ =1)o*, which concludes our proof. O

If the ratiop = ’;z—z is strictly greater tharh;b;_llj then the gap between the
makespan of a schedule returned by Algorithm 3 and the optirakespan cannot

be bounded by a function ¢f,... We show that however small the gap between

the ratio;% and Lf;llJ is, there exist instances for which this gap is arbitrarily
large. Given an instancg, that is, a pair(m, s) and a sequence of batches of
jobs, letor ando’ denote, respectively, the makespan of a schedule retugned b

Algorithm 3 and the optimal makespan.

Theorem 5. Ve, v > 0 and for anym > 1, there exists an instancg such that

bumez < | 521 | 4 candoz > of + 7.

Pmin

22

VP 5 2 1 O I O T O
v (TR TR I I I LI DI T T

vs R TR T I T T I T T A T T T

vi [L e L e L T]
v [T A A T I LI DI T T TL
v CETE R E I I T B T R I T R I T

Figure 8: lllustration of the proof of Theorem 5, with = 3,¢ = % andy =

4. There ares batches ob jobs with unit processing time, ther2 batches in
which the job requiring resourcg, is of length2.5. The schedule returned by
Algorithm 3 (top) has a makespan 41§, whereas the optimal schedule (bottom)

has a makespan a6.

Proof. Letz be a integer such thatm — 1) > v, and letk = [1]. We build an
example (see Figure 8) withn — 1 resources an@l + k)xm batches ofm — 1
jobs.

In the firstzm batches, all jobs have a processing tim®©n each of thé&xm
subsequent batches, the jobs of the resoukges. . , R,,, 1 also have processing
time 1, but the job requiring resourde, has processing time+ %

After inserting the firstzm batches, the schedule is dense by Lemma 2. More-
over, since all processing times are equal and simckvideszm, the completion
time on every machine is exactly2m — 1). Now, in the lasttxm batches, the

sum of the processing times of the jobs requiritgs kzm(2++). Therefore, the

23

schedule returned by Algorithm 3 has a total makespan ohatiem —xz+2kxm.
However, we can build an optimal schedule as follows: on ahimac\/, we
put only the jobs requiring the resourég. The makespan on this machine will
thus berm-+kzm(2+1) = 2zm+2kzm. Then, on then—1 remaining machines,
we schedule them(2m—2)+kxm(2m—2) remaining jobs. Since they all have a
processing time of, it is easy to see that they can be scheduled within a makespan
of 2xm + 2kxm, which is therefore the overall optimal makespén
We can verify that we indeed have— ¢* = (3xm — x + 2kzm) — (2om +

2kxm) = x(m —1) > 7. O

In our application, there are 3 download channets £ 3) and 5 memory
banks ¢ = 5). It follows that Algorithm 3 is al + %-approximation if no file is
more than twice larger than any other. Unfortunately, tbisdition is not guaran-
teed to hold in our application. Indeed, the hypothesis ofrmlustrial partner was
a maximum ratio o& between minimum and maximum image sizes. However, if
the compression rates have a normal distribution, the pdroeeENQUEUEBATCH
should often be efficient. Indeed if the standard deviatinofig or less, we can
expect that most of the images will have a size in the rdag€’], which satisfies

the condition of Theorem 3.

5. Conclusion

We have introduced a heuristic insertion algorithm for parenachine schedul-
ing problems with additional unit resources which iRa- m%q)-approximation.
Second, we have shown that if the maximum processing e and minimum
processing time,,;, of a job are such that,,.. < pp...» for a given value op,

then the approximation factor tends towarathen the size of the problem grows.

24

Algorithm Condition Absolute properties Approx. ratios

L 1 1
ENQUEUE none o < 24 (1—,;) maxp L(R) 2— =
2
m—+1
MAXLOAD none o< Lt(1-L)pez 0ro =o* | - Pmes el
Pmin T
max —1 L 1 s—1
ENQUEUEBATCH | Bmez < | 222 | | ¢ < 2+ (1— -)Pmas OT 0 = 07 1+ =

Table 1: Summary of the results obtained (note that for tkaltg given in the

“absolute properties” column, we always han%eg o*).

Next, we have shown that a slightly different heuristic niegtd to proceed
along a predefined batch order i$2— --)-approximation. Moreover, if the ratio

between maximum and minimum processing timis bounded by =L |, then

m—1

the approximation factor becom%%. All the results obtained are summarized

in Table 1. They are important in a planning application fos@rvation satellites.

Acknowledgments

The motivation for this work originates from a study suppdrthrough a
grant from CNES and Astrium (contra¢500166027 “Planification Flexible”).
We would especially like to thank Jean Jaubert (CNES), PBlarc-Paques (As-

trium) and Thierry Desmousceaux (Astrium).

References

Mohamed Bendraouche and Mourad Boudhar. Scheduling jobseoti¢dl ma-
chines with agreement grap@omputers & Operations Resear@39(2):382 —
390, 2012.

25

Jacek Blazewicz, Jan Karel Lenstra, and Alexander H.G. RniKam. Schedul-
ing subject to resource constraints: classification andpbexity. Discrete Ap-
plied Mathematicsb:11-24, 1983.

Emrah B. Edis, Ceyda Oguz, and Irem Ozkarahan. Parallel masieimeduling
with additional resources: Notation, classification, medad solution meth-

ods. European Journal of Operational Reseay@30:449-463, 2013.

Guy Even, Magas M. Halldbrsson, Lotem Kaplan, and Dana Ron. Scheduling
with conflicts: online and offline algorithmsJournal of Scheduling12(2):
199-224, 2009.

Michael R. Garey and David S. Johnson. “Strong” NP-CompleteriResults:
Motivation, Examples and Implications. ACM 25(3):499-508, 1978.

Alexander Grigoriev and Marc Uetz. Scheduling jobs withainesource tradeoff

via nonlinear programmingDiscrete Optimization6(4):414—-419, 2009.

Hans Kellerer and Vitaly A. Strusevich. Scheduling probdeior parallel dedi-
cated machines under multiple resource constrabitscrete Appl. Math.133
(1-3):45-68, November 2003.

Cédric Pralet, @rard Verfaillie, Adrien Maillard, Emmanuel Hebrard, Nias
Jozefowiez, Marie-J@&Huguet, Thierry Desmousceaux, Pierre Blanc-Paques,
and Jean Jaubert. Satellite Data Download Management witkrthinty about
the Generated Volumes. IGAPS (application track)2014.

26

