Graph Aggregation Based Image Modeling and Indexing for Video Annotation

Najib Ben Aoun Haytham Elghazel Mohand-Said Hacid 1 Chokri Ben-Amar
1 BD - Base de Données
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : With the rapid growth of video multimedia databases and the lack of textual descriptions for many of them, video annotation became a highly desired task. Conventional systems try to annotate a video query by simply finding its most similar videos in the database. Although the video annotation problem has been tackled in the last decade, no attention has been paid to the problem of assembling video keyframes in a sensed way to provide an answer of the given video query when no single candidate video turns out to be similar to the query. In this paper, we introduce a graph based image modeling and indexing system for video annotation. Our system is able to improve the video annotation task by assembling a set of graphs representing different keyframes of different videos, to compose the video query. The experimental results demonstrate the effectiveness of our system to annotate videos that are not possibly annotated by classical approaches.
Document type :
Conference papers
Complete list of metadatas
Contributor : Équipe Gestionnaire Des Publications Si Liris <>
Submitted on : Thursday, August 18, 2016 - 7:32:08 PM
Last modification on : Tuesday, February 26, 2019 - 11:49:41 AM

Links full text



Najib Ben Aoun, Haytham Elghazel, Mohand-Said Hacid, Chokri Ben-Amar. Graph Aggregation Based Image Modeling and Indexing for Video Annotation. 14th International Conference on Computer Analysis of Images and Patterns (CAIP 2011), Aug 2011, Seville, Spain. pp.324-331, ⟨10.1007/978-3-642-23678-5_38⟩. ⟨hal-01354545⟩



Record views