
HAL Id: hal-01354447
https://hal.science/hal-01354447

Submitted on 24 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CP Models for Maximum Common Subgraph Problems
Samba Ndojh Ndiaye, Christine Solnon

To cite this version:
Samba Ndojh Ndiaye, Christine Solnon. CP Models for Maximum Common Subgraph Problems.
17th International Conference on Principles and Practice of Constraint Programming (CP), Sep 2011,
Perugia, Italy. pp.637-644, �10.1007/978-3-642-23786-7_48�. �hal-01354447�

https://hal.science/hal-01354447
https://hal.archives-ouvertes.fr

CP Models for Maximum Common Subgraph
Problems

Samba Ndojh Ndiaye and Christine Solnon

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

Abstract. The distance between two graphs is usually defined by means
of the size of a largest common subgraph. This common subgraph may be
an induced subgraph, obtained by removing nodes, or a partial subgraph,
obtained by removing arcs and nodes. In this paper, we introduce two
soft CSPs which model these two maximum common subgraph problems
in a unified framework. We also introduce and compare different CP
models, corresponding to different levels of constraint propagation.

1 Introduction

Graphs are used in many applications to represent structured objects such as,
for example, molecules, images, or biological networks. In many of these appli-
cations, it is necessary to measure the distance between two graphs, and this
problem often turns into finding a largest subgraph which is common to both
graphs [1]. More precisely, we may either look for a maximum common induced
subgraph (which has as many nodes as possible), or a maximum common partial
subgraph (which has as many arcs as possible). Both problems are NP-hard in
the general case [2], and have been widely studied, in particular in bioinformatic
and chemoinformatic applications [3, 4].

In this paper, we study how to solve these problems with CP. In Section 2, we
recall definitions and we describe existing approaches. In Section 3, we introduce
two soft CSPs which model these problems in a unified framework. In Section 4,
we introduce different CP models, corresponding to different levels of constraint
propagation. In Section 5, we experimentally compare these different models.

2 Background

2.1 Definitions

A graph G is composed of a finite set NG of nodes and a set AG ⊆ NG × NG
of arcs. We implicitly consider directed graphs, such that each arc is a directed
couple of nodes. Results introduced in this paper may be generalized to non
directed graphs in a straightforward way, by associating two directed arcs (u, v)
and (v, u) with every non directed edge linking u and v.

Let G and G′ be two graphs. G is isomorphic to G′ if there exists a bijective
function f : NG → NG′ which preserves arcs, i.e., ∀(u, v) ∈ NG × NG, (u, v) ∈

MCPS(G,G’)

a

b

c

d

e

f

b d d

c ca

f

3 4

2

5

1

b3 4

2

f5

MCIS(G,G’)G’G

1 2

3 4

5

Fig. 1. Example of two graphs G and G′ and their MCIS and MCPS.

AG ⇔ (f(u), f(v)) ∈ AG′ . An induced subgraph is obtained by removing nodes,
i.e., G′ is an induced subgraph of G if NG′ ⊆ NG and AG′ = AG ∩NG′ ×NG′ .
A partial subgraph is obtained by removing nodes and arcs, i.e., G′ is a partial
subgraph of G if NG′ ⊆ NG and AG′ ⊆ AG ∩NG′ ×NG′ .

We denote G↓S the subgraph obtained by keeping a subset S of components
of G: If S is a subset of nodes, then G↓S is the induced subgraph obtained by
keeping these nodes (i.e., NG↓S = S and NG↓S = AG ∩ S × S); if S is a subset
of arcs, then G↓S is the partial subgraph obtained by keeping these arcs (i.e.,
NG↓S = {u ∈ NG | ∃v ∈ NG, (u, v) ∈ S ∨ (v, u) ∈ S} and AG↓S = S).

A common subgraph is a graph which is isomorphic to subgraphs of G and G′.
The similarity of two graphs is usually defined by means of the size of a common
subgraph [1]: the larger the subgraph, the more similar the graphs. The size of a
subgraph is defined differently whether we consider induced or partial subgraphs:
A Maximum Common Partial Subgraph (MCPS) is a common partial subgraph
which has a maximum number of arcs, whereas a Maximum Common Induced
Subgraph (MCIS) is a common induced subgraph which has a maximum number
of nodes. Fig. 1 displays two graphs and an example of MCPS and MCIS.

2.2 Existing complete approaches for solving MCIS and MCPS

Most complete approaches are based on a reformulation of the problem into
a maximum clique problem in a compatibility graph (whose nodes correspond
to couples of nodes that may be matched and edges correspond to pairs of
compatible nodes) [5–7]. McGregor [8] proposes a different approach based on
Branch & Bound: Each node of the search tree corresponds to the matching of
two components, and a bounding function evaluates the number of components
that can still be matched so that the current branch is pruned as soon as this
bound becomes lower than the size of the largest known common subgraph.

Conte et al [9] compare these 2 approaches within a same programming frame-
work on a large database of graphs. They show that no approach is outperforming
the other: The best performing approach varies when changing graph features.

Vismara and Valery [10] show how to model and solve MCIS and MCPS with
constraint programming. They consider particular cases of these two problems,
where the subgraph must be connected, and they introduce a global connectiv-
ity constraint for this purpose. However, they ensure that node matchings are
injective by using a set of binary difference constraints. They compare CP with
a clique-based approach, and show that CP obtains better results.

3 Modeling MCIS and MCPS problems as soft CSPs

In this section, we introduce two soft CSPs which respectively model MCIS
and MCPS problems for two graphs G and G′. These two models mainly differ
with respect to their variables: For MCIS, variables are associated with nodes
of G, whereas for MCPS, variables are associated with arcs. In both cases, the
value assigned to the variable associated with a component (node or arc) of G
corresponds to its matched component in G′. As some components may not be
matched, we introduce a joker value ⊥ which denotes the fact that a component
is not matched. Hence, for MCIS, the domain of every variable xu associated
with a node u ∈ NG is D(xu) = NG′ ∪ {⊥} whereas, for MCPS, the domain of
every variable xuv associated with an arc (u, v) ∈ AG is D(xuv) = AG′ ∪ {⊥}.

In both cases, there are two different kinds of constraints. A first set of binary
constraints ensures that neighborhood relations defined by arcs are preserved.
For MCIS, these binary constraints ensure that adjacency relations between
matched nodes are preserved: Given two variables xu and xv respectively asso-
ciated with nodes u and v of G, we define

Carc(xu, xv) ≡ (xu = ⊥) ∨ (xv = ⊥) ∨ ((u, v) ∈ AG ⇔ (xu, xv) ∈ AG′)

For MCPS, these binary constraints ensure that incidence relationships between
matched arcs are preserved: Given two variables xuv and xwy respectively asso-
ciated with arcs (u, v) and (w, y) of G, we define

Carc(xuv, xwy) ≡ (xuv = ⊥) ∨ (xwy = ⊥) ∨ (R((u, v), (w, y), xuv, xwy))

whereR is a predicate which checks that (u, v) and (w, y) have the same incidence
relationships as the arcs of G′ assigned to xuv and xwy, i.e.,
R((u, v), (w, y), (u′, v′), (w′, y′)) ≡ (u = v ⇔ u′ = v′)∧ (u = w ⇔ u′ = w′)∧ (u =
y ⇔ u′ = y′) ∧ (v = w ⇔ v′ = w′) ∧ (v = y ⇔ v′ = y′) ∧ (w = y ⇔ w′ = y′).

Finally, we have to express that the matching must be injective (as two differ-
ent components of G must be matched to two different components of G′). This
kind of constraint could be modeled with a global allDiffExcept⊥(X) constraint
which enforces all variables in X to take distinct values, except those variables
that are assigned to a joker ⊥ value [11]. To find a maximum common subgraph,
we search for a partial injective matching which matches as many components
as possible, i.e., we have to minimize the number of variables assigned to ⊥.
This could be achieved by adding an atmost(b − 1, X,⊥) constraint each time
a feasible solution σ is found, where b is the number of variables assigned to
⊥ in σ. However, this model achieves a weak filtering because it separates the
evaluation of the cost function from the allDiff constraint.

Stronger filterings may be achieved by using optimization constraints, which
relate constraints with cost variables to be optimized, as proposed in [12]. In
particular, the soft allDiff constraint [13] relates a set X of variables to an addi-
tional cost variable which is constrained to be equal to the number of variables
of X that should change their value in order to satisfy the allDiff(X) constraint,
and which must be minimized (we consider variable-based violation costs).

To find an injective partial matching which minimizes the number of non
matched components, we introduce an additional variable x⊥ whose domain is
D(x⊥) = {⊥} and we post a soft allDiff(X∪{x⊥}, cost) constraint. Note that x⊥
is always assigned to ⊥: It ensures that all other variables are assigned to values
different from ⊥ whenever this is possible (e.g., when G and G′ are isomorphic).

Let us now formally define the two soft CSPs modeling MCIS and MCPS.
For the MCIS, we define the soft CSP:

– Variables: X = {xu | u ∈ NG} ∪ {x⊥}
– Domains: D(x⊥) = {⊥} and ∀u ∈ NG, D(xu) = NG′ ∪ {⊥}
– Hard constraints: ∀{u, v} ⊆ NG, Carc(xu, xv)
– Soft constraint: allDiff (X, cost)

For the MCPS, we define the soft CSP :

– Variables: X = {xuv | (u, v) ∈ AG} ∪ {x⊥}
– Domains: D(x⊥) = {⊥} and ∀(u, v) ∈ AG, D(xuv) = AG′ ∪ {⊥}
– Hard constraints: ∀{(u, v), (w, y)} ⊆ AG, Carc(xuv, xwy)
– Soft constraint: allDiff (X, cost)

Computing Maximum Common Subgraphs from soft CSP solutions. A solution
is an assignment σ of the variables of X which satisfies all hard constraints, and
which minimizes the violation cost of the soft constraint so that σ(cost) is equal
to this violation cost. Let σ(X)\⊥ be the set of values different from ⊥ which are
assigned to variables of X. One can easily check that, for MCIS (resp. MCPS),
G′

↓σ(X)\⊥ is isomorphic to an induced (resp. partial) subgraph of G.
Note that we cannot define the common induced subgraph by simply keeping

every node of G whose associated variable is assigned to a value different from
⊥. Indeed, when several nodes of G have the same neighborhood, it may happen
that the variables associated with these nodes are assigned to a same value
(different from ⊥). Let us consider for example the graphs of Fig. 1. For MCIS,
the assignment σ = {x⊥ = ⊥, xa = ⊥, xb = 3, xd = 4, xc = 2, xf = 5, xe = 4}
is an optimal solution. In this case, σ(X) \ ⊥ = {2, 3, 4, 5} and G′

↓σ(X)\⊥ is the

subgraph obtained by removing node 1 from G′. In this solution, both xd and
xe are assigned to 4 because d and e have the same neighborhood.

The size of the common subgraph G′
↓σ(X)\⊥ is equal to c−σ(cost) where c is

the number of components of G (c = |NG| for MCIS and c = |AG| for MCPS),
and σ(cost) is the value of the cost variable of the soft allDiff constraint. As
the value of cost is minimal, the size of G′

↓σ(X)\⊥ is maximal. On our previous

example, we have σ(cost) = 2 and |N | = 6 so that G′
↓σ(X)\⊥ has 4 nodes.

Extension to Labeled Graphs. In labeled graphs, nodes and edges are associated
with labels. In this case, the common subgraph must match components the
labels of which are equal. This kind of constraints is handled in a straightforward
way. For MCIS, we restrict the domain of every variable xu to nodes which
have the same label as u, and we ensure that arc labels are preserved in Carc
constraints. For MCPS, we restrict the domain of every variable xuv to arcs
which have the same label as (u, v) and whose endpoints have the same labels.

4 Constraint propagation

The two soft CSP models introduced in the previous section are very similar:
they both combine a set of binary hard constraints with a soft allDiff constraint.
We consider different levels of propagation of these constraints.

Propagation of the soft allDiff constraint. We consider 3 levels of propagation.
The strongest propagation, denoted GAC(allDiff), ensures the generalized arc
consistency as proposed in [13]. More precisely, we search for a maximum match-
ing in the bipartite graph Gb = (X,V,Eb) where X is the set of variables, V is
the set of values in variable domains, and Eb is the set of edges (x, v) ∈ X × V
such that v ∈ D(x). A matching of Gb is a subset of edges of Eb such that no two
edges share an endpoint. The cardinality of a largest matching of Gb gives the
maximum number of variables that may be assigned to different values. There-
fore the number of nodes which are not matched provides an upper bound for
cost. When this number is larger than the lower bound of cost, we cannot filter
variable domains. However, as soon as it is as large as the lower bound of cost,
we can filter domains by searching for every edge (x, v) which does not belong
to any maximum matching in Gb. As proposed in [13–15], we use the algorithm
of [16] to compute a maximum matching, and we exploit the fact that this al-
gorithm is incremental: at each node, we update the last computed maximum
matching by removing edges corresponding to removed values, and we complete
this matching until it becomes maximum.

We have considered a weaker filtering, denoted bound(cost)+FC(diff). This
filtering does not ensure the generalized arc consistency, but simply checks if
there exists a matching of Gb such that the number of non matched nodes is
greater than or equal to the lower bound of cost. This is done in an incremental
and lazy way: at each node, once we have updated the last computed matching,
we try to extend it only if its number of non matched nodes is strictly lower than
the lower bound of cost. We combine this with a simple forward-checking of the
binary decomposition of the allDiff constraint which simply removes a value v
such that v 6= ⊥ whenever v has been assigned to a variable.

The weakest propagation of the soft allDiff constraint, denoted FC(diff), is
a forward-checking of its binary decomposition which simply removes a value v
such that v 6= ⊥ whenever v has been assigned to a variable. The upper bound
of the cost variable is updated each time a variable is assigned to ⊥.

Propagation of the binary hard constraints Carc. When the domain of the cost
variable has not been reduced to a singleton by the propagation of the soft
allDiff constraint, the joker value ⊥ belongs to the domain of every non assigned
variable. In this case, a forward-checking of Carc constraints actually ensures
arc consistency. Indeed, for every pair (xi, xj) of non assigned variables, and for
every value v ∈ D(xi), the value ⊥ belongs to D(xj) and is a support for v as
Carc(xi, xj) is satisfied as soon as xi or xj is assigned to ⊥.

When the domain of cost is reduced to a singleton, ⊥ is removed from the
domain of all non assigned variable. In this case, maintaining arc consistency

(MAC) may remove more values than a simple forward-checking (FC). Hence, we
have considered two different levels of propagation: FC(Carc) performs forward
checking, whereas MAC(Carc) maintains arc consistency (however, as FC ensures
AC while ⊥ has not been removed from domains, we still perform FC until ⊥ is
removed, and maintain AC only when ⊥ has been removed).

5 Experimental results

Compared models. We compare the five following models:

– FC = FC(Carc)+FC(diff);
– FC+bound = FC(Carc)+bound(cost)+FC(diff);
– FC+GAC = FC(Carc)+GAC(allDiff);
– MAC+bound = MAC(Carc)+bound(cost)+FC(diff);
– MAC+GAC = MAC(Carc)+GAC(allDiff).

The FC model basically corresponds to the Branch & Bound approach proposed
by McGregor in [8], and to the CP model proposed in [10] (except that, in [10], a
connectivity constraint is added in order to search for connected subgraphs). All
models have been implemented in C. We have considered the minDom variable
ordering heuristic, and values are assigned by increasing order of value.

Test Suites. We consider a synthetically generated database described in [9].
For each graph, there are 3 different labelings such that the number of different
labels is equal to 33%, 50% or 75% of the number of nodes.

We report results obtained on 3 test suites of increasing hardness. Test suite
1 considers MCIS on directed and labeled graphs such that the number of labels
is equal to 33% of the number of nodes (when increasing this ratio, the problem
becomes easier). Test suite 2 considers MCIS on non directed and non labeled
graphs. Test suite 3 considers MCPS on directed and non labeled graphs. We
have adapted the size of the graphs with respect to the difficulty of these test
suites so that they may be solved within a reasonable CPU time limit: in test
suite 1 (resp. 2 and 3), we consider graphs with 40 (resp. 30 and 20) nodes.
For each test suite, we report results obtained on different classes of graphs:
randomly connected graphs with connectivity η ∈ {0.05, 0.2} (r005 and r02); 2D,
3D, and 4D regular meshes (m2D, m3D, m4D); 2D, 3D, and 4D irregular meshes
with ρ = 0.6 (m2Dr, m3Dr, and m4Dr); regular bounded valence graphs with
V ∈ {3, 9} (b03 and b09) and irregular bounded valence graphs with V ∈ {3, 9}
(b03m and b09m). Each class contains 150 pairs of graphs corresponding to the
first 30 instances for each of the 5 possible sizes of the MCIS (i.e., 10%, 30%,
50%, 70% and 90% of the number of nodes of the original graphs).

Discussion. Table 1 compares the 5 CP models on the 3 test suites. It shows us
that the FC model (which basically corresponds to approaches proposed in [8]
and [10]) is clearly outperformed by all other models, which perform stronger
filterings. Indeed, FC achieves a kind of passive bounding on the cost variable, by

FC FC+bound FC+GAC MAC+bound MAC+GAC
%S time #Kn %S time #Kn %S time #Kn %S time #Kn %S time #Kn

T
es

t
S

u
it

e
1

b03 100 105.79 56074 100 20.81 6066 100 24.83 4831 100 13.43 3166 100 13.86 1502
b03m 100 143.74 80297 100 26.17 7754 100 28.86 5651 100 16.91 4021 100 15.06 1742
b09 100 0.11 50 100 0.07 19 100 0.08 17 100 0.06 15 100 0.08 10
b09m 100 0.12 54 100 0.08 22 100 0.09 20 100 0.07 17 100 0.10 11
m2D 100 98.62 53960 100 18.05 5200 100 20.19 3664 100 12.25 2876 100 10.94 1220
m2Dr 100 8.06 3990 100 3.14 864 100 3.65 724 100 2.21 523 100 2.38 291
m3D 100 15.05 7532 100 5.55 1536 100 5.82 1157 100 3.69 865 100 4.86 439
m3Dr 100 3.90 1913 100 1.62 419 100 1.82 359 100 1.14 273 100 1.13 154
m4D 100 97.33 50940 100 12.09 3147 100 12.94 2496 100 8.17 1832 100 9.28 835
m4Dr 100 5.85 2745 100 1.87 471 100 2.04 387 100 1.38 325 100 1.50 169
r005 100 19.47 10540 100 4.72 1295 100 5.68 1040 100 3.17 741 100 3.57 393
r02 100 0.02 10 100 0.02 6 100 0.02 5 100 0.01 4 100 0.02 3

T
es

t
S

u
it

e
2

b03 72 756.25 312080 100 68.87 10256 100 77.93 7728 97 212.41 3679 98 231.77 2301
b03m 57 1081.52 441952 100 101.77 14749 100 121.99 12043 97 343.77 6017 97 397.14 4010
b09 100 147.80 62050 100 35.09 7709 100 40.27 6699 100 41.49 6068 100 44.69 3531
b09m 99 342.89 149613 100 86.07 20054 100 94.98 16364 100 101.07 15347 100 103.71 8439
m2D 61 985.35 394241 100 103.17 16003 100 131.48 13532 96 365.66 7582 95 411.89 4491
m2Dr 62 998.30 383680 100 171.70 29757 100 201.49 24344 99 428.35 17228 98 482.21 9128
m3D 76 737.81 277429 100 81.78 13206 100 101.71 11570 100 240.58 7538 98 284.13 4331
m3Dr 83 681.18 266386 100 115.49 21872 100 156.56 20579 100 254.37 13715 100 316.93 8262
m4D 46 1276.08 498405 100 120.71 17386 100 129.53 13257 100 360.14 8699 96 423.83 5704
m4Dr 50 1448.08 549375 100 165.51 27849 100 195.86 23127 100 421.02 16238 100 467.62 8966
r005 50 1236.75 515935 99 142.04 22122 98 175.62 17625 93 443.26 8601 92 494.76 5099
r02 100 474.12 222831 100 246.16 67044 100 283.70 58036 100 238.91 53792 100 242.84 32445

T
es

t
S

u
it

e
3

b03 100 34.44 9364 100 8.67 1178 100 10.93 1163 100 7.13 582 100 8.37 392
b03m 100 47.41 13809 100 9.62 1350 100 10.41 1172 100 7.33 700 100 7.04 386
b09 0 - - 0 - - 0 - - 0 - - 0 - -
b09m 0 - - 0 - - 0 - - 0 - - 0 - -
m2D 100 214.00 59029 100 32.17 3933 100 33.69 3324 100 26.16 2159 100 25.83 1165
m2Dr 0 - - 0 - - 0 - - 0 - - 0 - -
m3D 90 1122.39 263519 100 206.22 23399 100 282.27 24543 100 187.90 14170 100 226.57 9000
m3Dr 0 - - 0 - - 0 - - 0 - - 0 - -
r005 100 11.28 4333 100 2.12 354 100 2.56 358 100 1.39 144 100 1.56 98
r02 0 - - 0 - - 0 - - 0 - - 0 - -

Table 1. Comparison of the 5 CP models on the 3 test suites. Each line successively
displays the name of the class and, for each model, the percentage of solved instances
within a CPU time limit of 30mn (%S), the CPU time (time) in seconds on a 2.26
GHz Intel Xeon E5520 and the number of thousands of nodes (#Kn) in the search
tree. CPU time and number of nodes are average results (if an instance is not solved
within 30mn, we consider in the average results the CPU time and the number of nodes
reached when the search was stopped).

simply counting the number of variables that must be assigned to ⊥. All other
models achieve an active bounding by checking that the number of variables that
can be assigned to different values is large enough. The lazy bounding introduced
in Section 4 drastically reduces the search space and CPU times of FC+bound are
always significantly lower than those of FC. GAC(allDiff) reduces even more the
search space but the difference is not so obvious so that CPU times of FC+GAC
are always greater than those of FC+bound. This tendency is observed on the
3 test suites.

Replacing FC(Carc) with MAC(Carc) also significantly reduces the number
of explored nodes but this stronger filtering has a higher time complexity so
that it does not always reduce CPU times: it improves performances on Test
suites 1 and 3 but deteriorates them on Test Suite 2. Hence, the best performing
approaches are MAC+bound and MAC+GAC on Test suites 1 and 3 whereas
the best performing approach is FC+bound on Test suite 2. These results may
be explained by the fact that constraints of instances of Test suites 1 and 3 (such
that graphs are directed or labeled) are tighter than those of Test suite 2.

Further works. Further work will concern the integration of symmetry breaking
techniques and more advanced propagation techniques such as those proposed in
[17–19] for graph and subgraph isomorphism. We shall also study the integration
of ordering heuristics. Indeed, when solving an optimization problem, ordering
heuristics aim at guiding the search towards the best assignments, thus allowing
the bounding functions to prune more branches.

Acknowledgement. This work was done in the context of project Sattic (Anr
grant Blanc07-1 184534).

References

1. H. Bunke and K. Sharer. A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters, 19(3):255–259, 1998.

2. M. R. Garey and D. S. Johnson. Computer and intractability. In Freeman, 1979.
3. J.-C. Régin. Développement d’Outils Algorithmiques pour l’Intelligence Artificielle.

Application à la Chimie Organique. PhD thesis, Université Montpellier II, 1995.
4. J. W. Raymond and P. Willett. Maximum common subgraph isomorphism algo-

rithms for the matching of chemical structures. Journal of computeraided molecular
design, 16(7):521–533, 2002.

5. E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph. SIAM
Journal on Computing, 15(4):1054–1068, 1986.

6. P. J. Durand, R. Pasari, J. W. Baker, and C. Tsai. An efficient algorithm for
similarity analysis of molecules. Internet Journal of Chemistry, 2, 1999.

7. J. W. Raymond, E. J. Gardiner, and P. Willett. Calculation of graph similarity
using maximum common edge subgraphs. The Computer Journal, 45(6), 2002.

8. J. J. McGregor. Backtrack search algorithms and the maximal common subgraph
problem. Software Practice and Experience, 12(1):23–34, 1982.

9. D. Conte, P. Foggia, and M. Vento. Challenging complexity of maximum common
subgraph detection algorithms: A performance analysis of three algorithms on a
wide database of graphs. Graph Algorithms and Applications, 11(1):99–143, 2007.

10. P. Vismara and B. Valery. Finding maximum common connected subgraphs using
clique detection or constraint satisfaction algorithms. Communications in Com-
puter and Information Science, 14(1):358–368, 2008.

11. N. Beldiceanu, M. Carlsson, S. Demassey, and Thierry Petit. Global constraint
catalog: Past, present and future. Constraints, 12(1):21–62, 2007.

12. F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In CP’99, 1999.
13. T. Petit, J.-C. Régin, and C. Bessière. Specific filtering algorithms for over-

constrained problems. In CP’01, LNCS 2239, pages 451–464. Springer, 2001.
14. J.-C. Régin. A filtering algorithm for constraints of difference in csps. In AAAI-94,

pages 362–367, 1994.
15. I. Gent, I. Miguel, and P. Nightingale. Generalised arc consistency for the alldiff

constraint: An empirical survey. Artificial Intelligence, 172(18):1973–2000, 2008.
16. J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.
17. S. Sorlin and C. Solnon. A parametric filtering algorithm for the graph isomorphism

problem. Constraints, 13(4):518–537, 2008.
18. S. Zampelli, Y. Deville, and C. Solnon. Solving subgraph isomorphism problems

with constraint programming. Constraints, 15(3):327–353, 2010.
19. C. Solnon. Alldifferent-based filtering for subgraph isomorphism. Artificial Intel-

ligence, 174(12-13):850–864, 2010.

