A mixture of gated experts optimized using simulated annealing for 3D face recognition

Abstract : A commonly accepted fact in the biometrics related domain is that fusing multiple classifiers to make decisions general-ly leads to improved classification performance. Meanwhile, the search for an optimal fusion scheme remains extraordi-narily complex because the cardinality of the space of poss-ible combination strategies is exponentially proportional to the number of competing classifiers. This paper proposes a mixture of gated experts for the application of 3D face rec-ognition using an ensemble of 24 different scores. The mix-ture of gated experts is optimized by a Simulated Annealing (SA) based algorithm, and it automatically selects and fuses the most relevant similarity measures. Experimental results of 3D face recognition on the FRGC v2.0 database demon-strate the performance and stability of the proposed method. Moreover, as a learning-based approach, it also has a good robustness to the variations of training database.
Type de document :
Communication dans un congrès
IEEE International Conference on Image Processing (ICIP), Sep 2011, Brussels, Belgium. IEEE, pp.3037-3040, 2011, <10.1109/ICIP.2011.6116304>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01354439
Contributeur : Équipe Gestionnaire Des Publications Si Liris <>
Soumis le : jeudi 18 août 2016 - 19:27:34
Dernière modification le : vendredi 19 août 2016 - 01:04:22

Identifiants

Collections

Citation

Wael Ben Soltana, Di Huang, Mohsen Ardabilian, Liming Chen, Chokri Ben Amar. A mixture of gated experts optimized using simulated annealing for 3D face recognition. IEEE International Conference on Image Processing (ICIP), Sep 2011, Brussels, Belgium. IEEE, pp.3037-3040, 2011, <10.1109/ICIP.2011.6116304>. <hal-01354439>

Partager

Métriques

Consultations de la notice

77