Skip to Main content Skip to Navigation
Journal articles

Joint Reversible Watermarking and Progressive Compression of 3D Meshes

Ho Lee 1 Cagatay Dikici 1 Guillaume Lavoué 1 Florent Dupont 1
1 M2DisCo - Geometry Processing and Constrained Optimization
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : A new reversible 3D mesh watermarking scheme is proposed in conjunction with progressive compression. Progressive 3D mesh compression permits a progressive refinement of the model from a coarse to a fine representation by using different levels of detail (LoDs). A reversible watermark is embedded into all refinement levels such that (1) the refinement levels are copyright protected, and (2) an authorized user is able to reconstruct the original 3D model after watermark extraction, hence reversible. The progressive compression considers a connectivity-driven algorithm to choose the vertices that are to be refined for each LoD. The proposed watermarking algorithm modifies the geometry information of these vertices based on histogram bin shifting technique. An authorized user can extract the watermark in each LoD and recover the original 3D mesh, while an unauthorized user which has access to the decompression algorithm can only reconstruct a highly distorted version of the 3D model. Experimental results show that the proposed method is robust to several attack scenarios while maintaining a good compression ratio.
Document type :
Journal articles
Complete list of metadata
Contributor : Équipe Gestionnaire Des Publications Si Liris Connect in order to contact the contributor
Submitted on : Thursday, August 18, 2016 - 7:25:23 PM
Last modification on : Friday, August 6, 2021 - 1:58:04 PM

Links full text



Ho Lee, Cagatay Dikici, Guillaume Lavoué, Florent Dupont. Joint Reversible Watermarking and Progressive Compression of 3D Meshes. The Visual Computer, Springer Verlag, 2011, 6-8, 27, pp.781-792. ⟨10.1007/s00371-011-0586-7⟩. ⟨hal-01354390⟩



Les métriques sont temporairement indisponibles