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Abstract—Local Binary Patterns (LBP) is a non-parametric 

descriptor whose aim is to efficiently summarize the local struc-
tures of images. In recent years, it has aroused increasing interest 
in many areas of image processing and computer vision, and has 
shown its effectiveness in a number of applications, in particular 
for facial image analysis, including tasks as diverse as face detec-
tion, face recognition, facial expression analysis, demographic 
classification, etc. This paper presents a comprehensive survey of 
LBP methodology including several more recent variations. As a 
typical application of the LBP approach, LBP-based facial image 
analysis is extensively reviewed, while its successful extensions in 
dealing with various tasks of facial image analysis are also hig-
hlighted. 
 

Index Terms—Local Binary Patterns (LBP), local features, face 
detection, face recognition, facial expression analysis. 

I. INTRODUCTION 
uring the last few years, Local Binary Patterns (LBP) [1] 
has aroused increasing interest in image processing and 

computer vision. As a non-parametric method, LBP summa-
rizes local structures of images efficiently by comparing each 
pixel with its neighboring pixels. The most important proper-
ties of LBP are its tolerance regarding monotonic illumination 
changes and its computational simplicity. LBP was originally 
proposed for texture analysis [2], and has proved a simple yet 
powerful approach to describe local structures. It has been 
extensively exploited in many applications, for instance, face 
image analysis [3]-[4], image and video retrieval [5]-[6], en-
vironment modeling [7]-[8], visual inspection [9]-[10], motion 
analysis [11]-[12], biomedical and aerial image analysis 
[13]-[14], remote sensing [15], so forth (see a comprehensive 
bibliography of LBP methodology online [16]). 

LBP-based facial image analysis has been one of the most 
popular and successful applications in recent years. Facial 
image analysis is an active research topic in computer vision, 
with a wide range of important applications, e.g., hu-
man-computer interaction, biometric identification, surveil-
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lance and security, and computer animation etc. LBP has been 
exploited for facial representation in different tasks containing 
face detection [4], [17]-[19], face recognition [20]-[26], facial 
expression analysis [27]-[31], demographic (gender, race, age, 
etc.) classification [32]-[33], and other related applications 
[34]-[35]. The development of LBP methodology can be well 
illustrated in facial image analysis, and most of its recent vari-
ations are proposed in this area. 

Some brief surveys on image analysis [36] or face analysis 
[37]-[39] using LBP were given, but all these works discussed 
limited papers of the literature, and many new related methods 
have appeared in more recent years. In this paper, we present a 
comprehensive survey of the LBP methodology, including its 
recent variations and LBP-based feature selection, as well as 
the application to facial image analysis. To the best of our 
knowledge, this paper is the first survey that extensively re-
views LBP methodology and its application to facial image 
analysis, with more than 100 related literatures reviewed. 

The remainder of this paper is organized as follows. The 
LBP methodology is introduced in Section II. Section III 
presents the recent variations of LBP. LBP-based feature se-
lection methods are discussed in section IV. Section V de-
scribes different facets of its applications on facial image 
analysis. Finally, Section VI concludes the paper. 

II. LOCAL BINARY PATTERNS 
The original LBP operator labels the pixels of an image with 

decimal numbers, called Local Binary Patterns or LBP codes, 
which encode the local structure around each pixel. It proceeds 
thus, as illustrated in Fig.1: Each pixel is compared with its 
eight neighbors in a 3x3 neighborhood by subtracting the 
center pixel value; The resulting strictly negative values are 
encoded with 0 and the others with 1; A binary number is ob-
tained by concatenating all these binary codes in a clockwise 
direction starting from the top-left one and its corresponding 
decimal value is used for labeling. The derived binary numbers 
are referred to as Local Binary Patterns or LBP codes. 
 

 
 

Fig. 1.  An example of the basic LBP operator. 
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One limitation of the basic LBP operator is that its small 3x3 
neighborhood cannot capture dominant features with large 
scale structures. To deal with the texture at different scales, the 
operator was later generalized to use neighborhoods of dif-
ferent sizes [1]. A local neighborhood is defined as a set of 
sampling points evenly spaced on a circle which is centered at 
the pixel to be labeled, and the sampling points that do not fall 
within the pixels are interpolated using bilinear interpolation, 
thus allowing for any radius and any number of sampling points 
in the neighborhood. Fig. 2 shows some examples of the ex-
tended LBP operator, where the notation (P, R) denotes a 
neighborhood of P sampling points on a circle of radius of R. 
 

 
 
Fig. 2.  Examples of the extended LBP operator [20]: the circular (8, 1), (16, 2), 
and (24, 3) neighborhoods. 
 

Formally, given a pixel at (xc, yc), the resulting LBP can be 
expressed in decimal form as: 
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where ic and iP are respectively gray-level values of the central 
pixel and P surrounding pixels in the circle neighborhood with 
a radius R, and function s(x) is defined as: 
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By the definition above, the basic LBP operator is invariant 
to monotonic gray-scale transformations preserving pixel in-
tensity order in the local neighborhoods. The histogram of LBP 
labels calculated over a region can be exploited as a texture 
descriptor.  

The operator LBP (P, R) produces 2p different output values, 
corresponding to 2p different binary patterns formed by P pix-
els in the neighborhood. If the image is rotated, these sur-
rounding pixels in each neighborhood will move correspon-
dingly along the perimeter of the circle, resulting in a different 
LBP value, except patterns with only 1s and 0s. In order to 
remove rotation effect, a rotation-invariant LBP is proposed in 
[1]: 

, ,min{ ( , ) | 0,1, ..., 1}ri
P R P RLBP ROR LBP i i P= = −

             
(3) 

where ROR(x, i) performs a circular bit-wise right shift on the 
P-bit number x i times. The LBPri 

(P, R) operator quantifies occur-
rence statistics of individual rotation invariant patterns cor-
responding to certain micro-features in the image; hence, the 
patterns can be considered as a feature detector [1]. However, 
in [40], it was shown that such a rotation-invariant LBP oper-
ator does not necessarily provide discriminative information, 
since the occurrence frequencies of the individual patterns 
incorporated in LBPri 

(P, R) vary greatly and the crude quantization 
of the angular spaces at 45° intervals. 

It has been shown that certain patterns contain more infor-
mation than others [1]. It is possible to use only a subset of 2p 

binary patterns to describe the texture of images. Ojala et al. 
named these patterns uniform patterns, denoted LBPU2 

(P, R). A 
local binary pattern is called uniform if it contains at most two 
bitwise transitions from 0 to 1 or vice versa when the corres-
ponding bit string is considered circular. For instance, 
00000000 (0 transitions) and 01110000 (2 transitions) are both 
uniform whereas 11001001 (4 transitions) and 01010011 (6 
transitions) are not. It is observed that the uniform patterns 
account for around 90% of all the patterns in a (8, 1) neigh-
borhood and around 70% in a (16, 2) neighborhood in texture 
images [1]. A similar experiment was conducted on the FERET 
database, and it was found that 90.6% of the patterns in a (8, 1) 
neighborhood and 85.2% in a (8, 2) neighborhood are uniform 
[20]. More recently, Shan and Gritti [41] verified validity of 
uniform patterns for representing faces from the viewpoint of 
machine learning. Specifically, they applied AdaBoost to select 
the discriminative patterns for facial expression recognition, 
and their experiments demonstrated that, using LBP (8, 2) oper-
ator, 91.1% of these selected patterns are uniform. Accumu-
lating the non-uniform patterns into a single bin yields an LBP 
operator with less than 2p labels. For example, the number of 
labels with the neighborhood of 8 pixels is 256 for the standard 
LBP but only 59 for LBPU2. 

It should be noted that, at about the same time that the 
original LBP operator was proposed, Zabih and Woodfill in-
troduced a Census Transform (CT) method [42] which is very 
similar to LBP. CT also maps the local neighborhood sur-
rounding a pixel onto a binary string, and the only difference 
between LBP and CT is the opposite order of bit string. Later, 
CT and its variations were exploited for facial image analysis 
[43]-[45]. 

The C/C++ and Matlab implementations of the LBP operator 
can be found online [46]. 

III. RECENT VARIATIONS OF LBP 
LBP methodology has been developed recently with plenty 

of variations for improved performance in different applica-
tions. These variations focus on different aspects of the original 
LBP operator: (1) improvement of its discriminative capability; 
(2) enhancement of its robustness; (3) selection of its neigh-
borhood; (4) extension to 3D data; (5) combination with other 
approaches. In this section, we review recent variations of LBP 
(See Table. 1 for the overview). 

A. Enhancing the discriminative capability 
The LBP operator defines a certain number of patterns for 

describing the local structures. To enhance their discriminative 
capability, more patterns or information could be encoded. In 
[17], Jin et al. modified the LBP operator to describe more local 
structure information under certain circumstances. Specifically, 
they proposed an Improved LBP (ILBP) which compares all 
the pixels (including the central pixel) with the mean intensity 
of all the pixels in the patch (as shown in Fig. 3). For instance, 
the LBP (8, 1) operator produces only 256 (28) in a 3x3 neigh-
borhood, while ILBP has 511 patterns (29-1, as all zeros and all 
ones are the same). Later, ILBP was extended to use the 
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neighborhoods of any size instead of the original 3x3 patch 
[47]. Almost at the same time, a similar strategy was introduced 
to extend CT to Modified CT [43], named Modified LBP in 

[48]. A Mean LBP is presented in [49], similar to ILBP, but 
without considering the  

Subsection Variations Properties Year & Reference 

A: Enhancing the discrimina-
tive ability 

Improved LBP (Mean LBP) Consider the effects of central pixels; present complete structure patterns. 2004 [17], 2005 [48] 
2008 [49] 

Hamming LBP Incorporate non-uniform patterns into uniform patterns 2007 [50] 

Extended LBP Discriminate the same local binary patterns; cause high dimensionality. 2007 [51, 52] 

Completed LBP Include both the sign and the magnitude information of the given local region 2010 [53] 

B: Improving the robustness 

Local Ternary Patterns Bring in new threshold; no longer strictly invariant to gray-level transformation. 2007 [22] 

Soft LBP Not invariant to monotonic grayscale changes; cause high computational complexity. 2007 [54] 

C: Choosing the neighbor-
hood 

Elongated LBP Extract the anisotropic information and lose anisotropic information; not invariant to rotation. 2007 [23] 

Multi-Block LBP Capture micro- and macro- structure information 2007 [18, 55] 

Three/Four Patch LBP Encode patch type of texture information 2008 [57] 

D: Extending to 3D 

3D LBP Extend LBP to 3D volume data 2007 [58], 2008 [59] 

Volume LBP (LBP-TOP) Describe dynamic texture; cause high dimensionality. 2007 [30, 60] 

E: Combining with other 
features 

LBP and Gabor Wavelet Combine advantages of Gabor and LBP; increase time cost and cause high dimensionality. 2005 [67, 70], 2006 [68] 
2007 [64, 65], 2008 [66, 71] 

LBP and SIFT Bring in the advantages of SIFT; reduce feature vector length 2006 [72], 2009 [73] 
2010 [76] 

LBP Histogram Fourier Obtain rotation invariance globally for the whole region 2009 [77] 

 
Table.1 List of recent LBP variations. 

 
central pixels. 
 

 
 

Fig. 3.  An example of ILBP operator [17]. 
 

In [50], Yang and Wang proposed Hamming LBP to im-
prove the discriminative ability of the original LBP. They rec-
lassified non-uniform patterns based on Hamming distance, 
instead of collecting them into a single bin as LBPu2 does. In the 
Hamming LBP, these non-uniform patterns are incorporated 
into existing uniform patterns by minimizing the Hamming 
distance between them. E.g., the non-uniform pattern 
(10001110)2 is converted into the uniform one (10001111)2 
since their Hamming distance is one. When several uniform 
patterns have the same Hamming distance with a non-uniform 
pattern, the one with the minimum Euclidian distance will be 
selected. 

The Extended LBP (ELBP) [51]-[52] is another approach to 

improve the discriminative capability of LBP. The ELBP op-
erator not only performs binary comparison between the central 
pixel and its neighbors, but also encodes their exact gray-value 
differences using some additional binary units. Specifically, the 
ELBP feature consists of several LBP codes at multiple layers 
which encode the gray-value difference (GD) between the 
central pixel and its neighboring pixels. As shown in Fig. 4, the 
first layer of ELBP is actually the original LBP code encoding 
the sign of GD. The following layers of ELBP then encode the 
absolute value of GD. Basically, each absolute GD value is first 
encoded in its binary representation, and then all the binary 
values at a given layer result in an additional local binary pat-
tern. For example, in Fig. 4, the first layer is the original LBP 
code that encodes the sign of GD, thus yielding a decimal 
number of 211 from its binary form (11010011)2. The absolute 
values of GD, i.e. 1, 5, 3, 2, 1, 2, 3, 0, are first encoded in their 
binary numbers: (001)2, (101)2, (011) 2, (010) 2 , …, etc. Using a 
same weight scheme of LBP on all the binary bits, its ELBP 
code of the corresponding layer can be generated, e.g., L2 is 
composed of (01000000)2 and its decimal value is 64; L3 is 
composed of (00110110)2 and its decimal value is 54; finally L4 
is composed of (11101010)2 and its decimal value is 234. As a 
result, when describing similar local textures, although the first 
layer LBP is not discriminative enough, the information en-
coded in the other additional layers can be utilized to distin-
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guish them. Its downside is that ELBP greatly increases feature 
dimensionality. 

More recently, Guo et al. proposed a Complete LBP (CLBP) 
[53], which, in our opinion, is quite similar with ELBP. CLBP 
also includes both the sign and the gray-value differences be-
tween a given central pixel and its neighbors in order to im-
prove the discriminative power of the original LBP operator. 
Unlike the binary bit coding strategy used by ELBP, CLBP 
compares the absolute value of GD with the given central pixel 
again to generate an LBP liked code. 

 
 

Fig. 4.  An example of the ELBP operator. 

B. Improving the robustness 
LBP is sensitive to noise since the operator thresholds ex-

actly at the value of central pixel. To address this problem, Tan 
and Triggs [22] extended the original LBP to a version with 
3-value codes, called Local Ternary Patterns (LTP). In LTP, 
indicator s(x) in (1) is replaced by: 

                   
( )

1
, , 0

1

n c

n c n c

n c

i i t
s i i t i i t

i i t

≥ +⎧
⎪= − <⎨
⎪− ≤ −⎩

                             

(4) 

where t is a user-specified threshold. The LTP codes are more 
resistant to noise, but no longer strictly invariant to gray-level 
transformations. A coding scheme is used to split each ternary 
pattern into two parts: the positive one and the negative one, as 
illustrated in Fig. 5. One problem of LTP is that threshold t 
needs to be set, which is not simple. 
 

 
 

Fig. 5.  An example of the LTP operator [22]. 
 

The Soft LBP (SLBP) was introduced in [54], which em-

ploys two fuzzy membership functions instead of (2) for thre-
sholding: 

1,

0

( ) 0.5 0.5
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x d
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Parameter d controls the amount of fuzzification that the fuzzy 
function performs. When the local neighborhood consists of P 
sampling points, the histogram with a uniform pattern operator 
has bins numbered 0, 1, …, 2P-1. The contribution of a single 
pixel (xc, yc) to bin h of the histogram is: 

1

1, 0,
0

( , , ) [ ( ) ( ) (1 ( )) ( )]
P

c c p d p c p d p c
p

SLBP x y h b h s i i b h s i i
−

=

= − + − −∏    (7) 

where bp(h)∈{0,1} denotes the numerical value of the pth bit of 
binary representation of h.  

With SLBP, one pixel contributes to more than one bin, but 
the sum of the contributions of the pixel to all bins is always 1. 
SLBP enhances the robustness in the sense that a small change 
in the input image causes only a small change in output. But, it 
loses the invariance to monotonic variations and also increases 
the computation complexity. As with LTP, a proper value of d 
should be set. 

C. Choosing the neighborhood 
The choice of an appropriate neighborhood for LBP-based 

techniques has a significant impact on the final performance. It 
involves the number of sampling points, the distribution of the 
sampling points, the shape of the neighborhood, and the size of 
the neighborhood as well. 
 

 
 

Fig. 6.  Two examples of Elongated LBP operator [23]. 
 

Neighboring pixels in the original LBP are defined on a 
circle. Liao and Chung [23] argued that the main reason to 
define the neighborhood in such an isotropic manner is to ob-
tain rotation invariance for texture description. But this is not 
suitable for all applications; on the contrary, the anisotropic 
information could also be an important feature. As a result, they 
proposed Elongated LBP with neighboring pixels lying on an 
ellipse. Fig. 6 gives two examples of the Elongated LBP, where 
A, B denote the long axis and short axis respectively, and m is 
the number of neighboring pixels. Following original LBP, 
bilinear interpolation technique is adopted for neighboring 
pixels that do not fall exactly at the pixels. The Elongated LBP 
operator could be rotated around the central pixel, with a spe-
cific angle to characterize elongated local structures in different 
orientations, to achieve multi-orientation analysis.  

In order to capture not only the microstructures but also the 
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macrostructures, Li et al. [18] [55] proposed Multi-Block LBP 
(MB-LBP) which, instead of comparing pixels, compares av-
erage intensities of neighboring sub-regions. The original LBP 
can be regarded as a special case of the MB-LBP. Fig. 7 shows 
an example of MB-LBP, where each sub-region consists of six 
pixels. The sub-region can either be a rectangle or a square. The 
average intensities over the blocks can be computed efficiently 
by using summed-area table [56] or integral image. A similar 
scheme is introduced in [57]: Three-Patch LBP (TP-LBP) and 
Four-Patch LBP (FP-LBP) are proposed to compare distances 
between the whole blocks (patches) concerned, instead of sin-
gle pixel [1] or average intensity in [55], and any distance 
function can be used (e.g., L2 norm of their gray level differ-
ences). 
 

 
 

Fig. 7.  An example of the MB-LBP operator [18]. 

D. Extending to 3D LBP 
Several researchers have been trying to extend the LBP from 

2D plane to 3D volume [30] [58]-[59] [60]; however, it is not 
so straightforward as it appears at first glance. There are two 
difficulties: first, equidistant sampling on a sphere is a difficult 
job, and second, it is also difficult to set an order to those 
sampling points, which is important to achieve rotation inva-
riance. 
 

 
 

Fig. 8.  Procedure of VLBP1 ,4, 1 [60]. 
 

To endow the LBP with the ability to capture dynamic tex-
ture information, in [30] and [60], Zhao and Pietikäinen ex-
tended the LBP neighborhood from 2D plane to 3D space. The 
operator is named as Volume LBP (VLBP or 3D-LBP). VLBP 
combines motion and appearance information, and can thus be 

used for analyzing image sequences or videos. It should be 
noted that this approach makes use of dynamic texture analysis 
of 2D time series instead of full 3D volumetric data. The VLBP 
features are not only insensitive to translation and rotation 
(toward rotations around the z axis), but robust to monotonic 
grayscale changes as well. Compared with LBP (P, R), VLBP (L, P, 

R) takes time domain into account, and the parameter L denotes 
the length of the time interval. From a small local neighborhood 
in volume, comparing neighboring pixels with the central pixel, 
a number of binary units are obtained, and the weights for these 
units are given as a spiral line (see Fig. 8). In order to make 
VLBP computationally simple and easy to extend, only 
co-occurrences on three separate planes are considered. The 
textures are modeled with the concatenated LBP histograms 
extracted from Three Orthogonal Planes XY, XT, and YT, and 
thus this simpler version of VLBP is named LBP-TOP. The 
traditional circular sampling is replaced by an ellipse so that 
different radius parameters can be set in the space and time 
domain. 

In [58], Fehr exploited the Spherical Harmonic transform to 
produce an orthogonal basis on the 2-Sphere, and then compute 
the LBP features in the frequency domain. This method over-
comes both problems mentioned above. Paulhac et al. proposed 
another solution to apply LBP to 3D [59]. They used a number 
of circles to represent the sphere, adding the parameter S, thus 
the operator denotes LBP(S, P, R) (see Fig. 8) and they also de-
fined the uniform rule as in 2D. This method causes the prob-
lem that different textures could have the same LBP descrip-
tion. 
 

 
 

Fig. 9.  Representation of a 3D local binary pattern (S=9, P=16, R=2) [59]. 

E. Combining with other features 
As a method for describing local features, LBP can be 

combined with other approaches. For example, a set of ap-
proaches were proposed to combine Gabor wavelets [61]-[63] 
and LBP features using different methods. It was concluded in 
[64]-[66] that Gabor wavelet and LBP based features are mu-
tually complementary, because LBP captures the local ap-
pearance detail; while Gabor-wavelets extract shape informa-
tion over a broader range of scales. A simple fusion strategy is 
to first extract Gabor and LBP features in the parallel way, and 
then fuse two kinds of features on feature level, matching score 
level, or decision level [65]-[66]. 

Another combination way is the serial strategy which con-
sists in first applying Gabor filters and then LBP to the raw 
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image [24] [67]. The Multiple Gabor feature maps (GFM) are 
computed by convolving input images with multi-scale and 
multi-orientation Gabor filters. Each GFM is divided into small 
non-overlapped regions from which LBP histograms are ex-
tracted and finally concatenated into a single feature histogram. 
Multi-resolution Histograms of Local Variation Patterns 
(MHLVP) [24] as well as Local Gabor Binary Pattern Histo-
gram (LGBPH) [67]-[69], have been proposed based on such a 
procedure. Recently, He et al. [70] proposed a similar serial 
method using both wavelets and LBP, which firstly uses 
wavelets to decompose raw images into four frequency images, 
i.e., low frequency, horizontal high frequency, vertical high 
frequency and diagonal high frequency, as the inputs of the 
original LBP.  

Motivated by LBP-TOP and LGBPH, Lei et al. proposed to 
construct a 3rd-order Gabor image based volume and then 
apply the original LBP to three orthogonal planes, to extract the 
discriminative information not only in the spatial domain, but 
also in the Gabor frequency and orientation domains [71]. To 
reduce the computation complexity, a GV-LBP operator is 
introduced to describe the variations in spatial, frequency and 
orientation domains simultaneously by defining the orientation 
and scale neighboring points in different Gabor images. 
 

 
 

Fig. 10.  LBP and CS-LBP features for a neighborhood of 8 pixels [73]. 
 

A Center-Symmetric LBP (CS-LBP) [72]-[73], was pro-
posed by only comparing pairs of neighboring pixels which are 
in the same diameter of the circle. This variation combines the 
LBP operator with the SIFT [74] definition and thus produces 
fewer binary units than the original LBP does. The difference 
between CS-LBP and LBP with 8 neighboring pixels is given 
in Fig. 10. Later, in [75], Fu and Wei introduced Centralized 
Binary Patterns (CBP), making a small modification to this 
scheme; by comparing the central pixel with the mean of all the 
pixels in the neighborhood to produce an additional binary unit 
assigned the largest weight to strengthen its effect. More re-
cently, Huang et al. [76] proposed to combine the LBP and 
SIFT approach in a serial way: first adopts the original LBP 
operator with different parameter settings to extract MS-LBP 
images based on which SIFT is exploited to do matching. 

Ahonen et al. proposed an approach, named LBP Histogram 
Fourier features (LBP-HF) [77], to combine LBP and the Dis-
crete Fourier Transform (DFT). Unlike the existing local rota-
tion-invariant LBP features, the LBP-HF descriptor is pro-
duced by computing an LBP histogram over the whole region 
and then constructing rotationally invariant features from the 

histogram with DFT. That means, rotation invariance is ob-
tained globally, and features are thus invariant to rotations of 
the whole input signal, but they still retain information about 
the relative distribution of different orientations of uniform 
LBP. 

IV. LBP FEATURE SELECTION 
In most existing work, the input image is divided into small 

regions, from which LBP histograms are extracted, and the 
local histograms are further concatenated into a spatially en-
hanced feature vector of the dimensionality of O (103). More-
over, some recent variations even increase the feature vector 
length dramatically, such as Extended LBP, VLBP and Gabor 
Wavelets based LBP. It is believed that the derived LBP-based 
feature vector provides an over-complete representation with 
redundant information [78], which could be reduced to be more 
compact and discriminative. Furthermore, when building 
real-time systems, it is also desired to have LBP-based repre-
sentation with reduced feature length. For all the reasons, the 
problem of LBP feature selection has recently been addressed 
in many literatures. We classify these techniques into two 
categories: the first one is to reduce the feature length based on 
some rules (like uniform patterns), whilst the other one exploits 
feature selection techniques to choose the discriminative pat-
terns. Both streams have their own merits and drawbacks: the 
first one is simple, but has limited feature selection ability; on 
the contrary, the second has a better feature selection capacity, 
but usually requires off-line training that could be computa-
tionally expensive. 

A. Rule-based Strategy 
Uniform pattern is an effective rule to select LBP features, 

and it has been widely adopted in existing work. There are also 
other rules which could be used. For instance, Lahdenoja et al. 
[79] proposed a symmetry level scheme for uniform patterns to 
further reduce the length of LBP feature vectors. The symmetry 
level Lsym of each pattern is defined as the minimum of the total 
number of ones and zeros in that pattern. For example, Lsym of 
both patterns (00111111)2 and (00011000)2 are 2. The sym-
metry level is rotation invariant according to the definition. The 
most symmetric pattern contains the same number of ones and 
zeros, indicating a symmetric edge, while the patterns with the 
lowest symmetry level are the ones consisting of only ones or 
zeros. It is claimed that the patterns with high symmetry level 
occur more frequently in the images with more discriminative 
power [79]. This conclusion is supported by experiments: the 
comparative performance was obtained using only the patterns 
of high symmetry level, but the length of feature vectors was 
reduced by a quarter. 

B. Boosting LBP Features 
Boosting learning [80] provides an effective way for feature 

selection. In [78], by shifting and scaling a sub-window over 
face image, many more sub-regions are obtained to extract 
local LBP histograms; the distance between the corresponding 
histograms of two images is utilized as the discriminative fea-
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ture, and AdaBoost is used to learn a few of the most efficient 
features. Compared with [3], the approach achieves slightly 
better performance but with fewer histograms computed from 
the local regions. A similar approach was also adopted in [27]. 
In these works, the n-th bin of a local histogram is utilized as a 
whole for region description, and feature selection is performed 
at region level. AdaBoost can also be exploited to learn the 
discriminative bins of an LBP histogram [41], since not all the 
bins are necessary to supply useful information. Their expe-
riments illustrate that the selected LBP bins provide a much 
more compact representation with a greatly reduced length of 
feature vector, while producing better performance. AdaBoost 
has been widely adopted for LBP feature selection in various 
tasks [18] [25] [27] [32]-[34] [47] [51] [55] [81]-[88]. In [69], 
Yao et al. exploited RankBoost with domain-partitioning weak 
hypotheses to select the most discriminative LGBPH features. 

C. LBP Subspace Learning 
Subspace learning (or Dimensionality Reduction) [89] maps 

data set from a high dimensional space to a lower dimensional 
space, and thus can be applied to LBP-based features to derive 
a low-dimensional compact representation. For example, Chan 
et al. introduced Linear Discriminant Analysis (LDA) to 
project high-dimensional Multi-Scale LBP features into a dis-
criminant space [21], and the same scheme was later exploited 
with the Multi-Spectral LBP features calculated from color 
images [90]. To deal with the small sample size problem of 
LDA, Shan et al. [68] proposed an Ensemble of Piecewise 
LDA, which partitions the entire LGBP feature vector into 
segments; then applies LDA to each segment separately. Their 
approach was verified to be more effective than applying LDA 
to high-dimensional holistic feature vector. Combining Gabor 
wavelets and LBP features for face recognition, Tan and Triggs 
[65] firstly projected original feature vectors into the Principal 
Component Analysis (PCA) space, and then utilized Kernel 
Discriminative Common Vectors (KDCV) to extract the dis-
criminative features. 

Dual-Space LDA was also adopted to select discriminative 
LBP features, and proved to be effective [91]. Zhao et al. [92] 
employed Laplacian PCA (LPCA) for LBP feature selection, 
and their experiments showed that LPCA outperforms PCA and 
KPCA on selecting LBP-based feature. Wolf and Guttmann 
[93] adopted max-plus PCA to select LBP feature, and 
achieved a better performance than traditional PCA. In [94], 
Shan et al. applied Locality Preserving Projections for mani-
fold learning. Gao and Wang [95] proposed to select LBP 
feature by applying boosting learning in random subspaces. 
Specifically, multiple low-dimensional subspaces are randomly 
generated from original high-dimension feature space as the 
input to boosting. 

D. Other Methods 
Shan et al. [96] adopted the Conditional Mutual Information 

(CMI) maximization criterion for LBP feature selection. Their 
experiments show that selected LBP features perform very 
well. Raja and Gong [97] proposed the Multi-Scale Selected 

Local Binary Feature predicates as an improvement to tradi-
tional LBP. A feature selection method, named Binary Histo-
gram Intersection Minimization (BHIM), is introduced to 
generate the predicates, which comprise individual point fea-
tures from multiple scales. The experiments illustrate that 
BHIM establishes less redundant LBP feature sets than CMI 
and AdaBoost do, and it produced promising performance [97]. 
In [98], Nanni and Lumini adopted Sequential Forward Float-
ing Selection (SFFS) to select the LBP feature extracted from 
both 2D and 3D images. 

V. LBP BASED FACIAL IMAGE ANALYSIS 
Machine-based face recognition involves two crucial aspects, 

i.e. facial representation [3] [63] [99]-[103] and classifier de-
sign [104]-[106]. Facial representation consists in deriving a set 
of relevant features from original images for describing faces, 
in order to facilitate effective machine-based recognition. 
“Good” facial features are desired to have the following prop-
erties [4]: first, they can tolerate within-class variations while 
discriminate different classes well; second, they can be easily 
extracted from the raw images to allow fast processing; and 
finally, they lie in a space with low dimensionality to avoid 
computationally expensive classifiers. Since it was introduced 
for face representation [3], LBP has proved to be an efficient 
descriptor for facial image analysis as it fulfills the above cri-
teria quite well, and recent years have witnessed increasing 
interest in LBP features for facial representation. 

In this section, we first present LBP-based facial description, 
and then review existing works on different tasks including 
face detection, face recognition, facial expression analysis, 
demographic classification, and other applications. 

 
 

Fig. 11.  LBP based face description [27]. 

A. LBP-based Face Description 
A face image can be considered as a composition of the mi-

cro-patterns described by LBP. One can build an LBP histo-
gram computed over the whole face image. However, such a 
representation only encodes the occurrences of micro-patterns 
without any indication about their locations. To also consider 
the shape information of faces, Ahonen et al. [3] proposed to 
divide face images into m local regions from which local LBP 
histograms can be extracted, and then to concatenate them into 
a single, spatially enhanced feature histogram (as shown in Fig. 
11). The resulting histogram encodes both the local texture and 
global shape of face images. 
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Fig. 12.  The top four selected sub-regions [78]. 
 

Most of the existing works adopt the above scheme to extract 
LBP features for facial representation. However, dividing face 
images into a grid of sub-regions is somewhat arbitrary, and the 
sub-regions are not necessary well aligned with facial features. 
Moreover, the resulting facial description depends on the 
chosen size and the positions of these sub-regions. To address 
this issue, in [78] and [96], many more sub-regions are obtained 
by shifting and scaling a sub-window over the face images, and 
boost learning [80] is adopted to select the most discriminative 
sub-regions in term of LBP histograms (as shown in Fig. 12). In 
their experiments, sub-regions of various positions and dif-
ferent sizes were selected. More recently, facial representation 
based on LBP histograms extracted from overlapped 
sub-regions was evaluated in [31]. Furthermore, the 
sub-regions do not need to be rectangular. For example, they 
can also be circular [20] or triangular [107] regions. 

To achieve a more comprehensive description of local facial 
patterns, the LBP operators with different numbers of sampling 
points and various neighborhood radii can be combined. E.g., 
in [21], [64] and [108], the Multi-Scale LBP or Multi-Radius 
LBP were introduced for facial description, to reduce sensitiv-
ity of LBP-based face representations to the scale of face im-
ages (Fig. 13). More recently, for facial expression recognition, 
Shan and Gritti [41] first extracted LBP features of different 
scales, and then ran AdaBoost to learn the most discriminative 
features. It proved that a boosted classifier of Multi-Scale LBP 
consistently outperforms that of single scale LBP, and the 
selected LBP bins are distributed at all scales on the 
Cohn-Kanade database. 
 

  
 

Fig. 13.  The evolvement from the LBP to Multi-Radius LBP operator [64]. 

B. Face Detection 
The purpose of face detection is to determine the locations 

and sizes of human faces in digital images. In [4], Hadid et al. 
first used LBP for face detection. To describe low-resolution 
faces, a 4-neighborhood LBP operator, LBP(4, 1), was applied to 
overlapping small regions. The Support Vector Machine 
(SVM) classifier was adopted to discriminate faces from 
non-faces. To compare with the state-of-the-art methods, they 
performed their experiments on the MIT-CMU dataset, and the 

proposed method detected 221 faces without any false posi-
tives. Later, they [109] proposed a hybrid method to address 
face detection under unconstrained environments. Their me-
thod first searched for the potential skin regions in an input 
image to avoid scanning the entire image as was done in [110]. 
Then a coarse-to-fine strategy is employed to determine 
whether the scanned regions are faces or not: in the coarse 
stage, LBP feature vector extracted from the whole region is 
utilized as the input to a polynomial SVM; patterns which are 
not rejected by the first SVM classifier are further analyzed by 
the second finer one whose inputs are extracted from over-
lapped blocks inside the region. The detection rate reported is 
93.4% with 13 false positives. 

Motivated by the fact that LBP is invariant to monotonic 
transformations, Zhang and Zhao [19] proposed to compute the 
spatial histograms on color measurements for face detection in 
color images. After extracting five measurements, Y, R, G, B 
and θ, in the RGB and YUV color space from the original 
images, LBP was utilized to transform the obtained measures to 
histograms, which are computed as facial description with 23 
different spatial templates to preserve the shape information of 
faces. A hierarchical classifier combining histogram matching 
and SVM was used to discriminate between faces and 
non-faces. The experiments were conducted on 251 color im-
ages including 356 frontal faces with variations in color, posi-
tion, size and also expression, and precision of 91.7% was 
reported. Jin et al. [17] exploited Improved LBP features for 
facial representation, and modeled faces and non-faces using 
the multivariable Gaussian distribution. Given the ILBP based 
features of an input image, the likelihood of the face class and 
non-face class are calculated separately; the Bayesian decision 
rule is then applied to decide whether the image is a face or not. 
The Yale B and MIT-CMU databases were used for evaluation, 
and the detection rate was more than 90% with a false positive 
rate of 2.99x10-7. They later extracted ILBP based features 
from larger neighborhoods [47], and trained a cascade Ada-
Boost detector, which achieved detection result of 93.0% on the 
MIT-CMU database and 94.6% on the Yale B database. In [18], 
Zhang et al. exploited MB-LBP for face detection. Experi-
mented on a dataset containing 13,000 faces and 50,000 
non-faces with a false alarm rate set to 0.001, the MB-LBP 
based approach achieved superior accuracy which was 15% 
higher than Haar-like features and 8% higher than original LBP 
features. The experiments on the MIT-CMU database also 
showed that the approach displayed a comparable performance 
with that in [80], but with fewer features. 

C. Face Recognition 
Face recognition aims to identify or verify a person from a 

digital image or a video sequence. Ahonen et al [3] introduced 
LBP in face recognition with Nearest Neighbor (NN) classifier 
and Chi square distance as the dissimilarity measure. The ex-
perimental results showed that their approach outperforms 
PCA, EBGM and the Bayesian Intra/Extra-personal Classifier 
on all four probe sets of the FERET database. They later in-
vestigated whether these good results are due to the use of local 
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regions or the discriminative capacity of LBP methodology 
[111]. Based on comparisons with three other texture descrip-
tors extracting features from the same local patches, the 
strength of LBP for representing faces was clearly confirmed. 
In [4], face recognition experiments were also carried out on 
the MoBo database, which is challenging because of the images 
with low resolution. As mentioned above, AdaBoost later was 
applied to select a few of the most effective LBP based features 
for face recognition [78]. Compared to the approach in [3], the 
boosting-LBP based method achieves a slightly better recog-
nition rate while using fewer LBP features. 

Zhang et al. [24] introduced MHLVP for face recognition 
based on histogram intersection. Their experiments on FERET 
database showed that their algorithm provides better accuracy 
than some milestone approaches, containing the best ones in 
FERET’97. In particular, they achieved 95.9% accuracy on the 
fc set with illumination changes. They employed LGBPHS 
[67], similar to MHLVP but with weighted rules, for the same 
task. In addition to the FERET dataset, they also ran experi-
ments on the AR database. The results on both databases were 
very promising. Furthermore, they [68] exploited LGBP with 
an ensemble of piecewise LDA, which not only reduces the 
feature dimension, but also improves the performance on the 
FERET database. Yao et al. [69] adopted the Do-
main-Partitioning RankBoost to select LGBPH features for 
face recognition. The subsets fb and Dup I from the FERET 
database were used for evaluating the approach, and compara-
ble results were achieved with only 50 selected features. Zhang 
et al. [112] argued that Gabor phases are also useful for face 
recognition. By encoding Gabor phases through LBP and 
forming local feature histograms, impressive recognition rates 
were obtained on FERET database (99% for fb, 96% for fc, 
78% for Dup I, 77% for Dup II). 

Zhao et al. [26] applied Kernel LDA with the LBP features 
for face recognition where their kernel function was designed 
using the Chi square distance and Radial Basis Function. Their 
method has been proved effective on FRGC Exp2.0.1, 
achieving a verification rate of 97.4% with FAR at 0.001 and 
99.2% with FAR at 0.01. Rodriguez and Marcel [113] proposed 
an LBP-based generative method for face authentication. Spe-
cifically, LBP histogram is interpreted as a probability distri-
bution, and a generic face model is considered as a collection of 
LBP histograms. A client-specific model is then obtained by 
Maximum a Posteriori (MAP) from a generic face model. The 
outcomes on XM2VTS and BANCA, reveals that their ap-
proach outperforms the approaches in [3] and [78]. 

Li et al. [25] designed a framework for fusing 2D and 3D 
face recognition based on LBP features at both feature and 
decision levels. AdaBoost was used for LBP feature selection. 
The experiments on a database containing 252 subjects illu-
strate the advantages of two-level fusion over decision-level 
fusion. To our knowledge, this is the first work to apply LBP to 
3D domain. Later Huang et al. [52] extended LBP to 3DLBP, 
actually similar to Extended LBP as in [65], for 3D face rec-
ognition based on range images; their approach achieved the 
promising result of 9.4% EER on FRGC v2.0 Exp3. ROC I. 

Nanni and Lumini [98] also utilized LBP to extract both 2D and 
3D facial features; their experiments were conducted on a 
subset of 198 persons from the Notre-Dame database collection 
D; the reported EER was 3.5%.  

Li et al. [114]-[115] later applied LBP with NIR images to 
obtain robust facial descriptions under illumination variations. 
The method achieved a verification rate of 90% at FAR=0.001 
and 95% at FAR=0.01 on a database with 870 subjects. The 
same method was utilized with Enhanced NIR images for face 
verification outdoor, especially in sunlight [83]. Pan et al. [86] 
proposed to improve the robustness of this work to variations of 
pose. NIR face images were decomposed into several parts in 
accordance with key facial components, and LBP features 
extracted from these parts were selected by AdaBoost; the 
outputs of part classifiers were then fused to give the final 
score. The verification rate of their approach is 96.03% with 
FAR=0.001. Huang et al. [51] adopted AdaBoost to learn 
ELBP features for NIR face recognition, and obtained a rec-
ognition rate of 95.74% on a database with 60 individuals. 

Yan et al. examined Multi-Radius LBP for face recognition 
[64]. Their experiments on Purdue (90 subjects) and CMU-PIE 
(68 subjects) datasets showed that LBP and Gabor features are 
mutually complementary and a combination of similarity 
scores can bring performance improvement. In [21], Chan et al. 
employed the Multi-Scale LBP with LDA for face recognition. 
The reported performance on the FERET and XM2VTS data-
bases was better than the state-of-the-art approaches. They also 
projected multi-spectral LBP features extracted from local 
regions into an LDA subspace as the discriminative regional 
description. They proved the effectiveness of their method on 
the FRGC and XM2VTS databases. Hadid et al. [82] [85] 
introduced VLBP to extract local facial dynamics for spa-
tio-temporal face recognition from video sequences. AdaBoost 
was applied to learn the specific facial dynamics of each subject 
from LBP-based features while ignoring intra-personal tem-
poral information such as facial expressions. Their approach 
achieved superior performances on various databases: MoBo 
(97.9%), Honda/UCSD (96.0%) and CRIM (98.5%).  Lei et al. 
[71] used GV-LBP-TOP and E-GV-LBP based features for 
face recognition, and both methods achieved encouraging 
results on FERET and FRGC2.0 databases. Yang and Wang 
[50] introduced Hamming LBP for face recognition on the 
FRGC dataset. The experimental results reveal that the Ham-
ming LBP outperforms the original LBP, especially when 
variations of illumination and facial expression exist. Liao and 
Chung [23] exploited Elongated LBP to capture the anisotropic 
structures of faces. Average Maximum Distance Gradient 
Magnitude was proposed to embed the information on 
gray-level difference between the reference and the neighbor-
ing pixel in each Elongated LBP pattern. With a subset of 70 
persons randomly selected from the FERET database, their 
method obtained 93.16% accuracy, and 98.50% on the ORL 
database. 

Tan and Triggs [22] proposed a method for face recognition 
under illumination variations, which includes preprocessing for 
reducing sensitivity to illumination changes and LTP for 
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solving the problem caused by LBP’s sensitivity to random and 
quantization noise. A distance transform-based similarity me-
tric was used for decision. The method showed promising 
performance on three datasets with illumination variations: 
FRGC Exp 1.0.4 (86.3%); Yale-B (100%); as well as CMU PIE 
(100%). They also fused Gabor and LBP features to construct 
heterogeneous features for face recognition in [65]. With the 
features extracted by KDCV, they achieved satisfying results 
on the FRGC 1.0.4, FRGC 2.0.4 and FERET databases. Park 
and Kim [116] presented an adaptive smoothing approach for 
face image normalization under changing lighting. The illu-
mination is estimated by iteratively convolving the input image 
with a 3x3 averaging kernel weighted by a simple measure of 

illumination discontinuity at each pixel. In particular, the kernel 
weights are encoded into a local binary pattern to achieve fast 
and memory-efficient processing. 633 frontal face images were 
selected from the Yale B database, and average recognition 
accuracy was 99.74% with 0.038s time consumed for each 
image. 

Table 2 summarizes the performance of different approaches 
on the FERET database. 

D. Facial Expression Analysis 
Machine-based facial expression recognition aims to recog-

nize facial affect states automatically and may rely on both of  

Author, Year, Reference  Facial Feature  Core Matching Algorithm  Reported Accuracy 

Ahonen 2004 [3, 23]  LBPU2 (8, 2)  Weighted χ2  fb 0.970, Dup I 0.660, 
fc 0.790, Dup II 0.640. 

Zhang 2004 [39]  Boosting LBP  χ2   fb 0.979 

Zhang 2005 [27]  MHLVP  Histogram Intersection  fb 0.942, Dup I 0.676, 
fc 0.959, Dup II 0.594. 

Zhang 2005 [74]  LGBPHS  Weighted 
Histogram Intersection 

fb 0.980, Dup I 0.740, 
fc 0.970, Dup II 0.710. 

Shan 2006 [40]  LGBP  EPFDA  fb 0.996, Dup I 0.920, 
fc 0.990, Dup II 0.889. 

Yao 2007 [75]  LGBPH  CDP‐RankBoost  fb 0.970, Dup I 0.550. 

Chan 2007 [24]  Multi‐Scale LBP  LDA  fb 0.986, Dup I 0.722, 
fc 0.711, Dup II 0.474. 

Tan 2007 [72]  Gabor+LBP  KDCV  fb 0.980, Dup I 0.900, 
fc 0.980, Dup II 0.850. 

Liao 2007 [26]  Elongated LBP  AMDGM  0.9316  
(only 70 samples for test) 

Zhang 2008 [111]  ELGBP (Mag + Pha)  Weighted 
Histogram Intersection 

fb 0.990, Dup I 0.780, 
fc 0.960, Dup II 0.770. 

Lei 2008 [77]  E‐GV‐LBP  Weighted 
Histogram Intersection 

0.8873 
(all four probe together) 

 
Table.2 Some performances of LBP-based face recognition on the FERET database. 

 
audio and visual clues [117]. In this paper, we focus our atten-
tion on works purely based on visual information, using facial 
motion or facial features [118]-[119]. Most of these works only 
consider the prototypical emotional states which include seven 
basic universal categories, namely neutral, anger, disgust, fear, 
happiness, sadness, and surprise 

Feng et al. [28] [120] exploited a coarse-to-fine classifica-
tion scheme with LBP for facial expression recognition making 
use of images. More precisely, at the coarse stage, a 7-class 
problem was first reduced to a 2-class one, while at fine stage; a 
k-nearest neighbor classifier performed the final decision. Their 
approach produced 77% average recognition accuracy on 
JAFFE dataset. In [121]-[123], with the same facial descrip-
tion, a Linear Programming technique was applied for expres-
sion classification. A 7-class problem was decomposed into 21 
binary classifications using the one-against-one scheme. With 
this method, they obtained over 90% accuracy on both the 
JAFFE database and some real videos. 

Shan et al. [124] also investigated LBP for facial expression 
recognition. The template matching with weighted Chi-square 

statistics and SVM were adopted to classify the basic proto-
typical facial expressions; and the best performance obtained 
on the Cohn-Kanade Database reached 88.4% using SVM. In 
many applications involving facial expression recognition, the 
input face images are with low-resolution. In [124]-[125], they 
further studied this topic. They not only performed evaluation 
on face images with different resolutions, but also ran experi-
ments on real-world low-resolution video sequences. It was 
observed that LBP features perform stably and robustly over a 
useful range of face images with low resolutions. In [96], Shan 
et al. introduced CMI maximization criterion for LBP feature 
selection, and the selected features improved recognition ac-
curacy compared with that using AdaBoost. Later, Shan et al. 
[94] also studied facial expression manifold learning by em-
bedding image sequences in a high-dimensional LBP space to a 
low-dimensional manifold. Their experiments on the 
Cohn-Kanade database illustrated that meaningful projections 
could be obtained. Shan and Gritti [41] used AdaBoost to learn 
a set of discriminative bins of an LBP histogram for facial 
expression recognition. Their experiments indicated that the 
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selected bins provide a much more compact facial description. 
It was also evidenced that it is necessary to consider the mul-
ti-scale LBP for facial description. By applying SVM to the 
selected multi-scale LBP bins, they obtained recognition rate of 
93.1% on the Cohn-Kanade database, comparable to the best 
results so far reported on this database. 

In [70], He et al. used LBP on four kinds of frequency im-
ages decomposed by Gabor wavelets for facial expression 
recognition. Their approach provided better performance than 
LBP did on the JAFFE dataset. To consider multiple cues, Liao 
et al. [29] extracted LBPri 

(P, R) features in both intensity and gra-
dient maps, and then computed the Tsallis entropy of the Gabor 
filter responses as the first feature set and performed null-space 
LDA for the second feature set. With the SVM classifier, they 
achieved 94.59% accuracy for images of 64x64 pixels and 
84.62% for 16x16 pixels on the JAFFE database. With an 
Active Appearance Model (AAM), Feng et al. [126] extracted 
the local texture feature by applying LBP to facial feature 
points; the direction between each pair of feature points was 
also considered as shape information. In addition, they used 
LBP with the entire image to get global texture information. 
Combining these three types of feature, a NN-based classifier 
with weighted Chi square statistic was introduced for classifi-
cation. Subject-independent recognition rate of 72% was re-
ported on the JAFFE dataset. Cao et al. [127] combined LBP 
with embedded Hidden Markov Model to recognize facial 
expressions by using an Active Shape Model (ASM), and 
achieved 65% accuracy on the JAFFE dataset. 

In [30] and [60], Zhao and Pietikäinen employed VLBP and 
LBP-TOP for facial expression recognition in video sequences. 
A recognition rate of 96.26% was achieved on the 
Cohn-Kanade database; the evaluation over a range of image 
resolutions and frame rates demonstrated that both approaches 
outperform the state-of-the-art methods. They also compute 
LBP-TOP at multiple resolutions for describing dynamic 
events [87]. AdaBoost technique was used to learn the principal 
appearance and motion from the spatiotemporal descriptors. Fu 
and Wei [75] utilized the CBP instead of LBP for facial ex-
pression recognition, and recognition rates of 94.76% and 
94.86% were achieved on the JAFFE and Cohn-Kanade data-
bases respectively. The capacity of LBP to describe faces was 
further demonstrated in [31], where Gritti et al. compared 
different local features: LBP, LTP, Histogram of Oriented 
Gradients (HOG) [128], Gabor wavelets, with various para-
meter settings for facial expression recognition. Based on their 
experiments, LBP with an overlapping strategy achieved the 
best result, 92.9%, on the Cohn-Kanade database. Furthermore, 
it was indicated that the overlapping LBP is the most robust to 
deal with registration errors. 

E. Demographic Classification and Other Applications 
Demographic classification is used to classify by age, gender 

and ethnicity, based on face images. Sun et al. [32] adopted the 
boosting-LBP based approach [78] for gender recognition, and 
obtained the performance of 95.75% on the FERET dataset. In 
[129]-[130], Lian and Lu combined the LBP-based facial de-

scription with SVM for multi-view gender classification, and 
reported an average accuracy of 94.08% on the CAS-PEAL 
face dataset. Yang and Ai [33] exploited the LBP based fea-
tures for a face-based demographic classification which in-
volved gender, ethnicity as well as age classification. Given a 
local patch, Chi square distance between achieved LBP histo-
grams was utilized as a confidence measure for classification. 
The positive mean histogram was utilized for initialization, and 
the steep descent method was applied to find an optimal ref-
erence template. They adopted the Real AdaBoost for training a 
strong classifier. The achieved error rates for gender classifi-
cation on the FERET, PIE and a snapshot database were 6.7%, 
8.9% and 3.68% respectively. Their method also produced 
promising performance for ethnicity and age classification. 

Huang et al. [108] proposed an improved ASM framework, 
namely ELBP-ASM, in which local appearance patterns of key 
points are modeled by the Extended LBP. The experiments on a 
dataset with 250 samples show that ELBP-ASM achieves more 
accurate results than the original ASM. In order to extend ASM 
to improve robustness against illumination variations, Marcel 
et al. [131] later presented a divided-square based LBP-ASM to 
extract histograms from a square region divided into four 
blocks around each landmark instead of the normal profile. 
Histograms were then concatenated into a single feature vector 
representing local appearance. The comparative experiments 
on XM2VTS dataset showed that this method outperforms 
ELBP-ASM [108], and requires only raw images for facial 
keypoint localization. 

In [35], Ma et al. introduced the Local Gabor Binary Pattern 
(LGBP) to encode the local facial characteristics for head pose 
estimation. With an SVM classifier, estimation rate of 97.14% 
for 7 poses was gained on a subset of the CAS-PEAL dataset 
containing 200 subjects. Cao et al. [34] used a facial symme-
try-based approach to standardize face image quality. With this 
method, facial asymmetries caused by non-frontal illumination 
and improper facial pose can be measured. The effectiveness 
was evaluated on images of 10 persons of the Yale B dataset.  

LBP can also be used as a preprocessing technique on face 
images. For instance, Heusch et al. [132] considered LBP as a 
preprocessing step to remove lighting effects (Fig. 14). Com-
pared with other preprocessing methods, including Histogram 
Equalization and the technique proposed by Gross & Brajovic 
[133], LBP provided better results on the XM2VTS database. 
Cardinaux et al. showed that LBP is better combined with 
feature-based HMM than with appearance-based LDA for face 
recognition on the BANCA dataset [134]. Poh et al. presented a 
similar comparative study in [135], and their experiments fur-
ther supported that LBP is effective for face preprocessing, but 
combining LBP with feature-based Gaussian Mixtures Models 
did not perform as well as combined with LDA. LBP applica-
tion for preprocessing was also addressed in [48]; a compara-
tive study on 5 preprocessing in 16 different Eigenspace-based 
face recognition systems evidenced that the Modified LBP 
(MLBP) achieves promising results for illumination compen-
sation and normalization. More recently, in order to highlight 
the details of facial images, Huang et al. [136]-[137] proposed 
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to use LBP to extract the range and texture LBP faces, and 
Canonical Correlation Analysis (CCA) was then applied to 
learn the relationship of two types of LBP faces for asymmetric 
face recognition. The reported result was 95.61% on the FRGC 
v2.0 dataset [137]. 
 

 
 
Fig. 14.  The original image (left) processed by the LBP operator (right) [132]. 

F. Face Analysis Systems 
Advantages of LBP make it very attractive to build real-time 

face analysis systems. Furthermore, related hardware designed 
for high-speed LBP computation [138]-[141] also boosts the 
development of LBP-based real-world applications. 

Hadid et al. built an access control system using LBP-based 
face recognition [142]. In their system, a camera was set on a 
door for capturing video frames; LBP features were extracted 
for both background subtraction and face recognition. The face 
detection approach in [110] was adopted for face detection in 
color images, and the face recognition method in [3] was ap-
plied for person identification. The face recognition accuracy 
of 71.6% was obtained on 20 video sequences of 10 subjects. 

Trinh et al. [143] presented a system for detecting multiple 
faces in video sequences where faces are not limited to frontal 
views. An adaptive selection approach from two skin models in 
RGB and ratio RGB spaces is used to overcome the illumina-
tion problem by automatic focus of the camera. The experi-
mental result of 93% accuracy was reported on the NRC-IIT 
database, which consists of 23 single-face video sequences of 
11 persons with different poses. The system runs at 2.57 fps for 
image sequences of 320x240 pixels on a standard PC (Pentium 
4 2.6GHz, 512MB RAM) in the Visual C++ environment. 

Based on LBP features extracted from Near Infrared (NIR) 
faces, Li et al. [114]-[115] designed an illumination-invariant 
face recognition system for cooperative users in an indoor 
situation. AdaBoost was used to learn Haar features for face 
detection and eye detection, and to select LBP features for face 
recognition. All three parts achieve outstanding results with 
low cost on a large dataset. The system can operate in real time 
with an EER below 0.3%. 

Ekenel et al. [144] introduced a portable face recognition 
system deployed on a laptop using a standard webcam for 
image acquisition. Based on the relevant regions determined by 
skin color, the two eyes were first detected with a cascade 
AdaBoost classifier of Haar features. These were then used to 
register face images. LBP was used to preprocess facial regions 
for reducing illumination influences. Their system was eva-
luated on a small dataset consisting of 42 sequences from 14 
subjects, and produced 79% accuracy. 

In [145], Hadid et al. implemented face detection and au-
thentication on mobile phones equipped with an ARM9 pro-

cessor. Cascade AdaBoost with Haar features was applied for 
face and eye detection, while LBP was exploited for face au-
thentication. Though the CPU and memory capabilities of 
mobile phones are limited, the experiments showed encourag-
ing performance on face detection and displayed recognition 
rates of 82% for faces of 40x40 pixels and 96% for faces of 
80x80 pixels. The system ran at 2 fps on video sequences with a 
resolution of 320x240 pixels. Abbo et al. [146] recently 
mapped an LBP-based facial expression recognition algorithm 
proposed in [124] on a low-power smart camera, which was 
assembled with a massively-parallel processor for low level 
and intermediate vision processing, and an 8051 microcon-
troller for high level decision making and the camera control 
tasks. 

Hannuksela et al. [88] proposed a head tracking system for 
controlling the user interface on hand-held mobile devices. 
Face and eye detection were realized using boosting-LBP ap-
proach. It worked in real-time on a resource-limited mobile 
device. In an interactive photo annotation system [147], LBP 
was also used to extract facial features for face clustering and 
re-ranking. 

G. Discussion 
The techniques developed so far for facial representation can 

be roughly classified into two main categories: holistic-based 
ones and local-based ones [148]-[149]. The holistic approaches 
use the whole facial region to construct a subspace using, e.g. 
Principal Component Analysis (PCA) [99], Linear Discrimi-
nant Analysis (LDA) [100], Independent Component Analysis 
(ICA) [150], or Locally Linear Embedding (LLE) [151]. On the 
other hand, the local-based ones, e.g. [63] [101] [152], proceed 
firstly to locate a number of features or components from a face; 
then classify them by combining and comparing corresponding 
local statistics. The local approaches have shown promising 
performances in recent years. It has been proved by Heisele et 
al. [153] the component-based face recognition techniques 
(local-based) outperform the global ones (holistic-based), as 
the global approaches require face images to be accurately 
normalized according to pose, lighting and scale. In addition, 
global features are also more sensitive to facial expression 
variations and occlusions. Since local-based methods extract 
features from local points or patches, there always remain some 
invariant features even in the presence of facial expression or 
occlusion variations, and recognition can still be achieved by 
matching remaining invariant features. Therefore, local-based 
methods are potentially more robust than holistic ones to ex-
pression variations and occlusions. Moreover, unlike holistic 
approaches, local-based ones require few samples for enroll-
ment, and can even achieve analysis with a single face image in 
the gallery set [154]. From this viewpoint, if LBP can be used 
in a straightforward manner as a global representation, it is its 
local- or component-oriented variants that prove to be efficient 
descriptors for facial image analysis as the previous overview 
highlights. This motivates the increasing interests in 
LBP-based features for facial representation since this method 
was applied for face representation [3]. 
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 Compared to other popular local-based features as discussed 
in [148] [155]-[156], namely Gabor wavelets [63] [157]-[159] 
and SIFT [101] [155], Luo et al. [155] showed that SIFT is not 
as robust as LBP to illumination effects for face recognition on 
the FERET dataset. Zou et al. [148] compared Gabor wavelets 
and LBP using the same database for the same task, and con-
cluded that Gabor wavelets are more insensitive to illumination 
changes since they detect amplitude-invariant spatial frequen-
cies of gray values of pixels, whilst LBP is greatly affected by 
non-monotonic gray value transformations. Ruiz-del-Solar et 
al. [156] evaluated these three methods extensively for face 
recognition not only on controlled datasets, such as the FERET 
and FRGC, but also on the UCH FaceHRI database, designed 
for Human-Robot Interaction, and the LFW database, captured 
in unconstrained environments. Concerning robustness to il-
lumination changes, the study showed that Gabor wavelets 
achieved the best performance on the FERET database, LBP 
was not far behind; while SIFT was the last, thus further sup-
porting the previous conclusions. On the UCH FaceHRI data-
base, the LBP approach gained the best results in all the spe-
cially-designed experiments for indoor and outdoor lighting, 
expression, scaling, and rotation, followed by Gabor wavelets 
and SIFT. On LFW database, LBP and Gabor wavelets ob-
tained a slightly better result than each other with aligned face 
and non-aligned face respectively, both of which surpassed that 
of SIFT. On the other hand, in their investigation on computa-
tion cost, LBP ran much faster than Gabor wavelet and SIFT. 

VI. CONCLUDING REMARKS 
LBP is one of the most powerful descriptors for representing 

local structures. Thanks to its advantages, i.e., its tolerance of 
monotonic illumination changes and its computational sim-
plicity, LBP has been successfully used for many different 
image analysis tasks, such as facial image analysis, biomedical 
image analysis, aerial image analysis, motion analysis, and 
image and video retrieval. 

During the development of LBP methodology, a large 
number of variations are designed to expand the scope of ap-
plication, offering better performance as well as improving 
robustness in one or more aspects of the original LBP. ILBP, 
Hamming LBP and ELBP enhance the discriminative ability of 
LBP; LTP and SLBP focus on improving the robustness of 
LBP on noisy images; MB-LBP, Elongated LBP, TPLBP, and 
FPLBP, change the scale of LBP to provide other categories of 
local information; Gabor wavelet-based LBP, CS-LBP as well 
as LBP-HF combine other methods with LBP to bring in new 
merits. However, the previous extensions only operate on tra-
ditional 2D data, the variant 3DLBP and VLBP should be 
highlighted, since both of them expand the scope of LBP ap-
plications: 3DLBP extends the LBP operator to describe 3D 
volume data, whilst VLBP endows LBP with the ability to 
capture dynamic information. 

To obtain a small set of the most discriminative LBP-based 
features for better performance and dimensionality reduction, 
LBP-based representations are associated with some popular 

techniques of feature selection schemes for reducing the feature 
length LBP codes, including rule-based strategy,  boosting and 
subspace learning, etc. 

As the most typical and important application of LBP, facial 
image analysis provides a very good demonstration of the use, 
development and performance of LBP. From this comprehen-
sive overview, following conclusions can be drawn : (1) local- 
or component-oriented LBP representations are effective re-
presentations for facial image analysis as they encode the in-
formation of facial configuration while providing local struc-
ture patterns; (2) using the local- or component-oriented LBP 
facial representations, feature selection is particularly impor-
tant for various tasks in facial image analysis, since this facial 
description scheme greatly increases feature length. 

As the conclusions based on their experiments drawn in [39] 
revealed, like all texture based methods, LBP seems to be sen-
sitive to severe illumination changes, and to blurred and noisy 
images. The former one can be seen as non-monotonic lighting 
variations, as is mostly the case in facial image, since compared 
with flat texture images, human faces depict 3D volume 
structures; therefore non-monotonic transformations, e.g., 
shadows and bright spots can typically occur and change their 
positions depending on illumination directions. While the latter 
one is often caused by the bad quality of camera sensors and 
poor user cooperation of capture condition etc. As a result, in 
such environments, it is necessary and useful to preprocess the 
images before applying LBP.  

In addition, some open questions for sub-region based LBP 
description, e.g. facial description, concern the relevant number 
of components and the corresponding neighborhood of a cer-
tain LBP operator for the best analysis result. Although these 
questions have been discussed in several works and even with 
machine learning techniques, these conclusions drawn so far 
have always been dependent on the datasets used and on some 
given parameters.  
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