Mining team characteristics to predict Wikipedia article quality

Abstract : In this study, we were interested in studying which characteristics of virtual teams are good predictors for the quality of their production. The experiment involved obtaining the Spanish Wikipedia database dump and applying different data mining techniques suitable for large data sets to label the whole set of articles according to their quality (comparing them with the Featured/Good Articles, or FA/GA). Then we created the attributes that describe the characteristics of the team who produced the articles and using decision tree methods, we obtained the most relevant characteristics of the teams that produced FA/GA. The team's maximum efficiency and the total length of contribution are the most important predictors. This article contributes to the literature on virtual team organization.
Type de document :
Communication dans un congrès
OpenSym 2016 : 12th International Symposium on Open Collaboration, Aug 2016, Berlin, Germany. ACM, Proceedings OpenSym 2016 : 12th International Symposium on Open Collaboration, pp.1 - 9, 2016
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01354368
Contributeur : Bibliothèque Télécom Bretagne <>
Soumis le : jeudi 18 août 2016 - 19:10:50
Dernière modification le : jeudi 29 novembre 2018 - 16:16:20
Document(s) archivé(s) le : samedi 19 novembre 2016 - 20:54:59

Fichier

mining-team-characteristics vf...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01354368, version 1

Citation

Grace Gimon Betancourt, Armando Segnini, Carlos Trabuco, Amira Rezgui, Nicolas Jullien. Mining team characteristics to predict Wikipedia article quality. OpenSym 2016 : 12th International Symposium on Open Collaboration, Aug 2016, Berlin, Germany. ACM, Proceedings OpenSym 2016 : 12th International Symposium on Open Collaboration, pp.1 - 9, 2016. 〈hal-01354368〉

Partager

Métriques

Consultations de la notice

514

Téléchargements de fichiers

712