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Distributed Source Seeking without Global Position
Information

Ruggero Fabbiano, Federica Garin, Carlos Canudas de Wit

Abstract—We present a distributed control law to steer a group
of autonomous communicating sensors towards the source of a
diffusion process. The graph describing the communication links
between sensors has a time-invariant topology, and each sensor
is able to measure (in addition to the quantity of interest) only
the relative bearing angle with respect to its neighbour, but has
no absolute position information and does not know any relative
distance. Using multiple sensors is useful in wide environments
(e.g., under the sea), or when the function describing the diffusion
process is slowly changing in space, so that a single sensor may
have to travel long distances before having a good gradient
estimation. Our approach is based on a twofold control law,
which is able to bring and keep the set of sensors on a circular
equispaced formation, and to steer the circular formation towards
the source via a gradient-ascent technique. The effectiveness
of the proposed algorithm is both theoretically proven and
supported by simulation results.

Index Terms—Source seeking, Distributed control, Formation
control, Gradient search, Poisson integral, Sensor networks.

I. INTRODUCTION

THE source seeking problem consists in localizing a
source emitting from an unknown position, by exploiting

the fact that the concentration of the emitted quantity is higher
near the source and decays with distance. This problem arises
in various applications, e.g., detection of pollutants, explosives,
drugs, or localization of sound, heat or vent sources.

In recent years, leveraging the richness of results on collabo-
rative sensing, distributed control and multi-agents formations,
a new line of research has emerged, focusing on multi-agent
source seeking, where multiple mobile sensors collaborate
in order to find the source, improving over single-sensor
techniques, e.g., by allowing faster convergence, exploration
of a wider area, robustness to errors and failures.

One of the first contributions is [1], where it is assumed that
each vehicle can measure the full gradient, and the authors
develop a twofold algorithm with a gradient-descent term
and inter-vehicle forcing terms. Other early contributions are
[2] and [3]. In the former, formation control uses potential
functions to drive agents in a desired formation moving along
a virtual body, whose gradient-climbing trajectory depends
on a computation of the gradient obtained filtering all sensor
measurements. In [3], the authors propose to solve the source-
localization problem with distributed optimization algorithms
making use of measurements from sensors spread all over the

R. Fabbiano was and F. Garin is with INRIA (NeCS team, In-
ria Grenoble Rhône-Alpes) and GIPSA-lab, Grenoble, France; e-mails:
ruggero.fabbiano@sfr.fr, federica.garin@inria.fr.

C. Canudas-de-Wit is with CNRS, GIPSA-lab (NeCS team), Grenoble,
France; e-mail: carlos.canudas-de-wit@gipsa-lab.fr.

region of interest, and not moving towards the source. Papers
[4], [5] have introduced a collaborative control law to steer a
fleet of AUVs (autonomous underwater vehicles) to the source
of a signal distribution using only direct signal measurements,
by arranging the AUVs in a circular formation and using
measurements along the circle to get a gradient approximation.
The formation control needed to achieve this goal has been
further studied in [6]. The gradient approximation formula has
been studied in [7], giving a mathematical framework for its
validity and an extension to the 3-dimensional case; in this
paper, though, gradient ascent was performed in a centralized
way, with a single agent using measurements from all sensors.
The recent paper [8] builds upon ideas from [5] to perform
an improved collaborative search, with a Newton-Raphson
method.

A gradient-based method is also considered in [9], where the
authors propose two algorithms, based on the estimation of the
gradient at the formation centroid, with different techniques
for the two cases where the function describing the spatial
distribution of the measured quantity is known or unknown;
then, stochastic approximation is used to ensure convergence.

In [10], the gradient estimation makes use also of time series
of measurements, instead of instantaneous measurements only,
so that agents can also have an individual local gradient
direction, and alternate phases of individual exploration with
a collaborative exploration in formation.

Another class of algorithms are extremum seeking ones,
where the gradient direction is indirectly estimated from
the measurements, by probing the environment with suitable
movements. In the early work [11], a leader agent performs
extremum seeking, while all other agents are controlled to
behave as followers. In [12], distributed formation control
is combined with a centralized extremum seeking controller,
which gives a gradient-ascent reference to the formation.

Most of these algorithms make explicit use of the absolute
position of the sensors. A notable exception is [9], where
the formation control and gradient estimation rather rely on
relative localization, with respect to other sensors and to the
formation centre.

Paper Contribution
We propose a distributed algorithm to estimate the gradient

of a function describing a diffusion process, and use this infor-
mation to drive a set of moving sensors towards the source.
The effectiveness of such an algorithm is both theoretically
proven and supported by simulation results.

The framework is close to the one of previous works [4],
[5], [8], but our contribution differs as we avoid using full
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position information, which may be unavailable in various
operating environments such as underwater or indoor vehicles,
or in applications where inertial navigation systems are too
expensive or not sufficiently accurate. We only suppose the
sensors to be able to measure the relative angle with respect
to their neighbours, differently from all above-mentioned
distributed source seeking methods, which require either the
knowledge of sensors absolute position, or at least relative
localization. The main motivation for the restriction to relative
angles is that in vision-based navigation angles are much
easier to obtain than distances, see e.g. [13] for an example
of bearing-angle sensor. We have already considered the same
assumption in our preliminary work [14]; in that paper, though,
our twofold objective (formation control and motion towards
the source) was expressed in an antagonistic control law,
which, together with a formation control algorithm without
theoretical stability guarantees [15], resulted in an algorithm
with slower convergence in simulation and no theoretical
convergence proof. In this paper we introduce and study a new
algorithm, where the formation control is based on techniques
from [16], together with a suitable change of variables and a
distributed gradient-approximation algorithm, so that we can
express the global objective of driving the vehicles to a circular
formation whose centre moves along the gradient direction, by
making use only of the limited local information.

Notation

We will use the notation z = ρeiθ to denote the point
(x, y) = ρ(cos θ, sin θ) ∈ R2, using the usual bijection
z = (x, y) between points in R2 and elements of C. Mul-
tiplication eiαz will denote rotation of vector z by an angle
α (counterclockwise for α > 0), as in usual multiplication
of complex numbers. However, all other operations will be
intended as operations on reals and on vectors in R2; in
particular, all derivatives are intended as (partial) derivatives of
real-valued functions, and integrals are intended as entry-wise
integrals of the real-valued entries of the vectors. ∇f is the
gradient of the function f , and ∇2 is the Laplacian operator.
∂Ω denotes the border of an open set Ω, and its closure is
denoted by Ω̄ = Ω∪∂Ω. Br(zc) indicates the circle of radius
r centered in zc. Sums of sensor indexes 1, . . . , n are always
intended modn, and sums of angles are mod 2π.

II. PROBLEM FORMULATION

A. Autonomous Sensors

We consider a group of n communicating sensors moving
in a region Ω ⊂ R2, where a diffusion process is taking place,
with the nonholonomic kinematics

żi(t) = vi(t)e
iθi(t)[

vi(t)

θ̇i(t)

]
= ui(t),

(1)

where z(t) is the rotational point of the sensor in the plane,
and θ(t) is its heading angle. The sensors, which can take
pointwise measurements of the emitted quantity, have no
position information, but know the value of n and are able
to measure the bearing angle with respect to their following
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Fig. 1: Relative bearing angle αi
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Fig. 2: Examples of ring communication network.

neighbour (i.e., the angle between the orientation of an agent
and the vector from itself to its neighbour, as explained in
Fig. 1), defined by

αi(t) = arg (zi+1(t)− zi(t))− θi(t). (2)

We consider a ring communication network, where sensor i
can receive messages sent by sensor i− 1, irrespective of the
sensors position and of time (see Fig. 2). This assumption
is not essential (other communication strategies are possible),
but is natural when the sensors are not too far from a circular
formation, as it will be the case in this paper. Indeed, we
will show that a circular formation with sensors equispaced
along the circle is desirable in order to compute a gradient
approximation from their measurements, and we will describe
a suitable control law which ensures that such a formation
is obtained (from initial conditions not too far from this
equilibrium) and maintained while the formation centroid is
driven towards the source.

B. Diffusion Process

We consider steady-state behaviors of homogeneous diffu-
sion processes caused by an isotropic source emitting at a
constant rate. Such a process is governed by the well-known
diffusion equation

∂f(z, t)

∂t
− c∇2f(z, t) = 0, ∀z ∈ Ω, t ≥ 0, (3)

where f is the concentration variable, c is a diffusion co-
efficient, and Ω ⊂ R2. In particular, as depicted in Fig. 3,
we consider the region of interest Ω̃ ⊂ R2 as a connected
bounded set Ω̃ = Ω∪Ωs, where Ωs is the connected bounded
set that identifies the source, and therefore we have that
∂Ω = ∂Ω̃ ∪ ∂Ωs. The values of f on the inner boundary
∂Ωs are imposed by the source, so we can assume that values
of f on ∂Ωs are higher than the ones on ∂Ω̃. As we will
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Fig. 3: Sets as defined in Section II: Ω = Ω̃ \Ωs, and ∂Ω =
∂Ω̃ ∪ ∂Ωs.

see below, we have that max f(z) ∈ ∂Ω, that means, for
our previous consideration, that it lies on ∂Ωs; our source
localisation problem is then mathematically equivalent to the
problem of finding the maximum of f .

Once the steady-state has been reached, supposing that the
source is still emitting at a constant rate (this happens in many
cases of practical interest, e.g., in a heating process, or in the
dispersion of a chemical substance), or that possible source
variations are slow in the time-scale of interest, the diffusion
equation (3) can be approximated by the Laplace equation,
i.e.,

∇2f(z) = 0,∀z ∈ Ω, (4)

whose solutions are called “harmonic functions” and have
many mathematical properties which can be exploited to
devise a gradient-ascent source seeking.

III. SOURCE-SEEKING STRATEGY

A. Gradient ascent

The source-localisation problem, formulated in previous
section as the problem of finding the maximum of a harmonic
function f , can be solved by a gradient ascent algorithm.
We refer the reader to our previos work [7] for a detailed
discussion, while we briefly recall here the main results, which
will be used in the remainder of this paper as a tool for
constructing a distributed source-seeking algorithm.

Harmonic functions satisfy the so-called local maximum
principle, which ensures that (except for the trivial case of
a constant function), f can have maxima only on the border
∂Ω, not in the interior of Ω. This justifies the use of a gradient
ascent technique, despite the fact that harmonic functions
might not be convex.

Then, harmonicity of f ensures the possibility to determine
f and all derivatives of f at a point zc, using measurements
along a curve encircling zc. In particular, in the case where the
curve is a circle, explicit integral formulae exist, called Poisson
integrals for the circle. We will make use of a Poisson integral
to find the gradient f(zc), based on the values of f along a
circle centered in zc, as follows:

∇f(zc) =
1

πr

∫ 2π

0

eiθf
(
zc + reiθ

)
dθ. (5)

In the following, we will approximate the above integral
with a finite sum of measurements along the circle, taken by
sensors, while a suitably designed control law will steer the

sensors in a circular formation whose centre moves in the
direction of the computed gradient.

As discussed in [5], [7], the Poisson formula (5), which
holds exactly for harmonic functions, can also be used to
approximate the gradient of more general functions, under
the only requirement of C1 regularity. Hence, the distributed
source-seeking method developed in this paper can be applied
to some more general sources, provided they have enough reg-
ularity to justify the gradient approximation and the gradient
ascent technique.

B. Control Law

We need to develop an algorithm which is able to both steer
the sensors towards the gradient direction, and bring them on
a circular formation, such that the gradient itself is correctly
estimated.

We introduce a control law assuming that each sensor i is
able to compute the difference θ̄i(t) = θref(t) − θi(t), where
θref is a common reference (we will discuss in Section IV how
to obtain it). Let vc > 0 and vr > vc, with v̄ = vc

vr
, be fixed

parameters; we propose the following control law:

vi(t) = vc cos θ̄i(t) +

√
v2

r − v2
c sin2 θ̄i(t) (6A)

θ̇i(t) = bi(t)θ̇ref(t) +
(
1− bi(t)

)
ωi(t), (6B)

where

bi(t) =
vc

vi(t)
cos θ̄i(t) (6C)

ωi(t) = k
(
αi(t) + arcsin

(
v̄ sin θ̄i(t)

))
, (6D)

k > 0 is a positive constant gain, and αi is defined as in (2).
We note that such a control law only involves local variables,
as it is function of only the measured relative bearing angle
and the angle θ̄i, which is an angle difference and therefore
independent of the coordinate system.

We will show that this control law brings the autonomous
sensors to settle on an equispaced circular formation around
a centre moving along the reference direction. As a first step,
the following proposition shows an equivalent description of
system (1), (6).

Proposition 1: The closed-loop system given by dynam-
ics (1), under the control law (6A)–(6C), is equivalent to the
system

żi(t) = vceiθref (t) + vre
iγi(t) (7A)

γ̇i(t) = ωi(t). (7B)

Proof: From (7A) we compute

|żi|2 = v2
c + 2vcvr(cos θref cos γi + sin θref sin γi) + v2

r ,

(8A)

arg żi = arctan
vc sin θref + vr sin γi
vc cos θref + vr cos γi

, (8B)

and moreover,

vr cos γi = |żi| cos(arg żi)− vc cos θref

vr sin γi = |żi| sin(arg żi)− vc sin θref .
(9)
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Using (9) we get

vr(cos θref cos γi+sin θref sin γi) = |żi| cos(θref−arg żi)−vc

(10)
and, by substituting it back into (8A), it yields

|żi|2 = 2vc cos (θref − arg żi) |żi| − v2
c + v2

r . (11)

Taking the positive solution of this quadratic equation, we
obtain the expression for the velocity:

|żi| = vc cos (θref − arg żi)

+
√(

cos2 (θref − arg żi)− 1
)
v2

c + v2
r

= vc cos (θref − arg żi) +

√
v2

r − v2
c sin2 (θref − arg żi).

(12)

Computing the time derivative of (8B) we get

d

dt
(arg żi)

=
vcθ̇ref [vc + vr(cos θref cos γi + sin θref sin γi)]

v2
c + 2vcvr(cos θref cos γi + sin θref sin γi) + v2

r

+
vrγ̇i[vr + vc(cos θref cos γi + sin θref sin γi)]

v2
c + 2vcvr(cos θref cos γi + sin θref sin γi) + v2

r

;

substituting again (10):

d

dt
(arg żi) =

vc |żi| cos (θref − arg żi)θ̇ref

2vc |żi| cos (θref − arg żi)− v2
c + v2

r

+

(
v2

r + vc |żi| cos (θref − arg żi)− v2
c

)
γ̇i

2vc |żi| cos (θref − arg żi)− v2
c + v2

r

and, finally, by (11),

d

dt
(arg żi) =

vc cos (θref − arg żi)

|żi|
θ̇ref

+

(
1− vc cos (θref − arg żi)

|żi|

)
γ̇i. (13)

We can notice that, with notation vi = |żi| and θi = arg żi
as in (1), the final expressions of equations (12) and (13)
correspond to our choice of control input ui = [vi, θ̇i]

T

in (6A) and (6B), thus showing the equivalence of systems
(1), (6A)–(6C) and (7).

Remark 1: We can see from this equivalence that the
dynamics of each sensor is given by the superposition of a
motion with speed vc in the common direction θref and a
motion with speed vr and heading γi such that γ̇i = ωi.
In particular, since the direction θref is common to each
autonomous sensor, the motion with speed vc results in a
translation of the whole formation in such direction. We need
to show that our law ensures that the sensors settle on a
circular equispaced formation (thus allowing for a gradient
estimation based on the Poisson integral formula), i.e., they
asymptotically tend to a formation in which each sensor has
position and velocity

zi(t) = zc(t) + reiζi(t)

żi(t) = vceiθref (t) + vre
iγi(t),

with ζi(t) = ζ0(t) + 2π
n i and γi(t) = ζi(t) + π

2 .

C. Convergence to formation

Here, we show how the control law (6) can bring the sensors
to the desired circular formation. We start by recalling some
results by Marshall et al. [16].

Let us consider a fleet of autonomous underactuated vehi-
cles described by the dynamics (1). By a suitable change of
coordinates [16], the system (1) can be described by the new
state variables

di(t) = |zi+1(t)− zi(t)| (14A)
αi(t) = arg(zi+1(t)− zi(t))− θi(t) (14B)
βi(t) = θi(t)− θi+1(t)− π. (14C)

With such state variables we lose any information about the
absolute position of each vehicle; nonetheless, they are more
suitable to describe the formation reached, as they define the
position of each vehicle in terms of relative variables with
respect to each other’s neighbours, such as the relative distance
di and the relative bearing angle αi. For the subsequent anal-
ysis, it is important to notice that the above-defined variables
satisfy the following constraints1:

n∑
i=1

βi = −nπ (15)

n∑
i=1

die
i[αi−(i−1)π−∑i−1

j=1 βj ] = 0. (16)

Eq. (15) is immediate from the definition of βi, while Eq. (16)
is obtained from

∑n
i=1(zi+1−zi) = 0, where the vector zi+1−

zi can be expressed with its modulus di and its argument
arg(zi+1 − zi) = αi + θi = αi + θ1 −

∑i−1
j=1(βj + π).

The authors in [16] propose the following control law

vi(t) = ṽ θ̇i(t) = kαi(t) (17)

with ṽ, k > 0 constant parameters, and show that the closed-
loop dynamics, in the state variables (14), becomes

ḋi(t) = −ṽ
(

cosαi(t) + cos(αi(t) + βi(t))
)

α̇i(t) =
ṽ
(

sinαi(t) + sin(αi(t) + βi(t))
)

di(t)
− kαi(t)

β̇i(t) = k
(
αi(t)− αi+1(t)

)
.

(18)

Their study shows that the equilibrium points of such dynam-
ics correspond to the vehicles disposed as the vertices of an or-
dinary regular polygon, and thus being equispatially disposed
on a circle (whose radius is given by r = nṽ

kπ ); moreover, they
analyze stability of such equilibria. The following proposition
summarizes some of their most important findings, while in
the remainder of this section we will show how such results
can be applied to our problem formulation.

Proposition 2 ([16, Lemma 2, Thm. 5 and Coroll. 4]): The
system (18), restricted to the invariant manifoldM⊂ R3n de-
scribed by the constraints in (15)-(16), has 2(n−1) equilibria,
among which the two following ones:

d̄i =d̄ =
2ṽ

kᾱ
sin ᾱ (19A)

1We use the notational convention that a sum over an empty set of indices
is equal to zero, namely,

∑0
j=1 βj = 0
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ᾱi =ᾱ = ±π

n
(19B)

β̄i =β̄ = π− 2ᾱ. (19C)

The two above-described equilibria are locally asymptotically
stable.
The interested reader can find the proof in [16]; it is based
on geometrical considerations to characterize equilibria, on
linearization around equilibria of the system restricted to the
invariant manifold, and on a careful study of the eigenvalues
of the resulting linear system.

Since our control law is different from the one proposed in
[16], also our closed-loop dynamics will differ from (18), and
the results of Theorem 2 do not apply directly. Nevertheless,
defining the variables

α̃i(t) = arg(zi+1(t)− zi(t))− γi(t) (20A)

β̃i(t) = γi(t)− γi+1(t)− π, (20B)

with γi as in (9), we will show that in the new state
di(t), α̃i(t), β̃i(t) our closed-loop system converges to the
same equilibrium points as (19).

First, we notice that the above-defined variables satisfy the
same constraints as the variables in (14), namely

n∑
i=1

β̃i = −nπ (21)

n∑
i=1

die
i[α̃i−(i−1)π−∑i−1

j=1 β̃j ] = 0. (22)

Then, in the following, we prove that, under the control
law (6), the variables di, α̃i, β̃i defined in (14A) and (20)
have the same dynamics as (18), so that the same equilibrium
analysis applies.

Proposition 3: For the system (7), with ωi as in (6D), the
dynamics in the state variables (14A), (20) is

ḋi(t) = −vr

(
cos α̃i(t) + cos

(
α̃i(t) + β̃i(t)

))
˙̃αi(t) =

vr

(
sin α̃i(t) + sin

(
α̃i(t) + β̃i(t)

))
di(t)

− kα̃i(t)
˙̃
βi(t) = k

(
α̃i(t)− α̃i+1(t)

)
.

(23)

Proof: We start by showing that the control law (7B) is
equivalent to the control law γ̇i = kα̃i. We define

δi(t) = θi(t)− γi(t).

Taking the sine and using (9), we obtain

sin δi = sin θi
vi cos θi − vc cos θref

vr

− cos θi
vi sin θi − vc sin θref

vr

=
vc

vr
(cos θi sin θref − sin θi cos θref) = v̄ sin θ̄i, (24)

from which it follows that δi(t) = arcsin
(
v̄ sin θ̄i(t)

)
. There-

fore, we have that

γ̇i = k(αi + δi) = k
(

arg(zi+1 − zi)− θi + θi − γi
)

= kα̃i.

i− 1

i

i+ 1

α̃i−1 + γi−1

α̃i−1 + γi−1 + π

α̃i + γi
ηi

Fig. 4: The internal angle ηi between consecutive sensors.

Now we have

żi(t) = vceiθref (t) + vre
iγi(t)

γ̇i(t) = kα̃i(t).

From this system, the dynamics (23) are obtained, similarly
to the fact that system (1), (17) gives dynamics (18) in [16]
(full details of the calculations can be found in the proof of
Proposition 5.3 in [17]).

Proposition 4: The system (14), restricted to the invariant
manifold M⊂ R3n described by the constraints in (21)-(22),
has 2(n−1) equilibria, among which the two following ones:

d̄i =d̄ =
2vr

kᾱ
sin ᾱ

¯̃αi =ᾱ = ±π

n
¯̃
βi =β̄ = π− 2ᾱ.

(25)

The two above-described equilibria are locally asymptotically
stable.

Proof: By Prop. 3 the system di(t), α̃i(t), β̃i(t) has
dynamics equivalent to (18). Hence, applying Prop. 2 yields
to the equilibria (25).

Proposition 5: At the equilibria (25), the relative positions
zi+1 − zi draw an ordinary regular polygon.

Proof: The internal angle between sensors zi−1, zi, zi+1

(see Fig. 4) can be expressed as

ηi(t) = arg(zi(t)− zi−1(t)) + π− arg(zi+1(t)− zi(t))
= α̃i−1(t) + γi−1(t) + π− α̃i(t)− γi(t)
= α̃i−1(t)− β̃i−1(t)− α̃i(t); (26)

at the equilibrium, α̃i = ᾱ and β̃i = β̄, ∀i, gives

ηi(t) = −β̄, ∀i.
Hence, the relative positions at the equilibrium are both
equilateral (because d̄i = d̄ ∀i) and equiangular, and thus
represent an ordinary regular polygon.

D. Gradient-Ascent Motion of the Formation Centroid

Our goal is to use the sensors measurements to compute
a discrete approximation of the gradient formula (5), and
then to perform a gradient ascent using the (approximated)
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gradient argument as reference θref for the control law (6). The
computation of the gradient approximation will be discussed
in Section IV, while here we discuss how the control law
(6) indeed drives the centroid of the formation to follow the
reference direction and perform gradient ascent towards the
source. We will make use of the result of Prop.s 4 and 5, which
ensure local asymptotic convergence to an equispaced circular
formation, and we will study the motion of the formation
centroid.

Proposition 6: If the initial conditions of the agents are such
that the corresponding system (23) is in the attractive basin of
one of the two locally asymptotically stable equilibria (25),
then

arg żc(t)− θref(t)→ 0.

Proof: The dynamics of the formation centroid (i.e., the
barycentre of positions zi’s) is given by

żc(t) =
1

n

n∑
i=1

żi(t) = vceiθref (t) +
vr

n

n∑
i=1

eiγi(t).

We can easily show that, at any of the equilibria (25),

żc(t) = vceiθref (t).

Indeed, the result of Prop. 5 implies that, at equilibria (25),
they occupy positions zi which are equispaced along a circle.
In particular, Eq. (20B) implies that γi+1 − γi = −β̃i − π ∀i
which, at the equilibria (25), gives γi = γ0 + 2π

n i for all i,
and hence

∑n
i=1 eiγi(t) = 0.

Then, the local asymptotic stability of such equilibria en-
sures the asymptotic convergence of żc(t) − vceiθref (t) =
vr
n

∑n
i=1 eiγi(t) to zero, and hence also ensures that arg żc(t)−

θref(t)→ 0.
This proposition means that, if the agents have initial positions
such that they will converge to circular formation, then, while
this convergence happens, their centroid will follow with
increasing precision the reference direction. In particular, given
any ε > 0, there exists a time t̄ such that, for all t ≥ t̄,
|arg żc(t)− θref(t)| ≤ ε; moreover, velocities of individual
agents and of the formation centroid are all bounded by vc+vr,
so that there is no risk of divergence in finite time.

In the next section we will discuss how to compute a
reference θref(t) which is an approximation of the argument
of the gradient ∇f(zc(t)) (at least for sufficiently large times,
when circular formation is nearly attained). Now, let us assume
that such a reference is given, and that for all t ≥ t̃,
|θref(t)− arg∇f(zc(t))| ≤ ε̃ for some time t̃ and for some
error bound ε̃ < π

2 . Then, we can clearly find ε such that
ε+ ε̃ < π

2 , and a time t̄ ≥ t̃ such that, for all t ≥ t̄,

|arg żc(t)− arg∇f(zc(t))| ≤ ε+ ε̃ <
π

2
.

This inequality ensures that the formation centroid performs
gradient ascent, namely that f(zc(t)) increases along trajecto-
ries; indeed, the derivative of f along trajectories of zc(t) is
given by the scalar product ∇f(zc(t)) · żc(t), which is positive
since |arg żc(t)− arg∇f(zc(t))| < π

2 .
Gradient ascent is usually applied to convex functions, while

here we are considering harmonic functions, which might not

be convex. However, the local maximum principle ensures
that f does not have any local maximum inside Ω: hence,
gradient ascent search is ensured not to get trapped in any
local maximum, except possibly on the outer boundary ∂Ω̃;
some simple rule can be introduced that allows to distinguish
the external boundary from the source, e.g., some rough bound
on the source intensity.

IV. IMPLEMENTATION DETAILS

We discuss here how to implement the control law proposed
in Sect. III. We assume to have no absolute position informa-
tion, and very little relative one: this means that the sensors
neither know their absolute position, nor their relative one with
respect to the formation centroid or to each other, and they do
not know their absolute orientation θi either. They are only
able to measure the pointwise value of the diffusing quantity
at their position, i.e., f(zi(t)), and the relative bearing angle
with respect to their neighbour αi; in addition, they know the
common parameters vc, vr, k and their number n.

To drive the sensors to the source location, we make
use of the control input defined in (6), which involves the
difference θ̄i between the reference input θref and the current
heading of the sensor θi, and where we want the reference
θref to be the angle of the approximation, computed by each
sensor i, of the gradient at the formation centroid. To obtain
such an approximation we propose a discrete-time algorithm,
involving an exchange of messages among the agents, which
is run within every sampling time; the value of the gradient
approximation gi(t), and consequently of its argument, is then
held constant until the next value is available. The algorithm
is designed to use the information collected by each sensor
and produce, in a distributed way, a discrete approximation of
the integral formula (5), i.e., to compute the Riemann sum

∇̂f(zc(t)) =
2

nr2

n∑
i=1

f(zi(t))(zi(t)− zc(t)), (27)

and then obtain the difference θ̄i = θref − θi, where ideally
θref = arg ∇̂f . The difficulty lies in the fact that the vector
zi−zc is not directly available, as we assumed not to have any
position information. We propose the following technique.

During every time interval (t, t+ ∆t), with ∆t sufficiently
long, each sensor i performs n − 1 iterations which involve
an exchange of messages with its preceding and following
neighbours: each sensor i receives the current value computed
by its predecessors, rotates it of an angle κ = ± 2π

n (where the
sign depends on the direction of the rotation of the agents at
the equilibrium), adds its own measurement f(zi) and sends
the result to its successor.

In the sequel we will suppose for simplicity to be in the
attractive region of the equilibrium with ᾱ > 0 (i.e., a counter-
clockwise rotation), hence, we will use a rotation angle of
κ = − 2π

n . A possible more general implementation can use a
rotation angle depending on the current relative bearing angle
measured, i.e., κi(t) = − sign

(
αi(t)

)
2π
n .

The argument of the vector obtained in this way is the ith
reference, which is then used to compute the difference θ̄i and
then, together with the relative bearing angle αi which each
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sensor i measure with respect to its follower, the new control
ui. The detailed algorithm is reported below.

Algorithm 1
gi(0) = f(zi)e

i0{initialisation}
for l = 1, . . . , n− 1 do
gi(l)← gi−1(l − 1){node i receives from i− 1}
gi(l)← gi(l)e

−i 2πn + f(zi)e
i0{update}

end for
θ

(i)
ref = arg gi(n− 1)

δi = − arctan
vc cos θ

(i)
ref

vr+vc sin θ
(i)
ref

θ̄i = θ
(i)
ref − δi − π

2

The following proposition shows the effectiveness of the
proposed algorithm if the sensors are already at the equilib-
rium.

Proposition 7: If the n sensors described by the dynamics
(23) are at the equilibrium (25) with ᾱ > 0, then θ̄i computed
with Algorithm 1 corresponds to the difference

θ̄i = arg ∇̂f(zc)− θi.
Proof: When the sensors are at the equilibrium (25) with

ᾱ > 0, they are turning equispaced in circle around their
centroid zc; hence we have that

γi =

{
arg(zi − zc) + π

2

γ0 + 2π
n i

, ∀i; (28)

in particular, the second one implies that γj = γi + 2π
n (j − i)

for all i, j. Using these properties, we can rewrite the argument
of the Riemann sum in (27) as

arg ∇̂f(zc) = arg

n∑
j=1

f(zj)e
i(γj−π

2 )

= arg

n∑
j=1

f(zj)e
i[γi+ 2π

n (j−i)−π
2 ],∀i.

Node i, at the end of the n− 1 iterations in Algorithm 1, has
computed

gi(n− 1) =

n∑
j=1

f(zj)e
i 2πn (j−i), (29)

so that

θ
(i)
ref = arg gi(n− 1) = arg ∇̂f(zc)− γi +

π

2
. (30)

We want to show that the solution of system

δi = − arctan
vc cos θ

(i)
ref

vr + vc sin θ
(i)
ref

(31A)

θ̄i = θ
(i)
ref − δi −

π

2
(31B)

and the one of

δi = θi − γi (32A)

θ̄i = arg ∇̂f(zc)− θi (32B)

coincide, thus showing that system (31) used in the algorithm
correctly computes the quantities of interest defined by (32).

We already know from (24) that δi = θi− γi implies sin δi =
v̄ sin θ̄i; thus, combining it with (30), system (32) becomes

sin δi = v̄ sin θ̄i

θ̄i = θ
(i)
ref + γi −

π

2
− θi = θ

(i)
ref − δi −

π

2
.

Solving for sin θ̄i we get

sin θ̄i =

{
sin δi
v̄

− cos θ
(i)
ref cos δi − sin θ

(i)
ref sin δi;

equating the solutions and multiplying by v̄
cos δi

yields

tan δi = − v̄ cos θ
(i)
ref

1 + v̄ sin θ
(i)
ref

,

and assuming that δi ∈
[
−π

2 ,
π
2

]
and θ̄i ∈ [−π,π] we obtain

δi = − arctan
vc cos θ

(i)
ref

vr + vc sin θ
(i)
ref

.

Guaranteeing a common reference

As one may notice, Algorithm 1 gives the argument of the
correct gradient approximation only when the sensors are in
formation. Otherwise, not only θ

(i)
ref is not ensured to be a

good approximation of the gradient argument, but it is not
even a common reference, i.e., θ̄i(t) + θi(t) is not the same
for all i (while it should be equal to a common reference in
order to apply Prop. 1). Indeed, Eq. (28) holds only at the
formation. This contradicts the assumption we made about
the reference θref being the same for every sensor, which
guarantees the convergence to the equilibria (25) and thus
to a circular equispaced formation; nevertheless, we proposed
this implementation for its simplicity, since it shows a good
behaviour in simulations, as we will show in Section V.

Below, we propose an alternative algorithm which ensures
that all sensors have a common reference θref , regardless their
relative positions and orientations.

To do so, we need to designate a leader sensor, say node 1.
Moreover, we need the measure of the relative bearing angle
with respect to the predecessor; i.e., in addition to the already-
defined angle αi, we assume that each sensor i can also
measure the angle

α−i (t) = arg(zi−1(t)− zi(t))− θi(t).
The idea is to perform, after a first phase as in Algorithm 1,
a second communication round enforcing θ̄i = θref − θi for
every i, with θref = θ̄1 + θ1.

Algorithm 2
gi(0) = f(zi)e

i0{initialisation, ∀i}
for l = 1, . . . , n− 1 do
gi(l)← gi−1(l − 1){node i receives from i− 1}
gi(l)← gi(l)e

−i 2πn + f(zi)e
i0{update}

end for
θ

(1)
ref = arg g1(n− 1){only node 1}
δ = − arctan

vc cos θ
(1)
ref

vr+vc sin θ
(1)
ref

{only node 1}
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θ̄1 = θ
(1)
ref − δ − π

2 {only node 1}
for i = 1, . . . , n− 1 do
ι = θ̄i − αi − π

2 {node i}
node i+ 1 receives ι from i
θ̄i+1 = ι+ α−i+1 − π

2 {node i+ 1}
end for

Proposition 8: If each sensor i computes θ̄i as in Algo-
rithm 2, then θ̄i(t) = θref(t)− θi(t) ∀i, where θref = θ̄1 + θ1,
and θ̄1 is the same as in Algorithm 1.

Proof: It is easy to see that, with Algorithm 2, θ̄1 is the
same as in Algorithm 1, and

θ̄i+1 = θ̄i + α−i+1 − αi − π

= θ̄i + arg(zi − zi+1)− θi+1 − arg(zi+1 − zi) + θi − π

= θ̄i + θi − θi+1,

from which, recursively, we get θ̄i = θ̄1 + θ1 − θi.

Alternative communication strategies
Algorithms 1 and 2 are based on a ring communication

topology, namely messages are sent from sensor i to i+ 1, but
they can be easily adapted to a variety of other communication
setups, by making use of well-known linear average-consensus
algorithms. Consider a given communication graph describing
which sensors are allowed to send messages to one another,
and a linear consensus algorithm, described by n×n matrices
P (0), P (1), . . . , where Pij is 0 if there is no edge from
j to i. At each iteration of the consensus algorithm, each
node i sends its current state, say ξi(l), to its neighbors, and
then computes the state update ξi(l + 1) =

∑
j Pij(l)ξj(l),

using the received neighbors states and its own state. Under
mild assumptions on the communication graph, there are
well-known constructions of asymptotic average consensus
algorithms, such that liml→∞ ξ(l) = 1

n

∑
j ξj(0) (e.g., with

time-invariant doubly-stochastic P [18]), of finite-time average
consensus algorithms, such that ξ(L) = 1

n

∑
j ξj(0) for some

L [19], and gossip consensus, where P (k)’s are random ma-
trices consistent with random asynchronous communications
while ensuring some stochastic convergence near the average
of initial values [20]. Algorithm 1 can be modified as follows,
where we use a given linear consensus algorithm, but we rotate
state vectors at each iteration in a suitable way.

Algorithm 3
gi(0) = f(zi)e

i0{initialisation}
for l = 1, . . . , L do
i receives gj(l−1) from all neighbors j{communication}
gi(l)←

∑
j Pij(l − 1)ei 2πn (j−i)gj(l − 1){update}

end for
θ

(i)
ref = arg gi(L)

δi = − arctan
vc cos θ

(i)
ref

vr+vc sin θ
(i)
ref

θ̄i = θ
(i)
ref − δi − π

2

At the end of the cycle of communications and updates, we
get

gi(L) =
∑
jL−1

· · ·
∑
j0

PijL−1
(L−1)·. . .·Pj1j0(0)ei(j0−i)f(zj0).

If we define ξj(0) = f(zj)e
i 2πn j , the standard linear consensus

(with no rotation) would give

ξi(L) =
∑
jL−1

· · ·
∑
j0

PijL−1
(L−1) · . . . ·Pj1j0(0)f(zj0)ei 2πn j0 .

Hence, gi(L) = ei(− 2π
n i)ξi(L), and inherits the convergence

properties of the chosen consensus algorithm: if this is a finite-
time average consensus, we get

gi(L) = ei(− 2π
n i) 1

n

∑
j

ξj(0) =
1

n

∑
j

f(zj)e
i 2πn (j−i) .

Comparing this with (29), we can see that the only difference
with Algorithm 1 is a factor 1

n , which is irrelevant when
computing the argument θ(i)

ref = arg gi(L), so that the result of
Algorithm 3 is exactly the same as the one of Algorithm 1.
When consensus only has asymptotic convergence, the same
applies to Algorithm 3, which then gives an approximation of
the value obtained in Algorithm 1.

In a similar way, also Algorithm 2 can be adapted, provided
that each node can measure the relative angle αij = arg(zj −
zi)−θi with respect to all of its in- and out-neighbors. The first
part, to find θ̄1, follows the same technique as in Algorithm 3.
Then, node 1 initializes its state to χ1(0) = eiθ̄1 , while all
other nodes set χi(0) = 0. Again, a modified consensus is
run, where messages are suitably rotated versions of the local
states: at iteration l, node i receives ei(−αji−π

2 )χj(l−1) from
each neighbor j, and then computes

χi(l) =
∑
j

Pij(l − 1)ei(αij−π
2 )ei(−αji−π

2 )χj(l − 1).

After L iterations, each node i computes θ̄i = argχi(L), thus
ending the algorithm.

It is easy to show that, with finite-time average consensus,
χi(L) = 1

nei(θ̄1+θ1−θi), so that its argument gives exactly the
same θ̄i as in Algorithm 2. In case of asymptotic convergence
to consensus, this method only allows an approximation of a
common reference, without guaranteeing it exactly.

V. SIMULATIONS

To validate our algorithm we consider the search of a heat
source in a 2-dimensional room 20 × 12 m large; the walls
are considered perfectly isolating, and we suppose to have an
open window with an external temperature of Text = 5 °C, and
a circular heater of Ts = 50 °C in the middle. Our scenario
is described by the problem with mixed Dirichlet-Neumann
boundary conditions

f(z) = Text on the window border
f(z) = Ts on the source border

∇f(z) · n̂ = 0 on the walls

∇2f(z) = 0 inside the room,

with n̂ the outward unit normal to the wall.
To illustrate our algorithm, we consider a set of n sensors

with dynamics (1) and with the control law described in
(6). The reference direction approximating the gradient is
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Fig. 5: Three simulations with five sensors in random initial
positions.

computed with Algorithm 1, and its time derivative θ̇ref is
obtained with discrete backward approximation.

Figure 5 shows the result of three simulations with n = 5
sensors, starting from random initial positions and with ran-
dom initial orientations, with velocities of vr = 0.5 and
vc = 0.1 m/s; the values for the control gain k is chosen
such to have a formation radius of r = 0.5 m, i.e., k = nvr

πr ≈
1.5915. We can see the trajectory of the sensors as well as the
one of their centroid (in black); the black-bordered triangles
represent the initial conditions of each sensor, while the white-
bordered ones show their position and orientation when the
formation reached the heater (the circle in the middle). The
sensors reach a circular configuration soon, and then keep
moving towards the source following the gradient of the field,
approximately. Even if the theoretical convergence is local
(for initial conditions near circle formation), the algorithm
demonstrated to be effective also for randomly generated
initial conditions. Moreover, despite the theoretical request to
have the same common reference for each sensor in order to
guarantee convergence, in practice Algorithm 1, which does
not fulfill this assumption, gives good results.

Figures 6 and 7 show simulations similar to the ones
in Figure 5, but illustrating the effect of noise and delay,
respectively. In Figure 6, both temperature and bearing an-
gle measurements are corrupted by white Gaussian noise of
standard deviation σ = 0.5. In Figure 7 the updates of the
reference angle θref happen with a delay of 1s, so as to show
that the behaviour is not very degraded even in a case where
distributed computation of θref is heavily affected by delays
in transmissions and computations.

Our algorithm can be applied with a different number
of sensors, the minimum number being three, because two
measurements are not enough to gather information about a 2-
dimensional gradient. In our simulations (not reported for lack
of space), we have seen that three sensors are enough to have
a nice behaviour, qualitatively similar to the one illustrated
here with five sensors. A larger number of sensors ensures a
better gradient approximation (at least when all sensors are
in circular formation), but on the other hand the delay in the
distributed computation of θref grows linearly with n, due to
the round of communications and updates in Algorithm 1. In

Fig. 6: Three simulations with five sensors in random initial
positions, with noisy measurements.

Fig. 7: Three simulations with five sensors in random initial
positions, with delay in the computation of θref .

Figure 8, we show the trajectories obtained with different val-
ues of n, taking into account the corresponding delay. Sensors
are initially placed in equispaced formation around a same cir-
cle, and we plot only the trajectory of the formation centroid.
The parameters used in these simulations are vr = 0.5 and
vc = 0.1 m/s; the gain is k = nvr

πr whith radius r = 1 m. Due
to the use of Algorithm 1, θref is computed with a delay which
grows linearly with n. However, the delay duration strongly
depends on the software and hardware used for computation
and communication. In Figure 8, we consider an example of
application using MATLAB© on a general-purpose computer
with a 2GHz clock, and an Arduino board. In this case,
temperature acquisition and wireless IrDA transmission take
negligible time, while computations (which need to be done
sequentially: node i waits for the result of the computation at
node i − 1), results in a total delay of approximately 5n ms.
Such a delay does not have a major impact on the trajectories,
and with growing n the trajectory of the centroid becomes
a better2 approximation of the ideal gradient ascent, which is
plotted in black line for comparison. We have simulated a case

2In our simulations with same parameters as in Figure 8, we have always
obtained that larger n brings trajectories nearer to the ideal gradient ascent
curve. In many cases, as in Figure 8, this also gives better trajectories, both
in terms of time and distance necessary to reach the source. However, this
is not true in general, in some cases a deviation from gradient ascent due to
lower n can also lead to a shorter trajectory.
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gradient ascent

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

n = 10, bigger delay

Fig. 8: Trajectories of the formation centroid, from initial
equilibrium formation around a same circle, for different
values of n. The computation of θr is affected by delay
growing linearly with n, as 5n ms. Ideal gradient ascent is
shown for comparison. Dashed line has n = 10 and higher
delay 25n = 250 ms.

where delay grows more dramatically, as 25n ms instead of
5n ms. For n ≤ 9 this delay results in trajectories similar to
the ones with smaller delay depicted in Figure 8, while for
n = 10 the centroid trajectory is visibly degraded, as shown
by the dashed line added to the figure. This suggests to use a
small number of sensors in applications with high delays. If
a large number of sensors is necessary, e.g., because a large
formation radius is required and communication range is small,
it is still possible to mitigate the effect of delays, by suitably
tuning the speed parameters vc and vr, although at the price
of a slower motion towards the source.

VI. CONCLUSIONS

We considered the problem of localising a source by a
set of communicating mobile sensors providing pointwise
concentration measures and able to measure the relative bear-
ing angle with respect to their neighbour. We have focused
our attention on steady-state homogeneous isotropic diffusion
processes, and developed a control law which allows the
sensors to compute, in a distributed way, an estimation of
the gradient argument of the function describing the diffusion
of the measured quantity; such a control law did not use any
explicit expression for the solution of the PDE, nor any global
position information. The convergence of the source-seeking
algorithm has been theoretically proven and, as an illustrative
example, we have considered the search of a heat source in a
2-dimensional room.
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