D. Aldous, Brownian excursions, critical random graphs and the multiplicative coalescent, The Annals of Probability, vol.25, issue.2, pp.812-854, 1997.
DOI : 10.1214/aop/1024404421

E. Baur, Percolation on random recursive trees. Random Structures Algorithms, pp.48-52, 2016.

E. Baur and J. Et-bertoin, Cutting Edges at Random in Large Recursive Trees, Stochastic Analysis and Applications, pp.51-76, 2014.
DOI : 10.1007/978-3-319-11292-3_3

URL : https://hal.archives-ouvertes.fr/hal-00982497

E. Baur and J. Et-bertoin, The fragmentation process of an infinite recursive tree and Ornstein-Uhlenbeck type processes, Electronic Journal of Probability, vol.20, issue.0, pp.20-98, 2015.
DOI : 10.1214/EJP.v20-3866

URL : https://hal.archives-ouvertes.fr/hal-01071463

E. Baur and J. Et-bertoin, Weak limits for the largest subpopulations in Yule processes with high mutation probabilities, pp.1603-06564

F. Bergeron, P. Flajolet, and B. Et-salvy, Varieties of increasing trees, Lecture Notes in Comput. Sci. 581, pp.92-116, 1992.
DOI : 10.1007/3-540-55251-0_2

URL : https://hal.archives-ouvertes.fr/inria-00074977

J. Bertoin, Sizes of the largest clusters for supercritical percolation on random recursive trees. Random Structures Algorithms 44-1, pp.1098-2418, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00636264

J. Bertoin, On the non-Gaussian fluctuations of the giant cluster for percolation on random recursive trees, Electronic Journal of Probability, vol.19, issue.0, pp.19-24, 2014.
DOI : 10.1214/EJP.v19-2822

URL : https://hal.archives-ouvertes.fr/hal-00819320

L. Devroye, Applications of the theory of records in the study of random trees, Acta Informatica, vol.11, issue.1-2, pp.123-130, 1988.
DOI : 10.1007/BF02915448

M. Drmota, Random trees, 2009.
DOI : 10.1007/978-3-211-75357-6

URL : https://hal.archives-ouvertes.fr/inria-00001281

M. Drmota, A. Iksanov, M. Möhle, and U. Et-rösler, A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms, pp.34-37, 2009.

P. Erd?-os and A. Et-rényi, On random graphs. I. Publ, Math. Debrecen, vol.6, pp.290-297, 1959.

P. Erd?-os and A. Et-rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl, vol.5, pp.17-61, 1960.

E. N. Gilbert, Random Graphs, The Annals of Mathematical Statistics, vol.30, issue.4, pp.1141-1144, 1959.
DOI : 10.1214/aoms/1177706098

C. Goldschmidt and J. Et-martin, Random Recursive Trees and the Bolthausen-Sznitman Coalesent, Electronic Journal of Probability, vol.10, issue.0, pp.718-745, 2005.
DOI : 10.1214/EJP.v10-265

A. Iksanov and M. Et-möhle, A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree, Electronic Communications in Probability, vol.12, issue.0, pp.28-35, 2007.
DOI : 10.1214/ECP.v12-1253

M. Kuba and A. Et-panholzer, Multiple isolation of nodes in recursive trees, Online Journal of Analytic Combinatorics, vol.9, 2014.

A. Meir and J. W. Et-moon, Cutting down random trees, Journal of the Australian Mathematical Society, vol.38, issue.03, pp.313-324, 1970.
DOI : 10.1112/jlms/s1-33.4.471

A. Meir and J. W. Et-moon, Cutting down recursive trees, Mathematical Biosciences, vol.21, issue.3-4, pp.173-181, 1974.
DOI : 10.1016/0025-5564(74)90013-3

M. Möhle, The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent, Lat. Am. J. Probab. Math. Stat, pp.12-13, 2015.

J. Pitman, Combinatorial Stochastic Processes. ´ Ecole d'´ eté de Probabilités de St, Flour. Lecture Notes in Mathematics, vol.1875, 2006.

J. Schweinsberg, Dynamics of the evolving Bolthausen-Sznitman coalescent, Electron. J. Probab, vol.17, pp.1-50, 2012.

G. U. Yule, A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S., Philosophical Transactions of the Royal Society B: Biological Sciences, vol.213, issue.402-410, pp.21-87, 1925.
DOI : 10.1098/rstb.1925.0002