J. P. Pujol, Le cartilage articulaire: structure, fonction, répa-ration, Symposia, pp.159-171, 2000.

J. Pujol, C. Chadjichristos, and F. Legendre, Interleukin-1 and transforming growth factor-1 as crucial factors in osteoarthritic cartilage metabolism, Connective Tissue Research, vol.49, issue.3-4, pp.293-297, 2008.

Y. Hiraki, C. Shukunami, K. Iyama, and H. Mizuta, Differentiation of chondrogenic precursor cells during the regeneration of articular cartilage, Osteoarthritis and Cartilage/OARS, vol.9, pp.102-108, 2001.

M. L. Duynstee, H. L. Verwoerd-verhoef, C. D. Verwoerd, and G. J. Van-osch, The dual role of perichondrium in cartilage wound healing, Plastic and Reconstructive Surgery, vol.110, issue.4, pp.1073-1079, 2002.

C. J. Xian and B. K. Foster, Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy, Current Stem Cell Research & Therapy, vol.1, issue.2, pp.213-229, 2006.

B. S. Dhinsa and A. B. Adesida, Current clinical therapies for cartilage repair, their limitation and the role of stem cells, Current Stem Cell Research & Therapy, vol.7, issue.2, pp.143-148, 2012.

S. R. Frenkel and P. E. Di-cesare, Degradation and repair of articular cartilage, Frontiers in Bioscience: A Journal and Virtual Library, vol.4, pp.671-685, 1999.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, The New England Journal of Medicine, vol.331, issue.14, pp.889-895, 1994.

G. Musumeci, P. Castrogiovanni, and R. Leonardi, New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review, World Journal of Orthopaedics, vol.5, issue.2, pp.80-88, 2014.

C. Baugé, E. Duval, and D. Ollitrault, Type II TGF receptor modulates chondrocyte phenotype, Age, vol.35, issue.4, pp.1105-1116, 2013.

E. Duval, C. Baugé, and R. Andriamanalijaona, Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering, Biomaterials, vol.33, issue.26, pp.6042-6051, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01149536

E. Duval, N. Bigot, and M. Hervieu, Asporin expression is highly regulated in human chondrocytes, Molecular Medicine, vol.17, issue.7-8, pp.816-823, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01149586

I. Martin, H. Baldomero, and C. Bocelli-tyndall, The survey on cellular and engineered tissue therapies in Europe in 2011, Tissue Engineering Part A, vol.20, issue.3-4, pp.842-853, 2014.

A. J. Friedenstein, I. I. Piatetzky-shapiro, and K. V. Petrakova, Osteogenesis in transplants of bone marrow cells, Journal of Embryology and Experimental Morphology, vol.16, issue.3, pp.381-390, 1966.

M. F. Pittenger, A. M. Mackay, and S. C. Beck, Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, issue.5411, pp.143-147, 1999.

M. B. Eslaminejad and E. M. Poor, Mesenchymal stem cells as a potent cell source for articular cartilage regeneration, World Journal of Stem Cells, vol.6, issue.3, pp.344-354, 2014.

P. A. Zuk, M. Zhu, and P. Ashjian, Human adipose tissue is a source of multipotent stem cells, Molecular Biology of the Cell, vol.13, issue.12, pp.4279-4295, 2002.

J. K. Fraser, I. Wulur, Z. Alfonso, and M. H. Hedrick, Fat tissue: an underappreciated source of stem cells for biotechnology, Trends in Biotechnology, vol.24, issue.4, pp.150-154, 2006.

Y. Sakaguchi, I. Sekiya, K. Yagishita, and T. Muneta, Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source, Arthritis & Rheumatism, vol.52, issue.8, pp.2521-2529, 2005.

S. Shirasawa, I. Sekiya, Y. Sakaguchi, K. Yagishita, S. Ichinose et al., In vitro chondrogenesis of human synoviumderived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells, Journal of Cellular Biochemistry, vol.97, issue.1, pp.84-97, 2006.

F. Granero-moltó, J. A. Weis, and M. I. Miga, Regenerative effects of transplanted mesenchymal stem cells in fracture healing, Stem Cells, vol.27, issue.8, pp.1887-1898, 2009.

K. A. Jackson, T. Mi, and M. A. Goodell, Hematopoietic potential of stem cells isolated from murine skeletal muscle, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.14482-14486, 1999.

B. Cao, B. Zheng, and R. J. Jankowski, Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential, Nature Cell Biology, vol.5, issue.7, pp.640-646, 2003.

N. Adachi, K. Sato, and A. Usas, Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects, The Journal of Rheumatology, vol.29, issue.9, 1920.

R. Kuroda, A. Usas, and S. Kubo, Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells, Arthritis & Rheumatism, vol.54, pp.433-442, 2006.

R. Andriamanalijaona, E. Duval, and M. Raoudi, Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture, Osteoarthritis and Cartilage, vol.16, issue.12, pp.1509-1518, 2008.

S. Liu, K. D. Hou, and M. Yuan, Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage, Journal of Bioscience and Bioengineering, vol.117, issue.2, pp.229-235, 2014.

Y. Sang, W. Zang, and Y. Yan, Study of differential effects of TGF-beta3/BMP2 on chondrogenesis in MSC cells by gene microarray data analysis, Molecular and Cellular Biochemistry, vol.385, issue.1-2, pp.191-198, 2014.

C. Hou, Z. Yang, and Y. Kang, MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway, FEBS Letters, vol.589, issue.9, pp.1040-1047, 2015.

T. Juhász, C. Matta, and C. Somogyi, Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures, Cellular Signalling, vol.26, issue.3, pp.468-482, 2014.

K. Miyanishi, M. C. Trindade, and D. P. Lindsey, Effects of hydrostatic pressure and transforming growth factor-3 on adult human mesenchymal stem cell chondrogenesis in vitro, Tissue Engineering, vol.12, issue.6, pp.1419-1428, 2006.

B. Johnstone, M. Alini, and M. Cucchiarini, Tissue engineering for articular cartilage repair-the state of the art, European Cells and Materials, vol.25, pp.248-267, 2013.

A. Derfoul, G. L. Perkins, D. J. Hall, and R. S. Tuan, Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes, Stem Cells, vol.24, issue.6, pp.1487-1495, 2006.

R. Tuli, S. Tuli, and S. Nandi, Transforming growth factorbeta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk, The Journal of Biological Chemistry, vol.278, issue.42, pp.41227-41236, 2003.

C. Baugé, N. Girard, E. Lhuissier, C. Bazille, and K. Boumediene, Regulation and role of TGF signaling pathway in aging and osteoarthritis joints, Aging and Disease, vol.5, issue.6, pp.394-405, 2014.

C. M. Ferguson, E. M. Schwarz, P. R. Reynolds, J. E. Puzas, R. N. Rosier et al., Smad2 and 3 mediate transforming growth factor-beta1-induced inhibition of chondrocyte maturation, Endocrinology, vol.141, issue.12, pp.4728-4735, 2000.

K. Kawamura, C. R. Chu, and S. Sobajima, Adenoviralmediated transfer of TGF-1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures, Experimental Hematology, vol.33, issue.8, pp.865-872, 2005.

H. Ma, T. Chen, L. L. , .. Ho, and S. Hung, Neocartilage from human mesenchymal stem cells in alginate: implied timing of transplantation, Journal of Biomedical Materials Research Part A, vol.74, issue.3, pp.439-446, 2005.

E. Lieb, T. Vogel, S. Milz, M. Dauner, and M. B. Schulz, Effects of transforming growth factor 1 on bonelike tissue formation in three-dimensional cell culture. II. Osteoblastic differentiation, Tissue Engineering, vol.10, issue.9, pp.1414-1425, 2004.

A. Spagnoli, Mesenchymal stem cells and fracture healing, Orthopedics, vol.31, issue.9, pp.855-856, 2008.

D. Magne, C. Vinatier, M. Julien, P. Weiss, and J. Guicheux, Mesenchymal stem cell therapy to rebuild cartilage, Trends in Molecular Medicine, vol.11, issue.11, pp.519-526, 2005.

T. Kameda, C. Koike, K. Saitoh, A. Kuroiwa, and H. Iba, Analysis of cartilage maturation using micromass cultures of primary chondrocytes, Development Growth and Differentiation, vol.42, issue.3, pp.229-236, 2000.

A. Haaijman, E. H. Burger, and S. W. Goei, Correlation between ALK-6 (BMPR-IB) distribution and responsiveness to osteogenic protein-1 (BMP-7) in embryonic mouse bone rudiments, Growth Factors, vol.17, issue.3, pp.177-192, 2000.

W. S. Toh, Z. Yang, H. Liu, B. C. Heng, E. H. Lee et al., Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells, Stem Cells, vol.25, pp.950-960, 2007.

A. T. Mehlhorn, H. Schmal, and S. Kaiser, Mesenchymal stem cells maintain TGF--mediated chondrogenic phenotype in alginate bead culture, Tissue Engineering, vol.12, issue.6, pp.1393-1403, 2006.

A. T. Mehlhorn, P. Niemeyer, and K. Kaschte, Differential effects of BMP-2 and TGF-1 on chondrogenic differentiation of adipose derived stem cells, Cell Proliferation, vol.40, issue.6, pp.809-823, 2007.

X. Bai, Z. Xiao, and Y. Pan, Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes, Biochemical and Biophysical Research Communications, vol.325, issue.2, pp.453-460, 2004.

R. Kuroda, K. Ishida, and T. Matsumoto, Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells, Osteoarthritis and Cartilage/OARS, vol.15, issue.2, pp.226-231, 2007.

S. Wakitani, M. Nawata, K. Tensho, T. Okabe, H. Machida et al., Repair of articular cartilage defects in the patellofemoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees, Journal of Tissue Engineering and Regenerative Medicine, vol.1, issue.1, pp.74-79, 2007.

S. Wakitani, T. Mitsuoka, N. Nakamura, Y. Toritsuka, Y. Nakamura et al., Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports, Cell Transplantation, vol.13, issue.5, pp.595-600, 2004.

S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata et al., Human autologous culture expanded bone marrow-mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees, Osteoarthritis and Cartilage, vol.10, issue.3, pp.199-206, 2002.

C. J. Centeno, D. Busse, J. Kisiday, C. Keohan, M. Freeman et al., Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells, Pain Physician, vol.11, issue.3, pp.343-353, 2008.

F. Davatchi, B. S. Abdollahi, M. Mohyeddin, F. Shahram, and B. Nikbin, Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients, International Journal of Rheumatic Diseases, vol.14, issue.2, pp.211-215, 2011.

M. Emadedin, N. Aghdami, and L. Taghiyar, Intra-articular injection of autologous mesenchymal stem cells in six patients with knee Osteoarthritis, Archives of Iranian Medicine, vol.15, issue.7, pp.422-428, 2012.

L. Orozco, A. Munar, and R. Soler, Treatment of knee osteoarthritis with autologous mesenchymal stem cells: twoyear follow-up results, Transplantation, vol.97, issue.11, pp.66-68, 2014.

L. Orozco, A. Munar, and R. Soler, Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study, Transplantation, vol.95, issue.12, pp.1535-1541, 2013.

H. Koga, L. Engebretsen, J. E. Brinchmann, T. Muneta, and I. Sekiya, Mesenchymal stem cell-based therapy for cartilage repair: a review, Knee Surgery, Sports Traumatology, Arthroscopy, vol.17, issue.11, pp.1289-1297, 2009.

K. Pelttari, A. Winter, and E. Steck, Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice, Arthritis and Rheumatism, vol.54, issue.10, pp.3254-3266, 2006.

F. Mwale, D. Stachura, P. Roughley, and J. Antoniou, Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation, Journal of Orthopaedic Research, vol.24, issue.8, pp.1791-1798, 2006.

F. Mwale, P. Girard-lauriault, H. T. Wang, S. Lerouge, J. Antoniou et al., Suppression of genes related to hypertrophy and osteogenesis in committed human mesenchymal stem cells cultured on novel nitrogen-rich plasma polymer coatings, Tissue Engineering, vol.12, issue.9, pp.2639-2647, 2006.

I. Sekiya, J. T. Vuoristo, B. L. Larson, and D. J. Prockop, In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis, Proceedings of the National Academy of Sciences of the United States of America, vol.99, issue.7, pp.4397-4402, 2002.

K. Gelse, K. Mark, T. Aigner, J. Park, and H. Schneider, Articular cartilage repair by gene therapy using growth factorproducing mesenchymal cells, Arthritis & Rheumatism, vol.48, issue.2, pp.430-441, 2003.

L. Longobardi, L. O'rear, and S. Aakula, Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-signaling, Journal of Bone and Mineral Research, vol.21, issue.4, pp.626-636, 2006.

L. A. Solchaga, K. Penick, J. D. Porter, V. M. Goldberg, A. I. Caplan et al., FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells, Journal of Cellular Physiology, vol.203, issue.2, pp.398-409, 2005.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, issue.4, pp.663-676, 2006.

R. Katayama, S. Wakitani, and N. Tsumaki, Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow, Rheumatology, vol.43, issue.8, pp.980-985, 2004.

K. Okita, T. Yamakawa, and Y. Matsumura, An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells, Stem Cells, vol.31, issue.3, pp.458-466, 2013.

N. Tsumaki, M. Okada, and A. Yamashita, iPS cell technologies and cartilage regeneration, Bone, vol.70, pp.48-54, 2015.

J. Ko, K. Kim, S. Park, and G. Im, In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells, Biomaterials, vol.35, issue.11, pp.3571-3581, 2014.

S. Shieh, S. Terada, and J. P. Vacanti, Tissue engineering auricular reconstruction: in vitro and in vivo studies, Biomaterials, vol.25, issue.9, pp.1545-1557, 2004.

I. T. Ozbolat and Y. Yu, Bioprinting toward organ fabrication: challenges and future trends, IEEE Transactions on Biomedical Engineering, vol.60, issue.3, pp.691-699, 2013.

T. Boland, T. Xu, B. Damon, and X. Cui, Application of inkjet printing to tissue engineering, Biotechnology Journal, vol.1, issue.9, pp.910-917, 2006.

T. Xu, J. Jin, C. Gregory, J. J. Hickman, and T. Boland, Inkjet printing of viable mammalian cells, Biomaterials, vol.26, issue.1, pp.93-99, 2005.

J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns, Biomedical Microdevices, vol.6, issue.2, pp.139-147, 2004.

L. Koch, S. Kuhn, and H. Sorg, Laser printing of skin cells and human stem cells, Tissue Engineering Part C: Methods, vol.16, issue.5, pp.847-854, 2010.

D. J. Odde and M. J. Renn, Laser-guided direct writing for applications in biotechnology, Trends in Biotechnology, vol.17, issue.10, pp.385-389, 1999.

S. Khalil and W. Sun, Biopolymer deposition for freeform fabrication of hydrogel tissue constructs, Materials Science and Engineering C, vol.27, issue.3, pp.469-478, 2007.

T. H. Ang, F. S. Sultana, and D. W. Hutmacher, Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system, Materials Science and Engineering C, vol.20, issue.1-2, pp.35-42, 2002.

Y. Yan, Z. Xiong, Y. Hu, S. Wang, R. Zhang et al., Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition, Materials Letters, vol.57, issue.18, pp.2623-2628, 2003.

S. Deitch, C. Kunkle, X. Cui, T. Boland, and D. Dean, Collagen matrix alignment using inkjet printer technology, Proceedings of the Materials Research Society Symposium, vol.1094, pp.52-57, 2008.

T. Xu, C. A. Gregory, and P. Molnar, Viability and electrophysiology of neural cell structures generated by the inkjet printing method, Biomaterials, vol.27, issue.19, pp.3580-3588, 2006.

X. Cui and T. Boland, Human microvasculature fabrication using thermal inkjet printing technology, Biomaterials, vol.30, issue.31, pp.6221-6227, 2009.

Y. Yu, Y. Zhang, J. A. Martin, and I. T. Ozbolat, Evaluation of cell viability and functionality in vessel-like bioprintable cellladen tubular channels, Journal of Biomechanical Engineering, vol.135, issue.9, 2013.

J. Elisseeff, W. Mcintosh, K. Anseth, S. Riley, P. Ragan et al., Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks, Journal of Biomedical Materials Research, vol.51, issue.2, pp.164-171, 2000.

S. J. Bryant and K. S. Anseth, Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels, Journal of Biomedical Materials Research, vol.59, issue.1, pp.63-72, 2002.

X. Cui, K. Breitenkamp, M. G. Finn, M. Lotz, and D. D. D'lima, Direct human cartilage repair using three-dimensional bioprinting technology, Tissue Engineering, Part A, vol.18, issue.11-12, pp.1304-1312, 2012.

T. Xu, K. W. Binder, and M. Z. Albanna, Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications, Biofabrication, vol.5, issue.1, 2013.