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An Invariant Manifold Approach to Nonlinear Normal 
Modes of Oscillation 

S. W. Shaw 
Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, 
Ann Arbor, MI 48109-2125, USA 

Summary. A method for determining the amplitude-dependent mode shapes and 
the corresponding modal dynamics of weakly nonlinear vibratory systems is de· 
scribed. The method is a combination of a Galerkin projection and invariant 
manifold techniques and is applied to a class of distributed parameter vibratory 
systems. In this paper the general theory for a class of conservative systems is 
outlined and applied to determine the nonlinear mode shapes and modal dynamics 
of a linear Euler-Bernoulli team attached to a nonlinear elastic foundation. 

Key words. nonlinear vibrations, nonlinear oscillations, invariant manifolds, normal 
modes, Galerkin 

1. Introduction 

Traditional methods for determining the effects of nonlinearities on the mode 
shapes of vibrating systems typically involve an assumed form of harmonic time 
behavior and series expansions for the frequency of oscillation and the mode shapes 
in terms of the amplitude of vibration (see, for example, Bennouna and White [1], 
Benamar et al. [2], or Szemplinska [3]). A more formal approach is found in the 
classical work of Rosenberg [4], which was followed by many subsequent efforts, for 
example, those of Rand [5-7] and Vakakis [8-10] and their co-workers, all of which 
used definitions of normal modes in terms of periodic motions for finite-dimensional, 
conservative, nonlinear systems, typically with two degrees-of-freedom. Recent work 
by Jezequel and Lamarque [11] uses normal form theory to generate nonlinear 
normal modes, again for systems with two degrees of freedom. Their approach does 
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allow for the inclusion of special types of damping. Vakakis has used nonlinear 
normal mode methods to analyze nonlinear effects on mode localization in multi 
degree of freedom, cyclic systems [12]. 

The method described herein takes a point of view, which is fundamentally 
different from that found in previous engineering literature on the subject. Rather 
than view nonlinear normal modes as synchronous motions of conservative systems, 
they are viewed as motions on invariant manifolds which are tangent to, and of the 
same dimension as, the linear eigenspaces in the system phase space. These 
manifolds are the standard foliation of the center-stable manifold of the equilibrium 
point of interest, and their existence depends crucially on certain nonresonance 
conditions being satisfied. 

These manifolds are familiar to someone trained in dynamical systems theory, but 
they have only recently been exploited for the construction of nonlinear normal 
mode shapes and modal dynamics. Shaw and Pierre developed methods of construct­
ing nonlinear normal modes for both lumped-parameter [13] and distributed param­
eter [14] vibratory systems in this manner. Such an approach allows for the definition 
and construction of nonlinear normal modes even in the presence of gyroscopic 
and/ or dissipative terms. These efforts were followed by the work of Nayfeh and 
co-workers [15, 16], who use both perturbation and invariant manifold techniques to 
generate nonlinear normal modes, including the investigation of a case with internal 
resonance [17]. King and Vakakis [18] have used a combination of Rosenberg's ideas 
with the method presented in [14] in order to generate normal modes for continuous 
systems. This work also includes an investigation of the stability properties of 
nonlinear modes. 

Along similar lines, much work has been done on the existence and smoothness 
of these manifolds for finite-dimensional, conservative, Hamiltonian systems. The 
main result in the nonresonant case is the Lyapunov center theorem which states 
that if the Hamiltonian is C1 and the linearized system has purely imaginary 
eigenvalues +fij (j = l, ... ,m) such that for j =I= k, nk;nj =I= n (n = 1,2,3, ... ), 
then there exist m two-dimensional, local C1 invariant manifolds. (This result is 
due to Lyapunov, and a simple proof is given by Kelly [19).) These are the non­
linear normal mode manifolds of interest here, and each manifold contains a one­
parameter family of periodic solutions. Other work in this area includes that of 
Weinstein and Moser on bounds for the number of periodic orbits which can exist 
near an equilibrium point [20, 21], and extensive work on the resonant cases; see 
[22-25], for example. It is important to point out that in the strong resonance cases 
(n = 1, 2, 3), the number of families of periodic solutions is not generally the same 
as the number of pairs of complex conjugate eigenvalues. The nonlinear normal 
modes defined in the present work do not generally exist in such cases. 

The method developed by Shaw and Pierre [14] is a systematic means for 
generating nonlinear normal mode manifolds for nonresonant partial differential 
equations which arise in structural vibrations. It involves some rather cumbersome 
calculation steps and the results depend on the selection of a suitable base point. 
The method described herein is aimed at providing an alternative approach which 
avoids some of these difficulties. The first step is to apply a usual Galerkin projection 
of the partial differential equations of motion onto a set of basis functions which 
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consist of the mode shapes of the linearized system. This leads to a set of ordinary 
differential equations which describe the dynamics of the nonlinear system in terms 
of the linear modal amplitudes. This standard first step leads to equations of motion 
which are uncoupled at linear order. The invariant manifold approach developed in 
[13] is then applied in order to determine how the nonlinear coupling distorts the 
mode shapes and dynamics in the weakly nonlinear system. At this step it is 
important to treat the linear modal amplitudes and velocities as independent 
variables, as they provide the coordinates which parameterize the manifolds. Overall, 
this procedure provides a straightforward means for determining the amplitude­
dependent shapes of natural vibration for weakly nonlinear, distributed parameter 
systems. The resonance cases are flagged directly by singularities in the equations 
which are to be solved for the coefficients describing the manifolds. 

One important conclusion of the results obtained is that one must be careful 
when generating reduced order models for the vibration of continua using modal 
projections. The typical step of projecting the partial differential equation onto a 
subset of the linear modes must be done with care, especially if one requires more 
than first-order nonlinear information about the system at hand. This shortcoming 
was observed by Nayfeh et al. [26] in the analysis of the dynamic response of a valve 
system, and is systematically explored here. 

The paper is arranged as follows. In Section 2 the general method is described for 
a class of weakly nonlinear partial differential equations which arise in mechanical 
vibrations of distributed parameter systems. The method is applied to an example 
problem in Section 3 and the paper closes with some remarks in Section 4. It should 
be noted that the methods presented herein were motivated by the analysis of 
nonlinear mechanical structures, but they may have· a wider range of applicability. 

2. The Method 

2.1. Equations of Motion 

Consider one-dimensional vibrations of a one-dimensional continuum which occu~ 
pies the region described by the spatial variable s E (0, 1). The equations of motion 
are assumed to be of the form 

a2w(s, t) 
--at--::-2- + L(w(s~ t)) + N(w(s, t)) = 0 (1) 

with linear boundary conditions at s = 0, 1 of 

B 1 ( W ( S, t)) is= 0 = 0, B2(w(s, t))ls=l = 0. (2) 

The equilibrium configuration about which the system vibrates is taken to be 
w(s, t) = 0, that is, L(O) = N(O) = 0. The operator L is taken to be linear and 
self-adjoint, while the nonlinear operator N is assumed to possess smoothness 
properties that allow it to be expanded to any order desired. The linear system, 
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N = 0, is assumed to have nonzero natural frequencies flj with nj;nk::;:: 1, 2, 3, ... 
and associated normal mode shapes cfJ/s) for j = 1, 2, 3, ... , which are normalized 
according to the definition given in equation (4) below. The system eigenvalues are 
thus ±i!lr The inner product between real-valued functions on the unit interval is 
defined in the usual manner as 

(f(s),g(s)) = l1f(~)g(~)d~. 
0 

(3) 

The following general properties then hold for the linear system: 

(¢i(s),¢/s)) = sij' 

(4) 
( ¢i(s), L(¢/s))) = 11J5ij' 

where oij is the Kronecker delta. 
The solution of the equation of motion is now assumed to be of the form of an 

infinite series involving the linear normal modes and their amplitudes as functions of 
time as 

w(s,t) = L 4>/s)q/t). 
j ... l 

(5) 

Here qi(t) represents the contribution of the jth linear mode to the response. This 
solution form is substituted into the equation of motion, which is then projected 
onto the linear modes by using the inner product. Using the properties of the linear 
system, this results in the following set of differential equations of motion in terms 
of the linear modal amplitudes: 

i = 1' 2, 3, ... ' (6) 

where an overdot denotes a time derivative, q is the infinite-dimensional vector 
comprised of the q;'s, and the nonlinear coupling terms in Gi are determined from 

i = 1,2,3, ... . (7) 

These can, to cubic order in the q/s, be expressed as 

00 00 00 00 co 

1-1 m = 1 /=1 m = 1 n-1 

i = 1,2,3, ... , (8) 

where the vilm and J.Lumn coefficients depend on the nonlinearity and the mode 
number i. 

In order to determine the nonlinear normal modes in terms of invariant mani­
folds by the method developed in [13], these equations of motion are written in 
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first-Jrder form as 

qi(t) = Pi(t), 
(9) 

pi(t) = - OfqJt) - Gt(q(t)), i = 1, 2, 3, . . .. 

We restrict our attention to systems for which OJOi is not equal to an integer for 
i :f:.j. 

In the following, the present approach will be compared with the more commonly 
used method of "direct projection" onto a single mode. That approach employs a 
single mode, say c/Jj, in the expansion (5) and projects the equations of motion onto 
that mode. The i = j equation of motion is the only one of interest in that case, and 
it has the same form as equation (9) with i = j, except that the multiple sums in Gj 
are reduced to the terms vjjjq](t) + J.Ljjjq}(t) + ·· · . The effects of the missing 
terms are considered in detail below. 

2.2. The Normal Mode Invariant Manifold Equations 

The key observation made in [13} is that for either a linear or a nonlinear system a 
normal mode motion is one of a family of motions for which the system behaves like 
a single degree of freedom oscillator; that is, like a second-order nonlinear oscilla­
tor. Such a motion will take place on a two-dimensional invariant manifold. For 
linear oscillatory systems these manifolds are the planar eigenspaces associated with 
the complex conjugate pairs of eigenvalues. The existence of these eigenplanes for 
the linear system is guaranteed for this class of systems with the given assumptions 
on the frequencies. For weakly nonlinear systems of the type being considered here, 
the curved manifolds are necessarily tangent to the linear eigenspaces at the 
equilibrium (w(s, t) = 0). Once these manifolds have been determined, the manner 
in which the linear modes combine to form the nonlinear normal modes will be 
evident. In addition, the dynamics on these manifolds, which represent the associ­
ated dynamics of the nonlinear normal mode, are easily recovered. 

The construction of the modal manifolds is carried out in the usual manner. First, 
one must choose coordinates which describe the manifold; in this case (qk, pk) are a 
natural choice for the k th normal mode. Next, it is assumed that if the motion of 
(qk, pk) is known, then the motion of all other (qi, p) pairs can be described in 
terms of (qk, pk); this reduces the dynamics of the entire system to that of a single 
degree of freedom system or, equivalently, the dynamics are restricted to a two­
dimensional manifold. Also, the equations of motion must be satisfied for such a 
specific type of motion. These ingredients lead to a set of equations for the normal 
mode manifolds which, although not solvable in general, easily admit solutions in 
series form in the variables (qk, pk), just as is done in the construction of other types 
of invariant manifolds (see, for example, [27] or [28]). The solution of the manifolds 
contains the desired information regarding the composition of the nonlinear normal 
modes in terms of the linear normal modes. 
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By defining (qk, pk) = (uk, vk), a normal mode motion is assumed to exist and be 
(at least locally) expressible in the form 

qi(t) = Qik(uk(t), uk(t)), 

Pi(t) = Pik(uk(t) , uk(t)), 

where, by definition, 

i = 1,2,3, ... , 

Qkk(uk(t), vk(t)) = uk(t), 

Pkk(uk(t),vk(t)) = vk(t). 

(10) 

(11) 

In this way, the dynamics of the entire structure is specified by the dynamics of the 
kth linear modal amplitude and velocity. 

The equations for the Qik's and Pik's are obtained by first taking a time derivative 
of each item in equation (10) to obtain 

. aQik . aQ;k . 
qi = --uk + --uk, 

auk avk 
(12) 

. aPtk . aPik . 
Pi= --uk + -vk, 

auk avk 
i = 1,2,3, ... . 

The following substitutions from the equations of motion and equation (10) are then 
made: 

where Qk is the vector of Qik's with i = 1, 2, ... . This process eliminates all time 
derivatives from equation (12), resulting in the following equations for the Qik's and 
P;k's in terms of uk and vk: 

i = 1,2,3, ... , 

(13) 

i = 1, 2, 3, .. . . 

(14) 

Note that the i = k equations are trivially satisfied. 
A closed form solution of these equations is not generally attainable (except in 

the case of so-called similar normal modes [8]), but a local solution near the origin 
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can be obtained in terms of a series expansion. Matters are simplified by noting that 
for conservative, nongyroscopic systems, only those terms which are consistent with 
constant amplitude, standing wave normal modes are required. Thus, to cubic 
nonlinear order, the series is given by 

Qik(ub vk) = alikuk + a3iku~ + asikvl + a6iku~ + astkukvl + ···, 
i = 1,2,3, ... , (15) 

i=1,2, 3, ... , 

where the following identities for i = k are obvious from equation (11): 

alkk = bzkk = 1, 

afkk = blkk = 0, j * 1, l * 2. 

(16) 

(17) 

(The missmg afik and b1;k coefficients are identically zero in the conservative, 
nongyroscopic case; see [13] for examples where they are nonzero. This is easily 
confirmed by including them in the above and subsequent steps.) 

Substituting the expansions (15) into equations (13) and (14), expanding in terms 
of uk and vk, and gathering the coefficients of the u'f:1 uf:'1 terms, where m1, m2 = 

0, 1, 2, 3 and m1 + m2 < 4 (we are working only to cubic order here), yields a set of 
equations in terms of the unknowns afik and buk· These equations are as follows. 
At linear order: 
from equation (13), the uk coefficient 

(18) 

from equation (14), the uk coefficient 

(19) 

At quadratic order: 
from equation (13), the ukuk coefficient 

(20) 

from equation (14), the u~ coefficient 

(21) 

from equation (14), the v'f coefficient 

(22) 

At cubic order: 

from equation (13), the u~uk coefficient 

(23) 
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from equation (13), the vt coefficient 

from equation (14), the u~ coefficient 

-a6ik0f - L L Vum(a3lm + a3mt) - ILtkkk 
l= 1m= 1 

00 00 

(24) 

= -b7ikO%- bz;k L L Vktm(a3lm + a3ml)- 1Lkkkkb2ik- b4ikvkkk; (25) 
l=lm=l 

from equation (14), the ukv~ coefficient 

-aSikD.f - L L 11um<astm + asmt) 
l=lm=l 

00 00 

= 2b7ik - 3b9ik0~ - b2ik L L vklm(asim + asmt). (26) 
l= 1m= 1 

Several features of these equations are worth noting. First, they are linear in the 
unknowns, and nonhomogeneous terms arise from the nonlinearity. Also, the known 
solution for the i = k case [see equation (11)] is consistent with these equations. The 
solution for the coefficients of the linear, quadratic, and cubic terms are now 
considered in turn. 

Regarding the linear terms, it is immediately clear from equations (18) and (21) 
that 

(27) 

since nk :fo ni and using identity (16) above. This is not unexpected, since it simply 
says that the only contribution at the linear order to the kth nonlinear normal mode 
comes only from the kth linear mode. As described in detail below, this implies that 
the linear modes are sufficient for correctly capturing the leading order nonlinear 
dynamics, as nonlinear corrections to the mode shapes will riot affect the leading 
order nonlinear terms in the equations of motion. However, the modal distortions 
must be accounted for if one considers higher order dynamics. 

Regarding the quadratic terms, these represent three linear equations in three 
unknowns, and are easily solved when the equations are nonsingular. The solution is 
given by 

vikkca; - 2nD 
tlzik 

-2vikk 

tlzik ' 

2vikknf 
b4ik = ---

112ik 

(28) 

Vi =P k. 
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The coefficients for i = k are given in equation (16) above. Note that these 
equations are singular in two cases: (1) If any ni = 2flk, an internal resonance 
condition arises in which the i and k modes cannot be uncoupled. (2) If any ni = 0, 
a condition not allowed by the original restrictions on the natural frequencies. 

The solution for the cubic terms involves four linear equations in four unknowns, 
with nonhomogeneous terms which arise from the cubic order nonlinearity in the 
equation of motion and from the solution at quadratic order. The appearance of 
terms from lower order at the current order is typical of such procedures and is well 
known in, for example, perturbation and normal form calculations. The solution for 
the cubic coefficients, for i -:f:. k, are given by 

(7!1~- flf)( 1-Likkk- vkkkb4kk + o-i3) + 2vkkka5kkD~(3!1~- Df)- 2Dko-is 

tl3ik 

00 00 

o-ij = L L. 11um(ajim + ajml)' 
l= 1 m = 1 

(29) 

j = 3,5. 

The coefficients for i = k are given in equation (17) above. Note that these 
equations are singular whenever fl; = 3flk or nj = nk, resonance conditions not 
allowed by the original restrictions on the natural frequencies. 

The uij terms can be simplified by noting that, although the a11m terms are not 
symmetric in the l and m subscripts, they are summed over both l and m, so that 

00 co 

o-ij = L L Vilm(ajlm + ajml) 
l= 1 m= 1 

00 00 

= 2 L L Vumajlm' 
{= 1 m= 1 

This is useful for calculations in specific examples . 

.2.3. Nonlinear Normal Mode Shapes and Dynamics 

j = 3, 5. (30) 

The nonlinear mode shapes are now reconstituted by using equation (5) with the q/s 
replaced by their modal versions, the Q/s. The resulting kth nonlinear normal mode 
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is given by the displacement field 

00 

wk(s, t) = L </>;(s )Q;k(t) 
i= 1 

00 

= <f>k(s)uk(t) + L c/>i(s)(a3iku~(t) + as;kvf(t) + a6iku1(t) 
i=l,i=Pk 

+aBikuk(t )vf(t) + ···) 

along with the velocity field 

awk(s, t) 00 

--at- = E <f>Js)P;k(t) 
i= 1 

= </>k(s)vk(t) + E cP;(s)(b4;kuk(t)vk(t) + b1iku~(t)uk(t) 
i= 1, i :P k 

(31) 

(32) 

where the reader is reminded that u k and u k represent the displacement and 
velocity of the kth linear modal amplitude during the kth nonlinear normal mode 
motion. 

These normal modes represent standing wave motions of the system as can be 
seen by the following consideration. At any instant, say t = t *, at which the linear 
modal velocity is zero, that is, vk(t*) = 0, the entire velocity field is zero: 
(awk(s, t*))/ at = 0 'Vs E [0, 1]. Thus every point of the system reaches its maximum 
displacement at the same instant. This fact allows mode shapes, denoted here by 
Wk(s ), to be plotted in a manner just as is done for linear systems. They are simply 
the zero-velocity configurations of the system, which are given by 

00 

Wk(s) = wk(s, t*) = c/>k(s)u't + E c/>;(s)( a31ku'k2 + a6;ku'k3 + ··· ), (33) 
i=l , i=Pk 

where u\ = uk(t*) is the maximum value that uk(t) achieves during the motion. 
Note that at any instant, say t = t0 , at which the linear modal amplitude is zero, 
uk(t0 ) = 0, the entire displacement field is generally not zero, wk(s, t 0 ) =I= 0. This is 
due to the presence of the nonsymmetric, quadratic nonlinearities, and in particular 
the term a5;kvf(t0). For systems which do not possess quadratic nonlinearities, 
wk(s, t0 ) = 0 to leading order, since all a5ik terms are zero. In that case, every point 
of the system passes through zero at the same instant. 

Note that, in contrast to the linear mode shapes, the nonlinear mode shapes 
depend on the peak amplitude of motion. The distortion from nonlinearities is 
contained in the quadratic and cubic terms, and in particular is expressed here in 
terms of the linear modes shapes with the contribution of the ith linear mode shape 
on the kth nonlinear mode shape being captured in the coefficients a3;k and a6ik· In 
addition, during a given modal motion, the shape of the structure varies in time, as 
can be seen by considering equations (30) and (31) and assuming that uk(t) and vk(t) 
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are periodic in time. This aspect of the modal response is not allowed by the 
methods used in [1-3], which essentially assume a fixed shape whose amplitude 
varies according to a second-order nonlinear equation of motion. 

The dynamics of a nonlinear normal mode are obtained by simply restricting the 
equation of motion to the modal manifold. This is accomplished by substituting the 
modal expressions for q and p given in equation (15) into the equations of motion 
(6). The result is 

ilk + n~uk + akuz + f3kuf + 'Ykukit~ + ... = 0, 

ak = v kkk, f3k = P..kkkk + a-k3' /' k = a-ks' (34) 

which, due to the aki terms, differs from what one would obtain by simply projecting 
the equation of motion onto the kth linear mode, <f>k(s). However, a projection onto 
c/>k(s) gives exactly the same dynamics as this result if one is ·working only to first 
nonlinear order; this is discussed in more detail below. The amplitude-dependent 
frequency of nonlinear oscillation can be determined form equation (34) by using a 
perturbation method (here Lindstedt's method is used). It is found to be 

9{3k0~ + 3yk0k - lOaf 2 n + u* + ... 
k 24.0.~ k ' 

(35) 

where uZ is the peak amplitude of uk during the motion. 

2.4. Remarks 

At this point it is interesting to examine some special cases. First, consider the 
general system with quadratic and cubic nonlinearities, but for which only the 
first-order nonlinear modal dynamics are of interest. These are trivially obtained by 
simply using a projection onto the single linear mode c/>k(s), which directly yields the 
quadratic coefficient ak = vkkk in equation (34). In this case there is no need to 
compute the nonlinear mode shapes, even to first nonlinear order. However, note 
that the frequency information will not be correct to leading nonlinear order; see 
equation (35). If one is interested in second-order nonlinear modal dynamics, which 
are required to obtain the correct frequency estimate in this case, it is clear from 
equation (34) that the first-order nonlinear corrections for the mode shapes must be 
known. These are expressed in terms of a3;k and a5;k , which combine with the vilm 

to give ak3 and aks· 
For a system which possesses symmetric nonlinearities, in which case Pum = a3;k 

= a5ik = b4ik = ak3 = aks = 0, a projection onto the single mode </>k(s) will give the 
correct nonlinear modal dynamics to cubic order, via the required coefficient 
{3k = P..kkkk· Again, the correct higher (e.g., fifth-) order dynamics will require the 
appropriate nonlinear mode shape terms. Continuing this line of reasoning, a 
generalization of the development above provides the cubic order nonlinear terms 
for the mode shapes, and this information can be used to generate the correct 
nonlinear modal dynamics which includes terms up through and including quintic 
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order in uk and ilk. Boivin et al. have carried out such calculations and have 
demonstrated the benefits of including such higher order terms in simulation studies 
[29]. 

The fact that shape corrections are required to generate correct higher order 
dynamics has been used in estimating wave speed-wave amplitude relationships for 
water waves (see, e.g., Lamb [30], article 250), but has been overlooked in the 
structural dynamics community, where reduced order models for systems with 
quadratic and cubic nonlinearities are typically obtained by direct projections onto 
the linear modes of interest. 

3. Example 

The example considered here is a simply supported, linear, Euler-Bernoulli beam 
attached to a nonlinear elastic foundation. Figure 1 depicts the physical system. The 
linear problem is well known and can be found in textbooks (e.g., [31]). This problem 
was selected since the linear mode shapes are simple functions, making closed form 
solutions possible. The general approach will be made clear from this relatively 
simple example, and it will be evident where one will be required to carry out 
numerical computations in less straightforward cases. 

The nondimensional equation of motion, expressed out to cubic order, is 

a2w(s,t) a4w(s, t) 2 3 
at2 + as4 + KW(S , t) + p(w(s, t)) + 7](W(S, t)) + ··· = 0 (36) 

with boundary conditions 

w(O, t) = w(l, t) = 0, 

a2w a2w 
-2 (0, t) =.-2 (1, t) = 0. as as 

(37) 

Here K, p, and TJ represent the linear, quadratic, and cubic coefficients of the 
foundation, respectively. The linear problem ( p = TJ = 0) has natural frequencies 
and normal mode shapes, respectively, of 

n k = v K + (k1T )
4 

, 

cpk(s) = fi sin(k1Ts ). 

w(s,t) 

Fig. 1. Beam attached to a nonlinear elastic founda­
tion. 

(38) 
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Two cases will be considered. In Case I the system with both quadratic and cubic 
nonlinearities will be studied. First-order nonlinear terms for the mode shapes will 
be generated, and from these the second-order dynamics will be obtained. For Case 
II, the system with symmetric nonlinearities, p = 0, will be studied, and for this 
system the first -order nonlinear terms will be computed for both the mode shapes 
and the modal dynamics. 

3.1. Case I 

The coefficients vilm and ILilmn need to be generated; this is carried out as follows 
for this system. First, the nonlinear operator acting on the assumed form of the 
solution, equation (5), is written as 

N(w(s,t)) = p(w(s,t))
2 + 1J(w(s,t))

3 + ··· 

N( .£: 4>/s)q/t)) = p( .£: ¢/s)q/t))
2 

+ 11( _[ 4>/s)q/t))
3 

+ ··· 
j=l J=l J=l 

(39) 
= p L L 4>1(s)<f>m(s)q1(t)qm(t) 

l= 1 m = 1 

00 CQ 00 

+ 1] L L L 4>£(s )<J>m(s )<J>/s )q1(t )qm(t )qn(t) + ··· . 
l=-1 m=l n=l 

Next, this is projected onto the ith linear mode according to equation (7) in order to 
obtain Gi: 

00 00 

G;(q(t)) = L1
lf>Jt)p L L <J>,(t)lf>m(t)q,(t)qm(t)dt+ L1 lf>;(~)1J 

0 l=lm=l 0 

· L L L <f>t(t)l/Jm(g)lf>n(g)ql(t)qm(t)qn(t)dg+ ···. (40) 
1=1 m=l n=l 

The order of summations and integration is switched in order to obtain the 
coefficients vilm and J.Lamn from equation (8). The result is 

(41) 
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Note that this result is specific for this nonlinearity, but not to the specified 
boundary conditions. Also, note that to this point the fact that p and TJ are constant 
has not been used. In fact, the development above is valid for the case in which the 
nonlinear foundation stiffness depends on s. One simply uses p = p( ~) and TJ = 

Tt(g) in equation (41). Also, note that the subscripts on v and f.L are completely 
interchangeable. 

For the boundary conditions at hand and constant p and TJ, the coefficients are 
obtained from simple integrations involving sine functions. The required terms for 
the first-order mode shapes and second-order dynamics are 

-4{ipilm(l- (-1/+l+m) 
11ilm = -:------------------

7T(i - l - m)(i - l + m)(i + l - m)(i + l + m) ' 

Vum = 0, Vi = + (l + m), l ¢ m, 

llikk = ---~---
i7T(4k2 - i 2 ) 

i = 2k, 

vkkk = ---3-k7T __ _ 

37] 
I.Lkkkk = 2. 

Vi .:P 2k, 

Vi ># ± (l + m), 

(42) 

Note that the values of vkkk and ILkkkk are irrelevant for the mode shapes since a 3kk 

and a 6kk must, from the formulation, be zero by definition [see equation (17) and 
the surrounding discussion]. However, they are required for the modal dynamics. 

The corresponding values of a3;k and a51k are, for i ¢ k, then 

a3ik = -----2~---:-2-----
i7r(4k - i ).6. 2ik 

Vi¢ k,2k, 

a3ik = 0, i = k, 2k, 

-8!ik2p(l - ( -l)i) 

i7T(4k2 
- i2

).6.2ik 

asik = 0, i = k,2k, 

Vio~=k,2k, 

(43) 

where .6. 2ik is easily determined from equation (28) and the !1/s for this problem are 

14



given in equation (38). The nontrivial a3ik and a5ik simplify to 

4/2 pk 2 (1 - ( -l)i)(- K + i 47T 4 
- 2k47T 4

) 

a3ik = l7T(4k2 - j2 )( K + i47T4 )(3K - l47T4 + 4k47T4) ' 
(44) 

i * k. 

Here the internal resonance condition is obvious: K = l1r 4(i4 
- 4k4)/31 is exactly 

the condition for which ai = 2Gk. At this point it is also seen that the contributions 
of the ith linear mode shape to the kth nonlinear normal mode decreases at the 
rate of i-7 for large i. It is also worthwhile to note that a3ik and a5ik are zero for all 
even values of i, including i = 2k, and for i = k (even or odd). Thus, only the odd, 
that is, the symmetric, linear modes contribute to the nonlinear modes at this order. 

The summation terms uk3 and uk5 are obtained by direct substitution of the 
above expressions for vilm' a3ik, and a5ik into the expression for uij given in 
equation (28), and making the appropriate subscript assignments. These equations 
are rather unenlightening and are not presented explicitly here. It is sufficient to 
note that they converge since the coefficients of uk3 decay in l and m like 1-3m -a 
for large l, m while for uk5 the decay is at the very rapid rate of z-12m - 7

. 

Convergence is also aided by the fact that many of the terms in the sums are zero. 
For plotting purposes, it is convenient to define the following function 

j = 2,3, (45) 

which, for each mode number k, are functions of only the linear foundation 
coefficient K. Figure 2 depicts these functions for the first three modes. In each case 
the resulting plots indicate a close approximation to the exact value of the doubly 
infinite sum. The number of terms was varied and convergence was inspected 
visually; the typical required number of nonzero terms was in the range 3-6. Note 
that the sums are less significant for beams with a large linear stiffness, and it is 
easily shown that for large K, Sk3 - K-

1 and Sks - K-
2

• These decay rates are 
interrupted by values of K at which internal resonances arise, at which points the S kJ 

are singular. In the K range shown in Figure 2, only the 2:1 resonance between the 
first and the third linear modes appears [at K = 7T 4(4 X 34 

- 1) /3 :::: 10, 488]. 
All terms required for the mode shapes and modal dynamics are now in hand. 
In this case the peak-amplitude nonlinear normal mode shapes are easily ex­

pressed to first nonlinear order by using equation (33), where the a3ik are given in 
equation ( 43) above, the cubic order terms are ignored, and six nonzero terms were 
used in each summation. Plots of the peak-amplitude mode shapes for the cases 
k = 1, 2 are depicted in Figure 3 for various amp1itudes, specified here by u't. In 
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Fig. 2. The functions Ski versus 1<, fork = 1, 2 and j = 3, 5. 

each case the zero-velocity beam configurations for both the "up" and the "down" 
positions are shown, indicating the lack of symmetry which arises since the founda­
tion is softer (relative to the linear foundation) in the "down" direction and stiffer in 
the "up" direction. (See the Appendix for the amplitudes used for the "down" 
configuration.) 

It is worth noting that the effect of the elastic foundation does not have a 
decreasing effect on higher modes. This is in contrast with the linear case [cf. 
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equation (34)], and arises since the a3ik coefficients saturate to a finite value as k 
mer eases. 

In order to plot the configuration of the beam at various phases during a purely 
modal motion, one must use equation (31) with the computed a3ik and a5;k , along 
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Fig. 3. Nonlinear normal mode shapes at peak deflection, 
shown as solid lines, for K = 102 and p = 105. The mode 
shapes are shown for peak amplitudes of u'k = 0.001, 0.002, 
0.003. The linear mode shapes for the same u'k values are 
shown as dashed lines. (a) k = 1, first mode in "up" state; (b) 
k = 1, first mode in "down" state; (c) k = 2, second mode in 
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with the solutions (uk, vk) from the modal oscillator, equation (46) below. (Ap­
proximate solutions are provided in the Appendix.) Plots for the first and second 
modes are given in Figure 4, where the configurations for ten equally spaced time 
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Fig. 4. The beam configurations at various time intervals for 
K = 102, p = 105, and u! = 0.003. (a) k = 1, first mode; (b) 
k = 2, second mode. 

intervals over one period of oscillation are shown. Here the bias effects of the 
quadratic nonlinearity are clear. 

In order to determine the modal dynamics, the coefficients vkkk' J.Lkkkk' uk3, and 
ak5 are needed. They are given above for the general case and are used to produce 
the oscillator 

(46) 

which governs the dynamics of the kth nonlinear normal mode. The amplitude­
dependent frequency of nonlinear oscillation can be written as 

(47) 
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where ut is the peak amplitude of uk during the motion and the coefficient Ak is 
obtained directly from equation (35) and is given by 

A.CK, p, 1Jl = (9(K + e"•l( ~ 1J + s.,CK)p2
) 

(24( K + k47T4)3/ 2), 

where the terms S k/ K) are given in Figure 2. 

(48) 

For a fixed amplitude of motion, the frequency of oscillation is seen to be linear 
in the cubic foundation coefficient TJ, quadratic in the quadratic foundation coeffi­
cient p, and has a complicated dependence on the linear foundation coefficient K. 

In order to plot Ak and examine the difference between the usual direct projection 
result and the present result, it is convenient to express A k as 

Ak(K, p, i]) = 17/f(K) + p2(/t(K) + /ff2(K)), 

9 
jf(K) = 16flk' 

(49) 

where /{ and ft are the terms one would obtain by a direct projection, and fff 2 

involves the S kj terms and arises from the nonlinear distortions to the mode shapes. 
The net effect of the nonlinear mode shape depends on the relative sizes of iJ and p 

and the size of fff2 relative to ff and ft. Plots of these three functions for the first 
two modes are given in Figure 5. 

The importance of including the modal distortions in the modal dynamics can be 
demonstrated by a single case: that for the second mode, k = 2, with 17 = 0. Since 
f!P = 0, the only nonzero term in A 2 is proportional to f!J2

, which is precisely the 
term that is neglected if one ignores the coupling between the linear modes. The 
magnitude of A 2 in this case is given by p2fi_2

, where f!J2 is shown in Figure 5. It is 
seen that, while the correct result of zero frequency shift is approached as K ~ co, in 
the lower range of K the direct projection method can lead to significant discrepan­
cies. 

It is thus confirmed that, although the calculations are nontrivial, the first-order 
nonlinear corrections to the mode shapes provide the correct modal dynamics to 
second order, and that these are nontrivial in some cases. We now turn our attention 
to a simpler case, in which the foundation contains only cubic nonlinearities. 

21



3.2. Case II 
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Fig. 5. The functions ff, ft, and f%2 versus K for k = 1, 2. 
Note that fi. 1 = 0. 

The calculations here follow the above with p set equal to zero. Since only 
first-order information regarding mode shapes and dynamics is to be obtained, the 
calculations are much less involved. 

The modal dynamics are immediately obtained from the results of Case I with p 
set equal to zero, and are precisely what one would obtain from a simple projection 
of the equations of motion onto <f>is ). 

For the nonlinear mode shapes, the following quantities are required and are 
easily obtained using equation ( 41): 

1-Likkk = 0, 

-11 
1-Likkk = 2' 

Vi =f:. k,3k, 

(50) 
i = 3k. 
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These results and the expressions for !l;, !l;, and A3;k from equations (29) and (38), 
respectively, give the following coefficients which describe the nonlinear normal 
modes: 
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Vi + 3k, 

i = 3k 
' a6ik = 640k47T4(K- 9k47T4)' 

377 
a8ik = b9ik = 640k47T4(K _ 9k47T 4)' i = 3k 

377( K - 39k47T 4 ) 
b7ik = ---:----:------~~ 

64Qk 47T 4 ( K - 9k47T 4 ) ' 
i = 3k. 

' 

Note that K = 9k4
7T

4 is the resonance condition for which 113k = 311k. 

(51) 

The solution is now available in a form sufficient for plotting mode shapes of the 
beam as described in the previous section. The peak-amplitude nonlinear normal 
mode shape is given by equation (33). In this case the correction to the kth 
nonlinear mode arises from only the 3k th linear mode and the mode shape is easily 
expressed as 

Figure 6 depicts the first two mode shapes for two amplitudes. Note that in this 
symmetric case the "up" and "down" peak configurations are simply reflected 
images of one another, so only the "up" version is shown. Also, note that the second 
mode is virtually unaffected by the given .nonlinearities at the amplitudes shown. 
However, Figure 7 depicts the same amplitudes but with K at such a value that the 
second mode is near a 3:1 resonance with the first mode, and here the nonlinear 
distortion is significant. This is an indication that the modes are becoming highly 
coupled, exactly as expected near the resonance. 

Note that in this case, the foundation has a lesser effect on higher modes, just as 
in the linear case. This can be directly seen from the coefficients in equation (53), 
which decrease like k-4 as k increases. 

Another instructive way to view the normal modes is directly in terms of their 
manifolds. This can be done most simply for the present case since only two linear 
mode shapes combine to form the nonlinear normal mode. Consider the (infinite­
dimensional) phase space spanned by the state variables (q;, P; ). In terms of these 
variables, the normal mode manifold for the kth mode is given by the functions 
(Qik' Pik) [see equation (10)], which are locally represented by the series approxima­
tions (15). In order to plot the kth nonlinear normal mode in the phase space, the 
functions (Q

1
·k , P;k) are plotted versus (qk , pk) for all i. (The case i = k will give a 

trivial identity and is not of interest). While the complete representation generally 
involves an infinite number of such plots, only those linear modes which provide 
significant contributions to the nonlinear mode are of interest. In the present case, 
the single linear mode ¢ 3k provides the complete correction to first nonlinear order, 
and thus plots of (Q3k ,b P3k, k) completely capture the first-order modal manifolds. 
An example of this for the first mode, k = 1, is depicted in Figure 8, which clearly 
indicates the amplitude-dependent nature of the nonlinear normal mode in terms of 
the bending of the manifolds. 
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4. Discussion 
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Fig. 6. Nonlinear normal mode shapes at peak deflection, 
shown as solid lines, for 1< = 104

, p = 0, and 'TJ = 106
. The 

mode shapes are shown for two amplitudes: u'% = 0.02 and 
0.04. The linear mode shapes for the same uZ values are 
shown as dashed lines. (a) k = 1, first mode; (b) k = 2, second 
mode. 

It is clear that the above procedure can be generalized in a straightforward manner 
to other situations. In fact, in [13] the complete theory has been completely worked 
out for nonresonant systems with a finite number of degrees of freedom possessing 
all possible quadratic and cubic nonlinearities. This includes cases which are 
nonconservative and/or gyroscopic in nature. 

In [14] an alternative formulation is used for defining nonlinear normal modes of 
continuous systems in which the dynamics of the entire structure is specified by the 
dynamics of a single point on the structure, s = s0 • While the method in [14] is more 
naturally suited to handle some problems, such as those with nonlinearities in 
boundary conditions, the solution procedure is rather cumbersome and the results 

25



0.1 

0.05 -
0.2 0.4 0.8 

-0.05 

-0.1 

Fig. 7. Nonlinear normal mode shape at peak deflection for 
k = 2, K = 13,800, p = 0, and "' = 106

, which is close to an 
internal resonance. Here u~ = 0.04 and the linear mode 
shape for the same ui value is shown as a dashed curve. 

are sensitive to the choice of the base point s0 • The present formulation is 
equivalent, yet significantly simpler to implement. 

The present approach is capable of handling discrete nonlinear elements. For 
example, a nonlinear spring attached at some point along a beam can be handled by 
simply using delta functions in the spatial variable (see [29]). If nonlinear effects 
exist at the boundaries, the method described in [14] may be easier to apply, 
although a suitable change of variables may render the equation of motion in the 
form of equation (1). 

A possible extension of these ideas is in the area of nonlinear waves. Here, one 
would seek special solutions of the governing partial differential equation which 
represent the dynamics of some low dimensional dynamical system. The method 
described in [14] is well suited for this. For example, for determining the "single 
mode" dynamics of a nonlinear wave equation, one simply says that if the displace­
ment and velocity of a single point are known, then the entire displacement and 
velocity field are determined by these. 

One issue which has remained unexplored in the current work is a consideration 
of the stability of nonlinear normal modes. While much work has been done in this 
area using traditional methods for two degree-of-freedom systems, it has not been 
considered in the context of the present method. This has important implications 
with regard to whether or not these nonlinear normal modes will be observable. The 
usual parametric instabilities between coupled modes are flagged by the present 
method in the form of singularities. However, other instabilities may occur, espe­
cially at large amplitudes (see [9], for example). 

The method described herein can be thought of as a means of generating the 
"best" single-mode model of the given system. A generalization of the procedure has 
been developed which can be used to generate invariant, reduced-order models of 
arbitrary order. In order to achieve this, one expresses the response in a form in 
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which the unmodeled modes are expressed as functions of the modeled modes. This 
idea is of potential use in developing low-order models which may be helpful in 
computational algorithms or in the development of control schemes. These ideas 
have some relation to those of the nonlinear Galerkin methods which are used to 
approximate inertial manifolds [32], although there is an important difference since 
that method is applicable to systems with dissipation whereas the systems of interest 
here are conservative. 

A final note: While the above method is in some respects similar to standard 
perturbation techniques, a comparison between the results obtained by this method 
and those obtained using a combination of harmonic balance and eigenfunction 
expansions (see, e.g., [1-3]) shows that different results are obtained for the 
nonlinear mode shapes, even for the simple example presented here. The approxi-
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mations for the frequency of nonlinear modal oscillations agree to first order, but 
the discrepancies in the mode shape approximations at first order will lead to 
differences in higher order frequency estimates. Since the present method is based 
on the fundamental principle of dynamic invariance, the results obtained here are 
the correct ones, and naive perturbation strategies should be applied with caution. 

Appendix 

Case[ 

The first-order nonlinear solution for the modal oscillator (34), subject to initial 
conditions (uk(O), vk(O)) = (X, 0), is obtained using Lindstedt's method and is given 
as follows: 

Note that while this starts at a displacement of X with zero velocity, one-half cycle 
later the velocity is again zero but the displacement is not equal to -X, but is given 
by 

Case II 

2ak 
-X-X2--+···. 

302 
k 

(54) 

The first-order nonlinear solution for the modal oscillator (34) with ak = 'Yk = 0, 
subject to initial conditions (uk(O), vk(O)) = (X, 0), is obtained using Lindstedt's 
method and is given as follows: 

where wk = nk + X 2(3,Bkj80V + ... . This starts at a displacement of X with 
zero velocity and one-half cycle later the velocity is again zero and the displacement 
is - X. 
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