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Abstract—In this paper, we present visual analysis techniques
to evaluate the performance of HPC task-based applications on
hybrid architectures. Our approach is based on composing mod-
ern data analysis tools (pjdump, R, ggplot2, plotly), enabling an
agile and flexible scripting framework with minor development
cost. We validate our proposal by analyzing traces from the full-
fledged implementation of the Cholesky decomposition available
in the MORSE library running on a hybrid (CPU/GPU) plat-
form. The analysis compares two different workloads and three
different task schedulers from the StarPU runtime system. Our
analysis based on composite views allows to identify allocation
mistakes, priority problems in scheduling decisions, GPU tasks
anomalies causing bad performance, and critical path issues.

I. INTRODUCTION

To fulfill the ever-growing need for computation power
of High Performance Computing (HPC) applications, it has
become common to rely on hybrid nodes, composed of multi-
core processors (CPUs) with multiple accelerators (GPUs).
However, due to the heterogeneity and complexity of such
machines, achieving portable and scalable performance has
become extremely challenging. A possible solution, increas-
ingly used by the community, is to program application at
a high level, independently of the hardware architecture, as
a Directed Acyclic Graph (DAG) of tasks. It is then the
responsibility of, another software layer, called the runtime,
to dynamically schedule the resulting tasks on the different
computing resources taking into account the possible speed
heterogeneity and variability as well as to automatically take
care of data movements between resources. This allows to
remove artificial synchronizations from the application code,
implementing complex scheduling and data movement algo-
rithms (such as HEFT [1]) that would be hard to manually
incorporate in the application. Thanks to dynamic decisions,
the irregular behavior of applications and resources is absorbed
and exploited by the scheduler during execution, effectively
balancing load among computing resources.

Task-based executions on hybrid platforms are inherently
stochastic. Task mapping, for instance, can drastically change
from one execution to another. From the performance analysis
perspective, the nature of such dynamic and opportunistic
execution schemes makes classical performance analysis to-
tally ineffective. At the same time, application and runtime
developers seek to understand the attained performance to
improve the application design and scheduling decisions. This
investigation is challenging because it is hard to compare many

traces when parameters that affect scheduling decisions and
task generation are changed.

In this article, we explain how we designed a tool that
enables an easy and faithful identification of subtle scheduling
problems that would otherwise go unnoticed and misunder-
stood with classical trace visualization approaches. We built
the framework 1 on top of modern data analytics tools, combin-
ing the R programming language (and in particular the ggplot2
library) and org-mode [2]. The tool combination comes at a
very low development cost when compared to a traditional and
monolithic performance visualization tool. The designed views
depict task execution along time for each resource, automati-
cally detecting several interleaving critical paths in traces. We
demonstrate the effectiveness of our visualization approach
by analyzing traces from the dense linear algebra Cholesky
factorization of the Chameleon/MORSE package [3], imple-
mented using the StarPU task-based runtime [4]. Two repre-
sentative factorization workloads are carried out on a hybrid
multi-core/multi-GPU architecture. The large workload brings
interesting insights on pinpointing resource usage mistakes
and comparing three StarPU schedulers (DMDA, DMDAS and
Work Stealing). The smaller workload shows that the dynamic
critical path analysis provide hints for optimizations.

Section II provides some background on task-based run-
times for hybrid platforms and on the Cholesky algorithm.
Section III presents some related work on trace visualization,
motivating our own study. Section IV presents our trace
visualization proposal for the performance analysis of task-
based runtimes. In Section V we detail two case studies
demonstrating the effectiveness of our visualization strategy.
Section VI gives a summary of results and future work.

II. BACKGROUND AND EXPERIMENTAL CONTEXT

Traditional bulk-synchronous parallel (BSP) applications,
made of supersteps (computation, communication, barrier), is
a very common design when computing resources are homo-
geneous. The trend towards heterogeneous resources with ac-
celerators, such as GPUs, makes the task-based programming
paradigm much more suitable. Depending on the sophistication
of the runtime scheduling algorithms, applications can more
or less efficiently exploit heterogeneous configurations.

1Code available at http://perf-ev-runtime.gforge.inria.fr/vpa2016/

http://perf-ev-runtime.gforge.inria.fr/vpa2016/


Several runtimes targeting hybrid platforms have been de-
veloped in the recent years. MAGMA [5], for instance, com-
bines multi-core with GPUs for linear algebra applications.
OmpSs [6] provides an extension to OpenMP tasks through
new directives that allow to support multi-core systems com-
bined with GPUs. PaRSEC [7] is a generic framework for
architecture aware scheduling of tasks on many-core hetero-
geneous clusters. StarPU [4] is a task parallelism runtime ini-
tially designed to exploit hybrid architectures and additionally
providing a MPI-based extension [8] to exploit several nodes at
once. Dense/sparse linear algebra have been among the first
applications to exploit such runtimes but other applications
have been also implemented, such as FEM applications [9],
seismic wave modeling [10], and others [11], [12].

Experimental Context and Workload Details: We propose to
build on a relatively representative use case to address the lack
of adequate visualization tools for task-based applications. We
use traces of the dense linear algebra Cholesky factorization,
more specifically of the full-fledged implementation from the
MORSE library [3], compiled with the CUBLAS kernels. A
simplified version of this application is shown in Figure 1a;
and the corresponding DAG for a 5× 5 matrix size is shown
on its right (Figure 1b). For each step k of the outer loop, one
dpotrf task releases N−k dtrsm and dsyrk tasks, followed
by ≈(N−k)2/2 dgemm tasks. The dependencies indicate that
simultaneous execution of several iterations is possible and
that the iteration size decreases at the same time as k increases.
So, the potential parallelism gets reduced as the algorithm
advances (see the DAG of the figure). Finally, the task’s
execution time highly depends on the task (dpotrf, dtrsm,
dsyrk, and dgemm) and resource types (CPU or GPU). We have
used the CUBLAS without the dpotrf code. Hence, dpotrf
tasks can only be run on CPUs.

for (k = 0; k < N; k++) {
DPOTRF(RW,A[k][k]);
for (i = k+1; i < N; i++)
DTRSM(RW,A[i][k], R,A[k][k]);

for (i = k+1; i < N; i++) {
DSYRK(RW,A[i][i], R,A[i][k]);
for (j = k+1; j < i; j++)
DGEMM(RW,A[i][j],
R,A[i][k], R,A[j][k]);

}
}

(a) The Cholesky Algorithm.
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(b) Corresponding DAG for N = 5.

Fig. 1: The Cholesky code and its DAG (for N = 5).

Since hybrid heterogeneous nodes motivate the development
of task-based runtimes, we execute this Cholesky implemen-
tation over IdCin2, a machine with two 14-core Intel(R)
Xeon(R) CPU E5-2697v3@2.6GHz and three NVIDIA Titan
X. From this set of resources, only 25 CPU cores participate
in the computation because it is generally more efficient to
let StarPU dedicate one core to manage each GPU. StarPU
provides several scheduling algorithms that exploit both the
DAG structure (through critical-path based heuristics) and
performance models. Here, we focus on three of them.

The DMDA (Deque Model Data Aware) scheduler is a
list scheduler, i.e., every time a resource is idle, if a task
is ready, it will be scheduled on this particular resource.
Such a scheduler therefore never leaves a resource idle on
purpose, which ensures the well-known (2−1/p) competitive
ratio for homogeneous machines [13]. Deciding which ready
task to select has a major influence in practice and the
classical heuristic consists on prioritizing tasks based on the
critical path. However, the critical path notion is dynamic
and obtaining a proper estimation can be quite challenging.
With heterogeneous computing resources, such prioritization
is generally done with variants of the HEFT (Heterogeneous
Earliest Finish Time) strategy [1]. The DMDA algorithm is
a very greedy heuristic that schedules tasks in the order they
become available, without taking critical path priorities into
account. However, it considers data transfer time between
CPUs and GPUs as well as the relative performance of
resources on each computation kernel when taking its decision.
The DMDAS (Deque Model Data Aware Sorted) scheduler is
similar to the first strategy, except that it sorts tasks by priority,
which can be expensive when the number of tasks is large. It
is therefore rather close to the original HEFT algorithm by
respecting priorities and taking past scheduling decisions into
account. Finally, the WS (Work Stealing) scheduler uses a
queue per worker; new tasks are kept local by default. When
a worker is idle, it steals tasks from the most loaded worker.

The next section presents related work on performance
analysis for BSP and DAG-based HPC programming models.
We detail the issues of current solutions, motivating our work.

III. RELATED WORK AND MOTIVATION

Despite the plethora of runtimes to execute task-based
applications on heterogeneous resources (see Section II), there
are very few established tools to conduct a proper task-
aware analysis. Developers usually rely on BSP-based trace
visualization tools, whose objectives are different, seeking un-
expected heterogeneity where regular, homogeneous behavior
is normal. Such tools are therefore unsuitable for visualizing
task execution behavior since heterogeneity is the expected
scenario for task-based applications. We briefly detail trace
visualization strategies for BSP and DAG-based applications
to better understand their differences. We also describe the
design challenges of novel trace visualization techniques for
DAG applications, as well as the typical questions usually
raised during the analysis process.

A. Trace visualization analysis for BSP-based applications

Many tools exist to visualize traces from BSP-based appli-
cations. Most are focused on MPI applications. The common
technique is based on Gantt charts, depicting each thread be-
havior along time. Behavior is drawn using colors to represent
different thread states e.g., MPI operation. Message-passing is
depicted with arrows from source to destination, sometimes
annotated with the amount of transferred data. Vite [14] is an
OpenGL-based open-source tool that has such a view, capable
to visualize large traces with thread states and communication.



Since this tool relies in the semantic-free Paje language [15],
it can depict virtually any kind of traces. Paraver [16] is
another open-source Gantt tool that allows filtering, zooming
and graphical trace aggregation. Its format also enables the vi-
sualization of many HPC programming models combinations.
Vampir [17] is a closed-source visualization tool with multiple
views for MPI-based OTF2 trace files. It is more scalable than
similar tools due to its distributed organization.

B. Visualizing task execution traces from DAG applications

There are a few tools to perform analysis and visualiza-
tion of task-based executions. Typically, they are built with
resources not designed for data analysis and rely on either non-
scalable or non-scriptable strategies i.e., with mouse pointer
interaction. DAGViz [18] offers a visual representation of
task-based executions focusing on the DAG structure, which
is retrieved using macros (translated to Cilk, Intel TBB or
OpenMP) and presented in a hierarchical way. The resulting
DAG can be folded/unfolded on-demand to show details and
the node color indicates where they are executed. There is no
way to retrieve the time dimension and task duration, which
can make performance analysis difficult. Kurzak [19] proposes
an interactive Gantt chart enhanced with dependencies, drawn
as edges between tasks. We believe this approach suffers
from three issues. First, in term of scalability, since (e.g.,
in Cholesky) tasks typically have many (≈N) dependencies,
drawing everything and finding interesting tasks and depen-
dencies only through mouse interaction can be very tedious.
In practice, only tasks belonging to the critical path are
important. Second, only one-level dependencies are depicted,
while several levels are required to understand the history
leading to the scheduling problem. Third, this tool does not
really exploit the heterogeneity of resources.

C. Challenges of DAG execution traces analysis

The performance analysis of task-based applications raises
many challenges. The stochastic behavior of scheduling deci-
sions induced by actual resource availability and by the task
execution variability hinders the performance reproducibility.
Moreover, executions are apparently unstructured, with no
clear phases as in the BSP model. At the same time, task de-
pendencies are part of the application, and should be exploited
by the analyst to understand bottlenecks.

Traces are generally much larger than the available screen
space and naively displaying everything generally leads to
biased views [20]. One therefore has to use selection schemes
to show only data that is fully relevant from the analysis point
of view. In such complex execution traces, many hypothesis
(and thus filters) can be proposed regarding the expected be-
havior. Developing a monolithic tool, such as the ones tailored
for BSP analysis, that anticipates all possible performance
problems is thus impractical. Moreover, such tool would be
quite difficult to maintain and customize. A more flexible
solution with scripting capability is thus needed.

During the analysis of DAG traces, the typical questions
that arise are different from those of BSP applications. Instead

of inspecting whether and why a certain algorithm iteration
or phase was slowed down, one needs to analyze if the
tasks were properly scheduled and if sufficient parallelism
is available. One also needs to examine whether complex
data movement techniques, task submission and many internal
runtime mechanisms can be further improved.

A common approach to better understand the application
behavior is to compare several execution traces, possibly each
one with a different configuration (e.g., scheduling parameter).
However, due to the dynamic scheduling, this is generally
difficult for task-based traces. To draw relevant conclusions,
one needs to synchronize multiple visualizations and filter
the unwanted states. Although some support exists in some
tools [16], [21], they do not offer enough customization
flexibility for such studies.

The next section details our proposal to visualize task-based
application traces. It tackles some of the preceding challenges
with a framework that combines data analytics tools to create
a flexible environment enabling customized analysis.

IV. VISUALIZATION METHODOLOGY

Visualizing data allows to graphically check many assump-
tions at once. It helps with assumptions that are difficult to
formally state or for which defining a proper statistical test
would require to build on even more hypothesis that would
also have to be verified. This is why it is important to start
by listing various hypothesis (or expectations) made on the
system under study. From such list, a set of visualizations
can be generated. We propose visualization that are therefore
designed for the application and scheduler developers, assist-
ing them to rapidly identify performance problems as well as
potential solutions.

The set of hypothesis to check is fairly rich in heterogeneous
platforms targeted by task-based runtime systems. It is thus
important to build a visualization framework that allows to
easily and rapidly combine various views and propose new
alternative views in an agile way. Moreover, since dynamic
scheduling and machine heterogeneity bring a lot of variability,
the ideal visualization should exploit any potential regularity
coming from the application algorithm. For example, as we
have seen in Figure 1, each task can be identified by the loop
indexes i, j, k. Such kind of information is much more useful
than the internal runtime task identification and should thus
be provided by the application to the runtime so that it can be
traced and further exploited during the visualization.

To meet these different design goals, we decided to use
the workflow shown in Figure 2. With few modifications on
MORSE, tracing is extended to tag tasks with loop indexes at
the task creation. StarPU relies on FXT [22] traces to produce
timestamped events in the Paje language [15]. A complete
DAG is also created with task identifiers coherent with the
Paje trace. Instead of building a complex monolithic tool, we
follow the UNIX philosophy and script many small tools.
Using pjdump, the paje trace is converted into a Comma-
Separated Values (CSV) file that can be loaded into R. Thanks
to the expressiveness and to the rich set of statistical libraries



of the R language, many cleanups, filtering and statistic com-
putations can be done with few lines of code. The ggplot
library provides a grammar of graphics and a very high-level
way of building plots, enabling us to easily produce custom
visualizations. This environment has enough expressiveness to
guarantee different but coherent views (colors, scales, etc.).

R scripts
ggplot2

plotly

static plots

interactive

Cleanups
Filtering
Statistics
Visualization

MORSE/Cholesky (StarPU)
Execution/Tracing (FXT)

DAG

pjdumpPaje CSV

Fig. 2: Combining data analytics tools to create trace views.

This approach allows to build static views in a fully au-
tomatic and very efficient way. Although such visualizations
could probably be sped up even further by programming
everything in C/C++, the used libraries are already well
optimized and benefit from the know-how of data analysts.
Furthermore, a combination of small scripts is both easier
to maintain and adapt to a new necessity or to a particular
situation than a rigid monolithic visualization environment.

The static views (typically basic X11 window or a PDF)
of our approach have disadvantages when compared to tools
described in Section III. Interaction is often crucial for the
analyst to find what he is looking for. This is why we also
build on plotly, an online analytics tool, that enables the
quick conversion of ggplots into interactive, online graphs
usable with a classical web browser. Two illustrations in this
article are also available in an interactive version. We strongly
believe that putting interaction at the very end together with
the scripting capabilities in the core of the analysis process is
the key to carry out the analysis of complex execution traces.

Finally, loading and merging several traces enables faithful
comparisons and even produces perfectly aligned and coherent
views. Since execution traces are stochastic in nature, we
believe that side by side representations are essential to decide
whether a phenomenon is important/recurrent or it is an
unlucky situation and can be considered as the execution noise.

V. EXPERIMENTAL VALIDATION AND RESULTS

When dynamically scheduling task-based applications, the
kind of question to answer is totally different whenever the
resulting DAG is large or small. Large DAGs are expected to
be embarrassingly parallel, almost reaching peak performance.
Since such DAGs have many tasks, one need to use macro-
scopic views and indicators to understand how performance
can be improved. Small DAGs, on the other hand, have little
parallelism. Idle time will inevitably be incurred by task
dependencies. For such executions, microscopic views with
fine-grained data on task dependencies should rather be used.

We fully analyze two very different Cholesky workloads in
the rest of this paper: large (60×60 tiles of size 960×960) and

small matrices (12× 12 tiles, same size). For each, we detail
the expected behavior, then propose composite views allowing
to check these expectations. The views are then exploited to
compare the three aforementioned StarPU schedulers, enabling
us to propose potential improvements.

A. Large Workload (Cholesky of 60×60 tiles of size 960×960)

1) Expectations: Uniformity. Task duration is expected to
depend solely on their type (dgemm, dsyrk, dtrsm or dpotrf)
and on the type of resource (CPU or GPU) on which it is
executed. Such assumption should be visually verified, high-
lighting all tasks whose duration is abnormally large compared
to the others of the same type/resource. We treat these tasks as
independent outliers, unrelated to other tasks behavior. If not
so, it may mean that the whole platform has been perturbed
at particular moments or that some resource differs from the
others. A task is anomalous if its duration exceeds the sampled
third quartile plus 1.5 times the sampled interquartile range.
Although this outlier notion is highly debatable and context-
specific, other definitions could be easily incorporated.
Dependency problems. Large input matrices generate many
tasks, especially when the application starts. We therefore
want to monitor the number of ready and submitted tasks.
For this Cholesky implementation, all tasks are expected to be
submitted when the application starts. On scale, the number of
task dependencies is extremely large. Automatically selecting
which ones to display is haphazard. If a detailed view becomes
necessary, we should switch to views described in Section V-B.
Progress. The task graph resulting from dense linear algebra
always share a common structure (for instance, see Figure 1).
In a classical semi-sequential execution, the DAG would be
executed much similarly to a breadth-first search. However,
it is also possible to carry out a depth-first traversal, favoring
task execution on the critical path. Following the pipelining of
the sets of tasks submitted by each outer loop interation can be
sufficient to get an overview of how the scheduler is handling
the DAG and if it corresponds to the analyst’s intuition or not.
Potential improvements. Dependencies are expected to be
easily handled with large workloads. The major issue is the
load balancing among CPUs and GPUs. Since one knows the
average time wi,k needed to perform a task of type k on a
resource of type i as well as the total number nk of tasks per
type, one can consider that a fraction αi,k of tasks of type k
will be done on resource i and that the αi,k should thus verify:

∀i :
∑
k

αi,k.ni,k.wi,k ≤ T

Since such constraints are linear it is possible to compute
the optimal makespan T and allocation αi,k. The T value is
called the Area Bound Estimation (ABE) and is a lower
bound for the execution time. Another classical lower bound
is the Critical Path Bound Estimation (CPE). It is obtained
by assigning each task on its faster processing resource and by
summing all durations along the DAG. These execution time
bounds, in particular the ABE when the workload is large,
are quite useful to estimate how much further improvement
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can be expected. More accurate lower bounds [23] could be
used as well, in particular for intermediate size workloads.
Moreover, an ideal task allocation is also computed when ABE
is defined. Comparing the ideal with the actual allocation may
help understanding how scheduling could be improved.

2) Composite View for Pinpointing Scheduling Mistakes:
Building on the expectations, we propose a five-area composite
view shown in Figure 3 (each area is detailed in the caption).

We see in Figure 3 (a) that the makespan is 62725ms while
the ABE is 59464ms. So, one can hope for a 5% improvement.
The scheduling seems indeed inefficient since there are periods
(white areas in CPUs) when no useful computation is done.
These periods correspond to filtered states (for clarity) where
threads try to actively fetch data. The total idle state (yellow
areas: a summary in the right of the Gantt) for CPUs is
about 1%, while for GPUs it ranges from 2 to 6%. This GPU
inactivity is likely the main source of potential improvement.
From (c), it is clear that this idle time does not come from
a sudden lack of ready tasks. Figure 3 (d) clearly indicates
that all tasks have been submitted in the beginning and that
task execution started immediately after, without waiting for
fully unrolling the DAG. As suggested in (b), DAG traversal is
rather depth-first. Many outer loop iterations are parallel (the
maximum is 30 around 40s), explaining why there are always
a sufficient number of ready tasks.

Such GPUs starvation is more likely explained either by
data prefetching problem (some tasks are ready but their
input data is not yet transferred to GPUs) or possibly by
some priority problem (the priorities, used by the scheduler
to choose which task to schedule first when several of them

are ready, might be inadequate). The first explanation is likely
to be the right one here. Indeed, most large idle periods on
GPUs and large periods of times where CPUs are not doing
useful computations (in white) also coincide with abnormal
dgemm tasks (in dark green) on GPUs. An investigation (such
as the one of Section V-B) reveals that, for an unknown
reason, the GPUs seem to freeze during a task execution inside
the proprietary CUBLAS dgemm kernel, ultimately blocking
tasks eagerly waiting for GPU data. Understanding why GPUs
sometimes get stuck would certainly solve the issue but this
clearly suggests a weakness of the chosen scheduler which
assumes that tasks duration have small variability. Using other
schedulers may therefore alleviate this.

The four plots depicted in Figure 3 (e) show the ideal allo-
cation when calculating the ABE. They show how the GPUs
have been overused with dgemm tasks and under-exploited for
dsyrk and dtrsm tasks. It therefore suggests to constrain the
dsyrk and dtrsm tasks to run exclusively on GPUs.

3) Comparing Scheduling Strategies and Task Constraints:
The previous analysis lead us to vary the scheduler (DMDA,
DMDAS, WS) and to force or not the dsyrk/dtrsm allocation
on GPUs. Figure 4 provides the six-scenario comparison.

First of all, it is interesting to see how the three schedulers
differ in their DAG traversal of the DAG. While the DMDA
algorithm has a breadth-first traversal (very few iterations of
the outer loop are active at the same time), the DMDAS
has a much more depth-first traversal as it takes the priority
of the critical path into account. The traversal of the Work
Stealing (WS) is even more depth-first as almost all outer loop
iterations are still in progress at the end of the execution. Such
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Fig. 4: The execution representation of three schedulers (DMDA, DMDAS and Work Stealing), as columns, with unconstrained
versus contrained dsyrk and dtrsm tasks on GPUs, as rows. Each of the six plots is an instance of the view described in
Figure 3 (refer to that caption to understand different parts).

way of progressing through the DAG is typical of WS and
somehow favors local data accesses even though the algorithm
is more dependency myopic than the two other ones.

Second, when constraining the dsyrk and dtrsm to run
solely on the GPUs (the plots on the bottom row of Figure 4),
task allocation then corresponds to the ideal one. However, if
such constraint allows both DMDAS and Work Stealing to ob-
tain near optimal executions (within less than 2% of the lower
bound), this helped only moderately the DMDA algorithm.
Many synchronized idle phases can be observed and imputed
to both dependency issues (not enough parallelism is obtained
from such a strict breadth-first traversal) and particularly slow
tasks (probably slowed down by simultaneous data transfers).
Interestingly, very few outlier tasks appear in the DMDAS and
WS executions although the latter still seems a bit sensitive to
this, as inactivity periods on CPUs (white areas) still correlate
with the occurrence of dgemm outliers (darker green) on GPUs.

Finally, we stress that such observations are no coincidence.
We randomly ran similar scenarios ten times and although
the numbers always slightly differ, the general behavior and
conclusions are the same. We also highlight that the area bound
estimations (ABE) can vary significantly between two scenar-
ios (e.g., 60s for constrained DMDA vs. 57s for constrained
WS), which can be initially surprising since these estimates
only depend on the number of tasks and their per-type average

execution time on the different resources. The observations
can be explained by the use of sample execution time mean,
which may vary a bit. From our investigation this variation is
not explained by outliers occurrence but rather biased toward
one or another scheduler. We think this is the consequence of a
better locality (cache usage) but more complex measurements
would be needed to fully evaluate this hypothesis.

B. Small Workload (Cholesky of 12×12 tiles of size 960×960)

1) Expectations: Potential improvements. The area bound
(ABE) is optimistic for small workloads since it ignores task
dependencies. The critical path bound (CPE) is much more
relevant, especially on very small workloads such as this one.
Still, knowing how tight they are is quite difficult [23]. Thus,
comparing to the ideal CPU/GPU allocation is meaningless
and we should focus mainly on filtering task dependencies.
Idle time everywhere. Having a lot of idle time is expected
because of dependencies. It is thus imperative to identify
crucial tasks, highlighting the “dynamic critical path”, i.e., the
last tasks upon which they depended. Such important tasks
may appear either because of the DAG structure or because
they have been particularly delayed.

2) Backtrack Dependencies to Pinpoint Scheduling Mis-
takes: Since StarPU also exports the DAG, the dependency
information can be merged into the trace. For Cholesky, the
dpotrf are critical tasks that release many other tasks. It seems
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Fig. 5: Detailed view (see http://perf-ev-runtime.gforge.inria.
fr/vpa2016/) of a 12 × 12 Cholesky execution (DMDAS
scheduler) with two (red and blue) critical paths.

therefore relevant to track their dependencies. For a given
task Ti, it is possible to compute what was the task Ti−1 on
which it depends on and that finished the latest, similarly, for
Ti−1 its latest predecessor Ti−2, etc. Such backward tracking
of dependencies allows to rebuild the observed critical path.
Given the DAG, in an ideal execution one would expect a
dpotrf to be immediately preceded by a dsyrk, immediately
preceded by a dtrsm that would in turn be immediately
preceded by the dpotrf of the previous iteration. Therefore,
we compute such filtered backward dependencies for each
dpotrf and merge them together.

This is illustrated on Figure 5. The makespan is 730ms
while the ABE is 434ms and the CPE is 368ms. The bounds
may be loose but it seems that there is room for improvement.
If we start from the end of the schedule and go backward
in time, we can see a dependency path (in blue) that, un-
til timestamp 400ms, fully respects the alternation dpotrf–
dsyrk–dtrsm. At the very end, all tasks execute right one after
the other, which is optimal. The first “mistake” appears in
time 600ms where the dsyrk could have been executed a little
earlier. Slightly before, some dtrsm are not executed right after
their dpotrf maybe because of data transfer or more likely
because of a wrong priority. This critical path does not merge
with the one obtained for the dpotrf of the first iterations.
Now, when looking at the other (red) dependency path, we
can see many times that the tasks are scheduled as soon as
possible as if there was some priority problem, which could
possibly be solved with another scheduler.

We identify another problem with the blue dependency path.
At the end, tasks are executed on the appropriate resource
(dpotrf on CPUs, and dsyrk and dtrsm on GPUs). However,
slightly before time 600ms, critical dsyrk tasks start running
on the CPUs, slowing the progression. Likewise, slightly
before time 400ms, critical dtrsm tasks are run on CPUs
whereas they are known to be very slow on such resources.
It seems that this scheduler makes a bad decision and that
constraining dtrsm and dsyrk to be executed on GPUs may
reduce the total makespan. Although the potential solutions

(fix priority, constraining some tasks to GPUs) suggested by
this analysis are the same as in the previous use case, the
underlying reasons are fundamentally different.

3) Comparing Scheduling Strategies and Task Constraints:
Based on the previous analysis, we vary again the three
schedulers and forcing dsyrk/dtrsm tasks on GPUs. Figure 6
compares the six resulting combinations for this workload.

By taking a closer look at the unconstrained top row of
Figure 6, we can observe that the behavior demonstrated
by the DMDA and DMDAS schedulers are not so different.
They both have similar runtime, two unmerged critical paths
on which priority and critical task allocation problems can
be identified. WS also demonstrates a very bad allocation,
which is not surprising because it does not take into account
the heterogeneity of the platform. There are three dynamic
critical paths in the WS scheduler, with many dtrsm and
dsyrk running on CPUs. When constraining these two task
types to execute only on GPUs (the bottom row of Figure 6),
we observe that such restriction does not really help for the
DMDA and DMDAS schedulers. Tasks on the critical path
are no longer an issue, but both schedulers still have priority
problems. The behavior demonstrated by DMDA seems easier
to understand: we see some typical list scheduling behavior
with critical dpotrf being delayed because CPUs are used for
not so critical dgemms. If one could run these tasks earlier, it
appears that the whole makespan would be greatly improved.

Surprisingly, Work Stealing strongly benefits from the im-
posed restriction and now favorably compares against DMDA
and DMDAS. It is also interesting to note that WS manages
to keep all CPUs busy from the very beginning unlike the
other two schedulers. However, GPUs are not fully exploited,
in particular at the end where they should be used to accelerate
the dgemms like the DMDA and DMDAS strategy do. If there
was a way to prevent dgemm task execution on CPU after time
350ms, we would probably get the best of the two scheduling
strategies and be much closer to the optimal execution time.

VI. CONCLUSION

This article presents how an agile scripting framework
allows to create faithful and enlightening trace views for the
performance analysis of task-based HPC applications running
on heterogeneous platforms. The framework follows the UNIX
philosophy and builds upon many small existing tools (pj-
dump, ggplot2, plotly) glued together with the R programming
language. Putting interaction at the very end together with
scripting capabilities in the core of the analysis process is the
key to a flexible design. We have shown how applying this
framework in the analysis of large and small scale scenarios
based on the MORSE/StarPU implementation of the Cholesky
factorization allows to identify and address several non trivial
scheduling problems.

As future work, we intend to improve the interactive views
by using temporal aggregation to reduce trace size and improve
the integration between performance visualization and runtime
debugging. We also intend to extend this approach to analyze
the behavior of irregular task-based workloads [24].

http://perf-ev-runtime.gforge.inria.fr/vpa2016/
http://perf-ev-runtime.gforge.inria.fr/vpa2016/
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Fig. 6: The execution representation (interactive version at http://perf-ev-runtime.gforge.inria.fr/vpa2016/) of three schedulers
(DMDA, DMDAS and Work Stealing), as columns, with unconstrained versus constrained dsyrk and dtrsm tasks on GPUs,
as rows, for a 12× 12 tiled Cholesky decomposition. Each of the six plots is an instance of the view described in Figure 5.
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