Discovering Editing Rules for Data Cleaning
Thierno Diallo, Jean-Marc Petit, Sylvie Servigne

To cite this version:

Thierno Diallo, Jean-Marc Petit, Sylvie Servigne. Discovering Editing Rules for Data Cleaning. 10th International Workshop on Quality in Databases In conjunction with VLDB (Very Large Databases) 2012, Aug 2012, Istanbul, Turkey. pp.1-8. hal-01353088

HAL Id: hal-01353088
https://hal.archives-ouvertes.fr/hal-01353088
Submitted on 4 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Editing Rules: Discovery and Application to Data Cleaning

Thierno Diallo *, Jean-Marc Petit #, and Sylvie Servigne #

LIRIS UMR 5205 CNRS/Université de Lyon,
INSA de Lyon, bâtiment B. Pascal
20, Avenue Albert Einstein - 69622 Villeurbanne cedex
*Orchestra Networks SA
11 rue Scribe 75009 Paris-France
firstname.lastname@insa-lyon.fr

Abstract. Dirty data is a serious problem for businesses, leading to incorrect decision making, inefficient daily operations, and ultimately wasting both time and money. A variety of integrity constraints like Conditional Functional Dependencies (CFD) have been studied for data cleaning. Data repairing methods based on these constraints are strong to detect inconsistencies but are limited on how to correct data, worse they can even introduce new errors. Based on Master Data Management principles, a new class of data quality rules known as Editing Rules (eR) tells how to fix errors, pointing which attributes are wrong and what values they should take.

However, finding data quality rules is an expensive process that involves intensive manual efforts. In this paper, we develop pattern mining techniques for discovering eRs from existing source relations (eventually dirty) with respect to master relations (supposed to be clean and accurate). In this setting, we propose a new semantic of eRs taking advantage of both source and master data. The problem turns out to be strongly related to the discovery of both CFD and one-to-one correspondences between sources and target attributes. We have proposed efficient techniques to address these two subproblems.

We have implemented and evaluated our techniques on real-life databases. Experiments show both the feasibility, the scalability and the robustness of our proposition.

1 Introduction

Poor data quality continues to be an important issue for companies. Erroneous, incomplete or duplicate data leads to bad and poor business decisions which cost a lot. There is an increased need for effective methods to improve data quality and to restore consistency.

A variety of integrity constraints have been studied for data cleaning from traditional functional and inclusion dependencies to their conditional extensions [6, 7, 14, 17]. These constraints help us to determine whether errors are present in the data but they fall short of telling us which attributes are concerned by
the error and moreover how to correct it. Worst, heuristic methods based on that constraints may introduce new errors when trying to repair the data. These limitations motivate [16] to define Editing Rules, a new class of data quality rules that tells how to fix errors, i.e. which attributes are wrong and what values they should take. Editing Rules (eRs) are boosted by the recent development of master data management (MDM [22, 11, 27, 29]) and then are defined in term of master data, a single repository of high-quality data that provides various applications with a synchronized, consistent view of its core business entities. This helps to fix and enrich dirty data using the corresponding values from master data.

However, for eRs to be effective in practice, it is necessary to have techniques in place that can automatically discover such rules from both source relations and their corresponding master relations. Indeed it is often unrealistic to rely on human experts to design them by hand via an expensive and long manual process. This practical concern highlights the need for studying the discovering problem of eRs. On the one hand, it is worth nothing that any master relation is assumed to contain only pure, accurate and curated data. So it makes sense to infer the "truth" from master data: they can be seen as an Oracle with respect to data quality. Clearly, the process of defining such master data from existing data sources is out of the scope of this paper [22]. On the other hand, we have to be more prudent and sceptic on data sources quality. Roughly speaking, the problem statement can be given as follows: Given an operational database $d = \{r_1, r_2, \ldots, r_n\}$ and a master database $m = \{s_1, s_2, \ldots, s_p\}$, infer all eRs to correct the database d with respect to the database m.

In the sequel, we assume the existence of both sources and master data. The former can be inaccurate and dirty, the latter is curated and clean.

The discovery problem is, however, highly non trivial. It is already hard for traditional dependencies and their corresponding conditional classes (CFDs and conditional inclusion dependencies) [9, 12, 21].

Our approach is based on the following process:

1. Finding one to one attribute mapping between source and master relation.
2. Infering rules from master relation.
3. Applying rules on input source relation.

Contributions: In this paper we define and provide solutions for discovering eRs in databases provided with source data and master data. In particular we make the following contributions:

1. We introduce a new semantic of eRs allowing to precisely define the discovery problem as a pattern mining one.
2. We propose heuristics to apply eRs in a data cleaning process.
3. We present an experimental evaluation of our techniques demonstrating their usefulness for discovering eRs. We finally evaluate the scalability and the robustness of our techniques.
Related Works: This work finds similarities to constraint discovery and Association Rule (AR) mining. Plenty of contributions have been proposed for Functional Dependencies inference and AR mining [2, 26, 18, 20, 25], but less for CFDs mining [9, 15, 12]. In [9], authors propose a tool for data quality management which suggests possible rules and identify conform and non-conform records. They present effective algorithms for discovering CFDs and dirty values in a data instance, but the CFDs discovered may contain redundant patterns. In [15], authors proposed three methods to discover CFDs. The first one is called CFDMiner which mines only constant CFDs i.e. CFDs with constant patterns only. CFDMiner is based on technics for mining closed itemsets [26]. The two other ones, called CTANE and FastCFD, were developed for general (non constant) CFDs discovery. CTANE and FastCFD are respectively extensions of well known algorithms TANE [18] and FastFD [30] for mining FDs. In [12] authors propose a powerful method for mining frequent constant CFDs.

The problem we address is also related to mapping function discovery between source and target schemas. Many contributions have been proposed in this setting. For example authors in [4], based on INclusion Dependencies (INDs), present the SPIDER algorithm that efficiently find all the INDs in a given relation. Authors in [19] construct a dependency graph as a measure of the dependency between attributes. Then they find matching node pairs in the dependency graphs by running a graph matching algorithm. In [31], authors propose a robust algorithm for discovering single-column and multi-column foreign keys, which can be used as a mapping algorithm for attributes. In addition many technics have been proposed to identify one-to-one correspondences in different domains such as schema matching [5, 28], ontology alignments [13] or understanding logical database design [21]. Since introduction of eRs by [16], as far as we know, no contributions have been made for the discovery problem of eRs.

Paper Organization: This paper is organized as follows. In section 2, we give preliminary definitions. In section 3 we describe the problem statement. We give details of our solutions for the eRs discovery problem in section 4. In section 5 we describe application of eRs to repair data. Section 6 presents an experimental evaluation of our methods and section 7 finally concludes the paper.

2 Preliminaries

We shall use classical database notions (e.g. [1], CFDs and INDs terminologies [7, 14, 17, 12, 21]). The relation symbol is generally denoted by R and the relation schema of R is denoted by $sch(R)$. When clear from context, we shall use R instead of $sch(R)$. Each attribute A has a domain, denoted by $DOM(A)$. A relation is a set of tuples and the projection of a tuple t on an attribute set X is denoted by $t[X]$. Given a relation r over R and $A \in R$, active domain of A in r is denoted by $ADOM(A, r)$. The active domain of r is noted $ADOM(r)$. Letters from the beginning of the alphabet (A, B, C, \ldots) shall represent single
attribute whereas letters from the end of the alphabet \((X, Y, Z, \ldots)\) attribute sets. For convenience, \(XY\) will refer to as \(X \cup Y\).

2.1 Conditional Functional Dependencies (CFDs)

The reader familiar with CFDs may skip this section. CFDs have been recently introduced in the context of data cleaning [7]. They can be seen as an unification of Functional Dependencies (FD) and Association Rules (AR) since they allow to mix attributes and attribute/values in dependencies.

We now consider a relation schema \(R\), the syntax of a CFD is given as follows:

Definition 1. Syntax: A Conditional Functional Dependency (CFD) \(\rho\) on \(R\) is a pair \((X \rightarrow Y, T_p)\) where (1) \(XY \subseteq R\), (2) \(X \rightarrow Y\) a standard Functional Dependency (FD) and (3) \(T_p\) is a pattern tableau with attributes in \(R\).

For each \(A \in R\) and for each pattern tuple \(t_p \in T_p, t_p[A]\) is either a constant in \(\text{DOM}(A)\), or an ‘unnamed variable’ denoted by ‘\(_\)’, or an empty variable denoted by ‘\(\ast\)’ which indicates that the corresponding attribute does not contribute to the pattern (i.e. \(A \notin XY\)).

The semantics of a CFD extends the semantics of FD with mainly the notion of matching tuples.

Let \(r\) be a relation over \(R\), \(X \subseteq R\) and \(T_p\) a pattern tableau over \(R\). A tuple \(t \in r\) matches a tuple \(t_p \in T_p\) over \(X\), denoted by \(t[X] \approx t_p[X]\), iff for each attribute \(A \in X\), either \(t[A] = t_p[A]\), or \(t_p[A] = _\), or \(t_p[A] = \ast\).

Definition 2. Semantic: Let \(r\) be a relation over \(R\) and \(\rho = (X \rightarrow Y, T)\) a CFD with \(XY \subseteq R\). We say that \(r\) satisfies \(\rho\), denoted by \(r \models \rho\), iff for all \(t_i, t_j \in r\) and for all \(t_p \in T\), if \(t_i[X] = t_j[X] = t_p[X]\) then \(t_i[Y] = t_j[Y] = t_p[Y]\).

That is, if \(t_i[X]\) and \(= t_j[X]\) are equal and in addition, they both match the pattern \(t_p[X]\), then \(t_i[Y]\) and \(= t_j[Y]\) must also be equal to each other and both match the pattern \(t_p[Y]\).

Example 1. Let \(r_0\) be a relation defined over \(ABCD\) (Figure 1). We can say \(r_0 \models (AC \rightarrow D, (2, *, 0 \parallel 1))\).

<table>
<thead>
<tr>
<th>(r_0)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(t_4)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(t_5)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 1. A Toy relation \(r_0\)
We say that \(r \) satisfies a set \(\Sigma \) of CFD over \(R \), denoted by \(r \models \Sigma \) if \(r \models \rho \) for each CFD \(\rho \in \Sigma \). A CFD \((X \rightarrow Y, T_p) \) is in the normal form [14], when \(|Y| = 1 \) and \(|T_p| = 1\). So a normalized CFD has a single attribute on the right-hand side and its pattern tableau has only one single tuple. In the sequel we consider CFDs in their normal form, unless stated otherwise. A CFD \((X \rightarrow A, t_p) \) is called:

- a constant CFD if \(t_p[XA] \) consists of constants only, i.e. \(t_p[A] \) is a constant and \(t_p[B] \) is also a constant for all \(B \in X \).
- a variable CFD if the right hand side of its pattern tuple is the unnamed variable ‘\(_ \)’, i.e. \(t_p[A] = _ \), the left-hand side involving either constants or ‘\(_ \)’.

Compare to FDs, note that a single tuple relation may violate a CFD. It may occur when the pattern tableau has at least one row with at least one constant on the right-hand side. Given a relation, the satisfaction of a CFD has to be checked with both every single tuple and every couple of tuples. More formally, we get:

\(r \) violates a CFD \(\rho = (X \rightarrow A, T) \), denoted by \(r \not\models \rho \), iff

- there exists a tuple \(t \in r \) and a pattern tuple \(t_p \in T \) such that \(t[X] \approx t_p[X] \) and \(t[A] \not\approx t_p[A] \). This may occur when \(t_p[A] \) is a constant.
- or there exists \(t_i, t_j \in r \) and a pattern tuple \(t_p \in T \) such that \(t_i[X] = t_j[X] \approx t_p[X] \) and \(t_i[A] \not\approx t_j[A] \). We can assume that \(t_p[A] = _ \) since otherwise the violation is already covered by the single tuple violation.

Example 2. Figure 1, \(r_0 \not\models (A \rightarrow D, (0, *, *) \mid 2) \). The tuple \(t_3 \) violates the constraint, indeed \(t_3[A] = 0 \) and \(t_3[D] \neq 2 \).

2.2 Editing Rules (eRs)

eRs syntax [16] is slightly rephrased in the following definition.

Definition 3. Syntax: Let \(R \) and \(S \) be two relation symbols, \(R \) is the relation source symbol and \(S \) is the target master one. Let \(X \) (resp. \(Y \)) be a list of distinct attributes from \(\text{sch}(R) \) (resp. \(\text{sch}(S) \)), \(A \in \text{sch}(R) \setminus X, B \in \text{sch}(S) \) and \(Z \subseteq \text{sch}(R) \). An eR \(\varphi \) over \((R, S)\) is of the form \(\varphi : ((X, Y) \rightarrow (A, B), t_p[Z]) \) where \(t_p[Z] \) is a pattern tuple over \(R \).

Let \(r \in \text{sch}(R) \) and \(s \in \text{sch}(S) \) be respectively a source and a master relation. The semantics of eRs have been defined with respect to the insertion of a tuple \(t \) in \(r \) [16]. The idea is to “correct” \(r \) using values of \(s \) with respect to pattern selection applying on \(r \).

Definition 4. Semantic: An eR \(\varphi = ((X, Y) \rightarrow (A, B), t_p[Z]) \), with respect to a master tuple \(t_m \in s \), is applied to \(t \in r \) to obtain \(t' \) if:

1. \(t[Z] \) matches \(t_p[Z] \)
2. \(t[X] = t_m[Y] \)
<table>
<thead>
<tr>
<th>item</th>
<th>ItemId</th>
<th>Item</th>
<th>DOF</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>701B</td>
<td>Book</td>
<td>04/03/10</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>017A</td>
<td>CD</td>
<td>11/10/10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>904A</td>
<td>DVD</td>
<td>25/08/10</td>
<td>16</td>
</tr>
</tbody>
</table>

Fig. 2. source relation r and master database \(\{s, u\}\)

3. \(t'\) is obtained by the update \(t[A] := t_m[B]\)

That is, if \(t\) matches \(t_p\) and if \(t[X] = t_m[Y]\), then \(t_m[B]\) is assigned to \(t[A]\).

Example 3. Let us consider the tuples \(t_1\) and \(s_1\) in Figure 2. \(t_1\) is in a source relation and \(s_1\) is in a master relation. It is known that if Area Code (AC) is 020, city should be London (Lnd), and when AC is 131, city must be Edinburgh (Edi).

The tuple \(t_1\) is inconsistent: \(t_1[AC] = 020\) but \(t_1[city] = Edi\). So, an example of eR that correct such an inconsistency is \((zip, zip) \rightarrow (AC, AC), t_{p1} = ()\).

In that case, \(t_1[AC]\) is changed to (131) taken from \(s_1\).

Similarly \(t_1[FN] = Bob\) may be corrected using the right name \(s_1[FN] = Robert\) with respect to the eR \((phn, Mphn) \rightarrow (FN, FN), t_{p2}[type] = (2)\). That is, if \(t[type] = 2\) (indicating mobile phone) and if there is a master tuple \(s\) with \(s[Mphn] = t[phn]\), then \(t[FN] := s[FN]\).

3 Problem Statement

The problem we are interested in can be stated as follows: given an instance \(r\) from a source database \(d\) and an instance \(s\) from a master database \(m\), it is to find all applicable eRs on \(r\) with respect to \(s\).

However, in a data mining setting, the previous semantic of eRs (Definition 4) needs to be properly extended since it just involves tuple insertion. We need to define a semantic to identify rules.

In the sequel, to alleviate notations the master database is reduced to a single master relation. Taking into account a set of relations instead of a single relation is doable easily.

Preliminary, we introduce a general schema mapping function \(f\) between attributes of source relation and master relation. This function is based on the following requirements:
Each attribute of a source relation should have a mapping attribute in a master relation, and only one.

If two attributes A,B of a source relation have the same mapping attribute in a master relation, then $A = B$.

Let $sch(R)$ and $sch(S)$ be respectively the source schema relation and the master one.

Definition 5. A mapping function f from R to S, is defined as a total and injective function; $f : sch(R) \rightarrow sch(S)$

By extension, for $X \subseteq sch(R)$ we note: $f(X) = \bigcup_{A \in X} \{f(A)\}$. The new definition of eRs semantic can now be given.

Definition 6. New semantic: Let $\varphi = ((X,Y) \rightarrow (A,B), t_p[Z])$ be an eR over (R,S), r a source relation over R and s a master relation over S.

We say that φ is satisfied in (r,s) with respect to f, denoted by $(r,s) \models_f \varphi$, if:

1. $f(X) = Y$
2. $f(A) = B$
3. $f(Z) = Z'$
4. $s \models Y \rightarrow B, t_p[Z']$

Example 4. Let $\varphi = ((zip, zip) \rightarrow (AC, AC), t_p = (EH74AH))$ be an eR defined on r,s of Figure 2. We can say that φ is satisfied in (r,s) with respect to the identity function. Indeed, attributes are the same (i.e. $zip = zip$) and $s \models zip \rightarrow AC, t_p = (EH74AH)$.

The problem of Discovering eRs (denoted by DER) is defined as follows:

Given a source relation r, a master relation s and a mapping function f, find a cover of all eRs satisfied in (r,s) with respect to f.

4 Mining Editing Rules

In order to solve the DER problem, we have to deal with the following steps:

1. Specifying a mapping function f and discovering the mapping between attributes related to f.
2. Discovering a cover of CFDs satisfied in s.
3. Propagating CFDs from s to r using f: for each discovered CFDs $(Y \rightarrow B, t_p[Z'])$, generating an eR $((f^{-1}(Y)), Y \rightarrow (f^{-1}(B), B), f^{-1}(t_p[Z']))$.

In the sequel, we first consider the simplest case: the input source relation and master relation are defined over the same relation schema, i.e. the mapping function f is the identity function. Then we address the general case when relation schemas are different.
4.1 Same Schemas on source and master relation

In this approach, let us assume that the schema of \(R \) is equal to the schema of \(S \). The syntax definition 3 of eRs is adapted accordingly as follows:

Definition 7. **New Syntax:** Let \(R \) and \(S \) be two relation symbols with \(\text{sch}(R) = \text{sch}(S) \). Let \(X \) be a list of distinct attributes from \(\text{sch}(R) \), \(A \in \text{sch}(R) \setminus X \) and \(Z \subseteq \text{sch}(R) \). An eR \(\varphi \) over \((R, S)\) is of the form \(\varphi : (X \rightarrow A, t_p[Z]) \) where \(t_p[Z] \) is a pattern tuple over \(R \).

This definition is closer to CFD definition. The CFDs discovery problem has been already studied in [9, 12, 15]. In [12] we proposed efficient technics to discover all constant CFDs satisfied by a given relation. We focus on two types of technics inherited from FD inference: the first one extends the notion of agree sets and the second one extends the notions of non-redundant sets, closure and quasi-closure. The DER problem can be resolved as follows:

1. Discovering a cover of CFDs satisfied in \(s \).
2. For each discovered CFDs \((X \rightarrow A, t_p[Z])\), generating the eR \(((X, X) \rightarrow (A, A), t_p[Z])\).

4.2 Different Schemas on source and master relation

In this case, it is necessary to find out, through a mapping function, correspondences between attributes of master relation and source relation. Different technics can be used to specify such a mapping function. For instance, one may relay on attribute naming assumption not based on instances or, ontology alignment [13], discovery of inclusion dependencies (INDs) [21, 4], both based on instances.

For a given correspondence, values should be as much as possible "similar", i.e. some forms of INDs should exist between them. Clearly, due to the presence of errors in source relations and due to the high quality data of the master relation, the definition of such a correspondence should be flexible, which is indeed possible with approximative unary INDs.

4.2.1 From source and master relations to INDs

We define the mapping function \(f \) with respect to unary INDs from the source relation \(r \) to the master relation \(s \). Efficient technics have been proposed to discover such unary IND satisfied in a given database, among them we quote [21, 4].

Let \(A \) and \(B \) be respectively single attributes. The unary IND \(A \subseteq B \) means all values of attribute \(A \) are included in the bag of values of attribute \(B \). An IND candidate is satisfied when it fulfills the IND definition. For example in Figure 2, we have: \(Hphn \subseteq phn \).

We want to identify all unary INDs based on both source and master relations. To that end, we introduce a preprocessing of relations to be as much as closer to association rule and transaction syntax. We call such preprocessing **condensed representation**.
Given a common relation \(r \) over a schema \(\text{sch}(R) \) the condensed representation of \(r \), denoted by \(CR(r) \), is defined by:

\[
CR(r) = \{(v, X)|v \in \text{ADOM}(r), X = \bigcup\{A \in \text{sch}(R)|\exists t \in r, t[A] = v\}\}
\]

For a set of relations, \(CR(r_1, \ldots, r_n) = \bigcup_{i=1..n} CR(r_i) \).

Example 5. The condensed representation \(CR(r_0) \) of relation \(r_0 \) (Figure 1 recalled below) is given as follows:

<table>
<thead>
<tr>
<th>(r_0)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(t_4)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(t_5)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(CR(r_0) : \)

<table>
<thead>
<tr>
<th>(r_0)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(t_4)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(t_5)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

For convenience concerning the condensed representation, we use the following notations:

- \(CR(r).val = \{v|(v, X) \in CR(r)\} \)
- \(CR(r).v.atts = \{X|(v, X) \in CR(r)\} \)

The support of an attribute set \(X \subseteq R \) in \(CR(r) \), denoted by \(sup(X, CR(r)) \), is defined by:

\[
sup(X, CR(r)) = |\{(v, Y) \in CR(r)|X \subseteq Y\}|\]

The closure of an attribute \(A \in \text{sch}(R) \) with respect to \(CR(r) \), denoted by \(A^+_CR(r) \), is defined as:

\[
A^+_CR(r) = \bigcap_{(v, X) \in CR(r)} \{X|A \subseteq X\}
\]

Property 1. Let \(r \) be a relation over \(R \) and \(A, B \) attributes of \(R \).

\[
r \models A \subseteq B \iff B \in A^+_CR(r) \iff sup\{A, B\}, CR(r)) = sup\{A, CR(r)\}
\]

Proof. \(r \models R[A] \subseteq S[B] \).

For all \(v \in \pi_A(r) \), \(\exists t \in r \) such that \(v = t[B] \). So \(v \in \pi_A(r) \iff v \in \pi_B(r) \). \(\forall (v, X) \in CR(r), A \subseteq X \iff B \subseteq X \).

So \(B \in \bigcap_{(v, X) \in CR(r)} \{X|A \subseteq X\} \).

Finally \(B \in A^+_CR(r) \).

A consequence of property 1 is on the computation of the closure: it is no longer necessary to compute the intersection between attributes to extract INDs.

To identify all approximative unary INDs it is necessary to use a natural error measure, called \(g'_d \) [21]. Let \(r \) be a source over schema \(R \) and let \(s \) be a master relation over schema \(S \).

\[
g'_d(R[X] \subseteq S[Y], \{r, s\}) = 1 - \frac{\max\{|\pi_X(r')| : r' \subseteq r, \{r, s\} \models R[X] \subseteq S[Y]\}}{|\pi_X(r)|}
\]
Definition 8. Let \(A \in \text{sch}(R), B \in \text{sch}(S) \) and \(\epsilon \) a \([0,1]\)-threshold value.

We say that \(A \) corresponds to \(B \) in \(r, s \) with respect to \(\epsilon \), denoted by \(\{r,s\} \models_\epsilon \text{corr}(A,B) \), if

\[
g'_3(R[A] \subseteq S[B], \{r,s\}) \leq \epsilon
\]

By extension, we say that \(X \) corresponds to \(Y \) wrt \(\epsilon \) if \(\forall A \in X, \exists B \in Y \) such that \(\{r,s\} \models_\epsilon \text{corr}(A,B) \)

The error measure can be also defined using the support of attribute sets as follows:

Definition 9. Let \(r \) be a relation over \(R \) and \(A,B \in R \).

\[
\text{error}(A \subseteq B) = \frac{\text{sup}(\{A,B\})}{\text{sup}(\{A\})}
\]

Property 2. Let \(r \) be a relation over \(R \) and \(A,B \in R \).

\[
\text{error}(A \subseteq B) = g'_3(A \subseteq B)
\]

Thanks to definition 9 and property 2, we just need to compute the support of every single attribute (item of size 1) and the support of every couple of generated candidates attributes (itemsets of size 2).

Therefore, we use the \textsc{Apriori} [3] algorithm until level 2 without any threshold.

Algorithm 1 ScalableClosure

\begin{algorithm}
\textbf{Require:} A condensed representation \(CR \) of \(r \) and \(s \)
\textbf{Ensure:} \(F_1, F_2 \), itemsets and their supports of size 1 and 2 respectively
1: \(F_1 = \{(A, \text{support}(A)) | A \in R\} \)
2: \(C_2 = \text{CandidateGeneration}(F_1) \)
3: \textbf{for all} \((v, X) \in CR(r) \) \textbf{do}
4: \(F_2 = \text{subset}(C_2, X) \) – Return the subset of \(C_2 \) containing \(X \)
5: \textbf{for all} \(e \in F_2 \) \textbf{do}
6: \(\text{support}(e) + = 1 \)
7: \textbf{end for}
8: \textbf{end for}
9: \textbf{return} \(F_1, F_2 \)
\end{algorithm}

4.2.2 From approximative unary INDs to a mapping function \(f \)

Given the source relation, the master relation and a \(\epsilon \) threshold, our goal is find mapping between attributes based on approximative unary INDs. A mapping function can be defined in this setting as described in Algorithm 2.
Algorithm 2 (SR2MR) Mapping from Source Relation to Master Relation

Require: a source relation \(r \) over \(R \), a master relation \(s \) over \(S \)
Ensure: A mapping function \(f \) from \(R \) to \(S \)
1: \(CR = \text{Preprocessing}(r, s) \);
2: \((F_1, F_2) = \text{scalableClosure}(CR)\);
3: for all \(A \in R \) do
4: \((B, \epsilon), F_2) = \text{FindBest}(F_1, F_2, A)\);
5: while \(g_3(A \subseteq B) \leq \epsilon \) do
6: \(\epsilon = \epsilon + 0.05 \);
7: end while
8: \(f(A) = B \);
9: end for
10: return \(f \)

The first step of Preprocessing\((r, s)\) computes for both relations the condensed representation described in example 5. Itemsets \(F_1, F_2 \) respectively of size 1 and 2 and their supports are generated thanks to Algorithm 1. And for each attribute \(A \) in \(R \) a corresponding attribute in \(S \) is mined by FindBest procedure with respect to a mapping function \(f \). When there is no corresponding attribute, the \(\epsilon \) threshold is decreased until one is found through approximative unary IND. When many approximative unary INDs are concerned, the one with the biggest cardinality is choosen. This procedure is presented on Algorithm 3 where the symbol \(\perp \) refers to the default attribute.

Algorithm 3 FindBest

Require: \(F_1, F_2 \) itemsets of size 1 and 2 respectively and their supports , \(A \in R \)
Ensure: \(B \in S \), a mapping attribute for \(A \), \(F_2 \), remaining (itemsets,support) of size 2
1: Let \((A, v) \in F_1\);
2: Let \(E = \{(A_i, A_j, v) \in F_2| A = A_i \text{ or } A = A_j\}\)
3: if \(\exists (AB, v) \in E \text{ such that for all } (X, v') \in E, v \geq v' \) then
4: Remove all occurrences of \(B \) in \(F_2 \)
5: return \((B, \frac{v}{}, F_2)\)
6: else
7: return \((\perp, 1), F_2\)
8: end if

Finally Algorithm 2 outputs a total and injective function \(f \) whenever \(S \supseteq R \).

4.2.3 Mining Editing Rules
The process of discovering eRs begins by computing the condensed representation of all the relations. Then we define the mapping function in order to find one to one correspondences between attributes. Finally, with respect to the set
of satisfied CFDs in master data, we build the corresponding eRs to solve DER problem.

Algorithm 4 Discovery of Editing Rules

Require: \(r \) a source relation, \(s \) a master relation, \(\Sigma \) the set of CFDs satisfied in \(s \), \(\epsilon \) a threshold.

Ensure: eRs for \(r \) with respect to \(s \)

1: \(\text{res} = \emptyset \);
2: \(f = \text{SR2MR}(r, s) \);
3: for all \(A \in R \) do
4: \hspace{1em} Let \((s. B, \text{err}) = f(A) \);
5: \hspace{1em} \text{CFD} = \{cfd \in \Sigma \mid \text{cfd defined over } s \} \)
6: \hspace{1em} for all \(X \rightarrow A, t_p[Z] \in \text{CFD} \) do
7: \hspace{2em} if \(g(A \cup X \cup Z) \in R \) then
8: \hspace{3em} if \(\forall B \in (A \cup X \cup Z) \text{ such that } f(g(B)).\text{err} \leq \epsilon \) then
9: \hspace{4em} \text{res} += (f^{-1}(X), X) \rightarrow f^{-1}(A), A, t_p[f^{-1}(Z)]
10: \hspace{2em} end if
11: \hspace{1em} end if
12: \hspace{1em} end for
13: end for
14: return \(\text{res} \)

5 Applying Editing Rules

Applying eRs is actually a process of repairing data [16]. Repairing data using contraints is challenging specially for CFDs [7].

5.1 Main problems of data repairing with CFDs

5.1.1 CFDs violation

CFDs violation may be impossible to solve. To see this, consider a schema \(R \) with \(\{A, B, C\} \) attributes, an instance \(I \) of \(R \) consisting of \((a_1, b_1, c_1)\) and \((a_1, b_2, c_2)\), and a set \(\Sigma = \{(A \rightarrow B, \langle . \rangle), (C \rightarrow B, \langle (c_1, b_1), (c_2, b_2)\rangle)\} \) of CFDs. Then \(I \not\models \Sigma \) and moreover concerned CFDs are in conflict, any repair of \(I \) has to modify the values of some attributes in the left hand side of the CFD.

5.1.2 Application order

The correction of dirty tuples can cause some rules no more applicable. In this setting the order in which they are applied is important in order to maximize the number of rules used in practice to correct data. This issue is illustrated in the following with respect to CFDs as example.

Let \(r_1 \) be a relation defined on the following schema \(ABCDE \), with a set of CFDs.
When the set of CFDs is applied in the order they appear on Figure 3, only ϱ_2 is applied. There are no tuples matching pattern $D = 2, C = 2$ of ϱ_1 and they are no tuples matching pattern of ϱ_3 and ϱ_4 because ϱ_2 changed the value of $t[C]$ from 1 to 2.

In another hand, if we apply the set in the following order ϱ_4, ϱ_3, ϱ_2 and ϱ_1 all of them are actually applied. This example highlights the importance of the order in which rules are applied. Therefore it is necessary to develop heuristics that maximize the number of rules used in practice.

5.2 Heuristics for data repairing

In the sequel we recall the runing example of [16] with some modifications to have the same relation schema, i.e. $Hphn, Mphn, DOB$ and gender attributes are removed from master relation schema S. Similary $phn, type$ and $item$ attributes are removed from R. Thus S and R schemas are now equal and contain $FN, LN, AC, str, city$ and zip.

<table>
<thead>
<tr>
<th>source : r</th>
<th>FN</th>
<th>LN</th>
<th>AC</th>
<th>str</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Bob</td>
<td>Brady</td>
<td>020</td>
<td>501 Elm St.</td>
<td>Edi</td>
<td>EH7 4AH</td>
</tr>
<tr>
<td>t_2</td>
<td>Robert</td>
<td>Brady</td>
<td>131</td>
<td>null</td>
<td>Lnd</td>
<td>null</td>
</tr>
<tr>
<td>t_3</td>
<td>Robert</td>
<td>Brady</td>
<td>020</td>
<td>null</td>
<td>null</td>
<td>EH7 4AH</td>
</tr>
<tr>
<td>t_4</td>
<td>Mary</td>
<td>Burn</td>
<td>029</td>
<td>null</td>
<td>Cad</td>
<td>null</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>master : s</th>
<th>FN</th>
<th>LN</th>
<th>AC</th>
<th>str</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>Robert</td>
<td>Brady</td>
<td>131</td>
<td>51 Elm Row</td>
<td>Edi</td>
<td>EH7 4AH</td>
</tr>
<tr>
<td>s_2</td>
<td>Mark</td>
<td>Smith</td>
<td>020</td>
<td>20 Baker St.</td>
<td>Lnd</td>
<td>NW1 6XE</td>
</tr>
</tbody>
</table>

Fig. 4. Example from [16] modified.

Let us consider the example of Figure 4. The set of CFDs satisfied in the master relation s includes:

$s = \{(Zip \rightarrow AC, (EH74AH, 131)), (Zip \rightarrow str, (EH74AH, 51ElmRow))\}$

Then two eRs can be generated:
Therefore, the tuple t_1 in the source relation can be updated: $t_1[AC, str]$ is changed to $(131, 51 Elm Row)$.

Once eRs are discovered, we can now apply them to clean data.

5.2.1 Heuristic H_0: Baseline

The use of eRs in a basic data cleaning process is described in Algorithm 5. Discovered eRs Σ are used to correct dirty relation r. The number of corrected tuples (cpt) is kept to evaluate the accuracy of the process.

Algorithm 5 Heuristic H_0: Baseline

Require: r, Σ
Ensure: A new relation $r' \models \Sigma$, cpt, the number of corrected tuples of r.
1: $\text{cpt} = 0$;
2: $r' \equiv r$;
3: for all $t \in r'$ do
4: for all $(X, Y) \rightarrow (A, B), t_p[Z] \in \Sigma$ such that $t \approx t_p[Z]$ do
5: if $t[X] \equiv t_p[Z]$ then
6: $t[A] := t[B]$
7: $\text{cpt} + +$
8: end if
9: end for
10: end for
11: return r', cpt

This strategy recalls the repairing algorithm BatchRepair provided by [10] which addresses these issues. We simplify the procedure by correcting dirty values using master relation values carried by eRs.

5.2.2 Heuristic H_0^*: Baseline-Recall

In practice, Baseline (Algorithm 5) is more efficient when repeated (for the same set of rules). The heuristic H_0^* called Baseline-Recall iterates over rules. Therefore a rule not applied at a given iteration step i can be applied at the next iteration step $i + 1$. For example, on Figure 3 at a first step we apply the set of rules ϱ_1, ϱ_2, ϱ_3 and ϱ_4 using heuristic H_0. Only ϱ_2 is applied. As a consequence, $t[C]$ is changed from 1 to 2. Using heuristic H_0^* ensure a second iteration and then ϱ_1 can be now applied because t_2 matches the pattern of ϱ_1. Since we have no guarantee of termination, we have set a maximum value of iteration to 100.
5.2.3 Heuristic H_1: Left-Hand-Side-Length-Sorted

We previously studied the importance of the order in which rules are applied in order to maximize the number of rules used in practice. Several techniques can be used. For example, we can sort the rules with respect to the size (in term of number of attributes) of their left hand side. The intuition is to apply rules with less selectivity.

The Recall strategy can be also applied to H_1 to obtain Left-Hand-Side-Length-Sorted-Recall heuristic (H^*_1). All these alternatives are experimentally verified in the next section.

6 Experimental Study

We ran experiments to determine the effectiveness of our proposed techniques. We report our results using real dataset and provide examples demonstrating the quality of our discovered eRs. In particular we use HOSP dataset maintained by the U.S. Department of Health & Human Services, and come from hospitals that have agreed to submit quality information for Hospital Compare to make it public.

Our experiments were run using a machine with an Intel Core 2 Duo (2.4GHz) CPU and 4GB of memory.

6.1 Discovering Editing Rules

Our experimental study has been set up in the same condition of [16]. We use the same HOSP data and use the same three tables HOSP, HOSP_MSKR_XWLK and STATE_MSKR_AVG. HOSP records the hospital information including provider number (id), hospital name (hName), phone number (phn), state (ST), zip code (ZIP) and address. HOSP_MSKR_XWLK records the score of each measurement on each hospital in HOSP, e.g. measure name (mName), measure code (mCode) and the score of the measurement for this hospital (Score). STATE_MSKR_AVG records the average score of each measurement on hospitals in all US states, e.g. state (ST), mName and state average (sAvg) the average score of all hospitals in this state.

First we present mapping function extraction, then we experiment eRs mining.

6.1.1 Eliciting mapping function w.r.t. unary INDs

We have used Apriori algorithm [3] for mining mapping function from source relation to master database. Many implementations exits, we have chosen the open source implementation of [8] which ensure a polynomial behaviour in term of response time. This step being easy we do not provide experimental results (less than 10s).

1 http://www.hospitalcompare.hhs.gov
6.1.2 CFDs inference

In [16], authors manually designed for HOSP data 37 eRs in total, obtained by a careful analysis. Five important ones cited by [16] are:

\(\varphi_1 = ((\text{zip}, \text{zip}) \rightarrow (\text{ST}, \text{ST}), t_{p1}[\text{zip}] = ()); \)

\(\varphi_2 = ((\text{phn}, \text{phn}) \rightarrow (\text{zip}, \text{zip}), t_{p2}[\text{phn}] = ()); \)

\(\varphi_3 = ((\text{mCode}, \text{ST}), (\text{mCode}, \text{ST})) \rightarrow (\text{sAvg}, \text{sAvg}), t_{p3} = ()); \)

\(\varphi_4 = ((\text{id}, \text{mCode}), (\text{id}, \text{mCode})) \rightarrow (\text{Score}, \text{Score}), t_{p4} = ()); \)

\(\varphi_5 = (\text{id}, \text{id}) \rightarrow (\text{hName}, \text{hName}), t_{p5} = ()); \)

![Fig. 5. Scalability w.r.t. response time and memory usage](image)

We have run the Cfun open source implementation of constant CFDs discovery [12] and we have been able to recover all eRs listed by [16]. For example the eR \(\varphi_5 = (\text{id}, \text{id}) \rightarrow (\text{hName}, \text{hName}), t_{p5} = ()); \) is equivalent to the set of constant CFDs in the form \(\text{id} \rightarrow \text{hName}. \)

All constant CFDs satisfied by the master relation have been extracted. Figure 5 shows the scalability with respect to response time and memory usage. The algorithm scales linearly both for execution time and memory usage [12].

6.2 Data Repairing

The experimental protocol is defined as follows:

1. Duplicating experimental relation \(r \) to obtain \(r' \).
2. Introducing noise into \(r' \). Null values are introduce into the relation. The noise rate of the relation is defined as the ratio of (number of noisy tuples) / (number of total tuples).
3. Discovering rules \(\Sigma \) from \(r \).
4. Applying \(\Sigma \) to \(r' \).

\(^2\) Note to the referee: At the time of the submission of our paper, authors of [16] do not disclosed all their eRs, only 5 of them are publicly available.

\(^3\) http://pageperso.lif.univ-mrs.fr/noel.novelli/CFDProject/
We evaluate the scalability of the repair process. Figure 6 shows that the process scales very well for source relation sizing from 4000 to 160000 tuples and for noise rate of 5 and 10 percent.

![Scalability w.r.t. data correction and noise rate](image)

Fig. 6. Scalability w.r.t. data correction and noise rate

We evaluate the quality of the repairing process embedded in the discovered eRs. We show the accuracy in terms of percentage of errors corrected, defined as the ratio of (total number of corrected tuples) / (total number of noisy tuples). The source relation still may contain noises that are not fixed [10].

In the experiment of Figure 7 we have varied noise rate from 1 to 10 percent and set the total number of tuples to 100 000. The repair quality decreases when the noise rate increases, but it remains superior to 82 percent for all strategies. Heuristics are quiet equivalent when inconsistencies are in low rate, less than 2% of noise. Baseline (H_0) implements the Algorithm 5 which apply rules on the same order they are discovered and once. When the process is repeated the total of effective rules applied increases, therefore “Baseline-Recall” (H_0^*) increases the accuracy rate. The benefit increases more when rules are sorted with respect to the length of left hand sides. From H_0 to “Left-Hand-Side-Length-Sorted” H_1 heuristic, the accuracy grows from 82 to 90% for a noise rate of 10%. The combination of sorting with respect to left hand sides length and iteration (H_1^*) gives the best accuracy rate. We iterate hundred times for Recall heuristics.

7 Conclusion

Editing Rules are a new class of data quality rules boosted by the emergence of master data both in industry [11, 27, 29] and academy [16]. In this paper we propose a new semantic of Editing Rules in order to be able to infer them from
existing source database and a corresponding master database. Based on this new semantic, we have proposed a mining process in 3 steps:

- Eliciting one to one correspondences between attributes of a source relation and attributes of the master database.
- Mining CFDs in the master relations.
- Building Editing Rules.

Then we tackled the problem of data repairing from our discovered Editing Rules. We have proposed a few heuristics for that. Finally, we have developed the algorithms and ran experiments. Results obtained have shown that our approach scale well in the size of the database and provides good repairing results.

Many perspectives exit, for instance the inference of many to many correspondences instead of one to ones. The main problem is then to propagate the CFDs into the source data with the “right” attribute. We quote also that the notion of equivalence classes explored in [6] could be interesting in our setting. We also plan to extend our propositions to deal with many source relations in input.
References

20