Contextual Trace-Based Video Recommendations

Raafat Zarka 1 Amélie Cordier 1 Elod Egyed-Zsigmond 2 Alain Mille 1
1 SILEX - Supporting Interaction and Learning by Experience
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
2 DRIM - Distribution, Recherche d'Information et Mobilité
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : People like creating their own videos by mixing various contents. Many applications allow us to generate video clips by merging different media like videos clips, photos, text and sounds. Some of these applications enable us to combine online content with our own resources. Given the large amount of content available, the problem is to quickly find content that truly meet our needs. This is when recommender systems come in. In this paper, we propose an approach for contextual video recommendations based on a TraceBased Reasoning approach.
Document type :
Conference papers
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01352981
Contributor : Équipe Gestionnaire Des Publications Si Liris <>
Submitted on : Wednesday, August 10, 2016 - 4:17:43 PM
Last modification on : Friday, January 11, 2019 - 5:09:21 PM

Identifiers

Citation

Raafat Zarka, Amélie Cordier, Elod Egyed-Zsigmond, Alain Mille. Contextual Trace-Based Video Recommendations. 21st international conference companion on World Wide Web (WWW-XperienceWeb'12), Apr 2012, Lyon, France, France. pp.751-754, ⟨10.1145/2187980.2188196⟩. ⟨hal-01352981⟩

Share

Metrics

Record views

161