Supervised learning and codebook optimization with neural network

Mingyuan Jiu 1 Christian Wolf 1 Christophe Garcia 1 Atilla Baskurt 1
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : In this paper, we present a novel approach for supervised codebook learning and optimization with neural networks for bag of words models in visual recognition tasks. We propose a new supervised framework for joint codebook creation and class learning, which learns the codewords in a goal-directed way using the class labels of the training set. As a result, the codebook becomes more discriminative. Two different learning algorithms, one based on error backpropagation and one based on cluster label reassignment, are presented. We evaluate them on the KTH dataset for human action recognition, reporting very promising results. The proposed technique allows to improve the discriminative power of an unsupervised learned codebook, or to keep the discriminative power while decreasing the size of the learned codebook.
Type de document :
Communication dans un congrès
COmpression et REprésentation des Signaux Audiovisuels (CORESA 2012), May 2012, Lille, France. pp.50-55, 2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01352975
Contributeur : Équipe Gestionnaire Des Publications Si Liris <>
Soumis le : mercredi 10 août 2016 - 16:17:28
Dernière modification le : jeudi 19 avril 2018 - 14:38:06

Identifiants

  • HAL Id : hal-01352975, version 1

Citation

Mingyuan Jiu, Christian Wolf, Christophe Garcia, Atilla Baskurt. Supervised learning and codebook optimization with neural network. COmpression et REprésentation des Signaux Audiovisuels (CORESA 2012), May 2012, Lille, France. pp.50-55, 2012. 〈hal-01352975〉

Partager

Métriques

Consultations de la notice

155