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An unfitted finite element method, based on Nitsche�s
method, for elliptic interface problems 

Anita Hansbo a, Peter Hansbo b
a Department of Informatics and Mathematics, University of Trollh€aattan-Uddevalla, Box 957, S-461 39 Trollh€aattan, Sweden

b Department of Applied Mechanics, Chalmers University of Technology, S-412 96 G€ooteborg, Sweden

In this paper we propose a method for the finite element solution of elliptic interface problem, using an approach due

to Nitsche. The method allows for discontinuities, internal to the elements, in the approximation across the interface.

We show that optimal order of convergence holds without restrictions on the location of the interface relative to the

mesh. Further, we derive a posteriori error estimates for the purpose of controlling functionals of the error and present

some numerical examples.

1. Introduction

As a model elliptic interface problem, we consider a stationary heat conduction problem in two di-

mensions with a conduction coefficient which is discontinuous across a smooth internal interface. When

solving such problems numerically using the standard finite element method, one usually takes the dis-
continuity of the data into account by enforcing mesh lines along the interface. If this is not done, sub-

optimal convergence behaviour will occur, cf. [1,8].

As a motivation for this work, we also have in mind more complicated, time dependent or non-linear,

problems where the interface moves with time or during iteration. In that case, it may be advantageous to

use the same mesh on the domain for different, nearby, locations of the interface, since repeated remeshing

of the domain to obtain fitted meshes is very costly. We are thus led to study unfitted finite element methods

where the interface is allowed to cross the elements.

In this paper, we propose an unfitted finite element method, based on a variant of Nitsche�s method [9],
allowing for discontinuities, internal to the elements, in the approximation across the interface. This

method is of optimal order; in particular we show second order convergence in L2 for appropriately

modified piecewise linears on a non-degenerate triangulation. We also consider a posteriori error estimates
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for functionals of the solution, in the spirit of Becker and Rannacher [3], and use these estimates as a basis
for adaptively refining the mesh.

Fitted mesh FE methods for elliptic problems with discontinuous coefficients and homogeneous interface

conditions are analysed in [1,6,10]. In [2,4,5], problems with inhomogeneous interface conditions are

considered.

As for unfitted mesh methods for interface problems, Barrett and Elliott [2] show first order of con-

vergence in energy-norm and interior second order L2 error estimates for a piecewise linear method based

on boundary penalty and numerical integration over approximate domains. This approach is close in spirit

to the method to be presented here, but contains a consistency error that we avoid.
An alternative approach is to construct a FEM-basis where the basis functions fulfill homogeneous

interface conditions exactly, and to use the continuous bilinear form (without penalty) to define the

method. MacKinnon and Carey [8] use linear basis functions with this property in two dimensions and

numerical examples of optimal order of convergence are presented. Li et al. [7] analyse the max-norm

interpolation error on cartesian grids of a non-conforming piecewise linear method where the basis func-

tions fulfill homogeneous interface conditions exactly, as well as a conforming method based on further

subdivision of the triangles which intersect the interface. The latter method is of optimal order in energy

norm and numerical examples indicate second order convergence in the max-norm for this method.
An outline of the paper is as follows. In Section 2 we formulate the continuous problem that we aim to

solve, in Section 3 we define the numerical method used for the approximation, and in Section 4 we prove

the approximation properties of the corresponding finite element spaces. In Section 5 we prove optimal

a priori error estimates and in Section 6 we give corresponding a posteriori error estimates that serve as a

basis for adaptive mesh refinement. Finally, in Section 7, we give some implementation details and nu-

merical examples.

2. Problem formulation and preliminaries

Let X be a bounded domain in R2, with convex polygonal boundary oX and an internal smooth

boundary C dividing X into two open sets X1 and X2. For any sufficiently regular function u in X1 [ X2 we

define the jump of u on C by ½u� :¼ u1jC � u2jC, where ui ¼ ujXi
is the restriction of u to Xi. Conversely, for ui

defined in Xi we identify the pair fu1; u2g with the function u which equals ui on Xi. We consider the

following stationary heat conduction problem with a discontinuity in the conductivity across C and an

inhomogeneous conormal derivative condition on the interface:

�r 
 ðaruÞ ¼ f in X1 [ X2;

u ¼ 0 on oX;

½u� ¼ 0 on C;

½arnu� ¼ g on C:

ð1Þ

Here n is the outward pointing unit normal to X1 and rnv ¼ n 
 rv.
For a bounded open connected domain D we shall use standard Sobolev spaces HrðDÞ with norm k 
 kr;D

and spaces Hr
0ðDÞ with zero trace on oD. The inner products in H 0ðDÞ ¼ L2ðDÞ is denoted ð
; 
ÞD. For a

bounded open set G ¼ [2
i¼1Di, where Di are open mutually disjoint components of G, we let HkðD1 [ D2Þ

denote the Sobolev space of functions in G such that ujDi 2 HkðDiÞ with norm

k 
 kk;D1[D2
¼

X2
i¼1

k 
 k2k;Di

!1=2

:
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We assume that f 2 L2ðXÞ, g 2 H 1=2ðCÞ and, for simplicity, that a is constant in Xi with ai > 0. The weak
form of (1) is as follows: find u 2 H 1

0 ðXÞ such that

aðu; vÞ ¼ ðf ; vÞX þ ðg; vÞC; 8v 2 H 1
0 ðXÞ: ð2Þ

Here

aðu; vÞ ¼ ðaru;rvÞX
is the bilinear form corresponding to the elliptic operator.

It is known that this problem has a unique solution which is in H 2 on each subdomain. The following a
priori estimate is valid, see [5]:

kuk1;X þ kuk2;X1[X2
6Cðkf k0;X þ kgk1=2;CÞ: ð3Þ

Here and below, C and c denote generic constants.

3. The approximation

In a standard finite element method, the jump in normal derivative resulting from the continuity of the

flux, when a1 6¼ a2, can be taken into account by letting C coincide with mesh lines. We will take an al-

ternative approach and solve (1) approximately using piecewise linear finite elements on a family of con-

forming triangulations Th of X which are independent of the location of the interface C. Instead, we shall

allow the approximation to be discontinuous inside elements which intersect the interface.

We will use the following notation for mesh related quantities. Let hK be the diameter of K and h ¼
maxK2Th hK . For any element K, let Ki ¼ K \ Xi denote the part of K in Xi. By Gh :¼ fK 2 Th : K \ C 6¼ ;g
we denote the set of elements that are intersected by the interface. For an element K 2 Gh, let CK :¼ C \ K
be the part of C in K.

We make the following assumptions regarding the mesh and the interface.

A1: We assume that the triangulation is non-degenerate, i.e.,

hK=qK 6C 8K 2 Th;

where hK is the diameter of K and qK is the diameter of the largest ball contained in K.
A2: We assume that C intersects each element boundary oK exactly twice, and each (open) edge at most

once.

A3: Let CK;h be the straight line segment connecting the points of intersection between C and oK. We as-

sume that CK is a function of length on CK;h; in local coordinates

CK;h ¼ fðn; gÞ : 0 < n < jCK;hj; g ¼ 0g

and

CK ¼ fðn; gÞ : 0 < n < jCK;hj; g ¼ dðnÞg:
Since the curvature of C is bounded, the assumptions A2 and A3 are always fulfilled on sufficiently fine

meshes. Thus the assumptions are natural and not very restrictive; they ensure that the curvature of the

interface is well resolved by the mesh.

We shall seek a discrete solution U ¼ ðU1;U2Þ in the space V h ¼ V h
1 � V h

2 , where

V h
i ¼ f/i 2 H 1ðXiÞ : /ijKi is linear; /ijoX ¼ 0g:

A. Hansbo, P. Hansbo / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5537–5552 5539

3



Note that functions in Vh may be discontinuous across C. Since C may intersect two edges of a triangle
arbitrarily, the size of the parts Ki are not fully characterized by the meshsize parameters. To define the

method, we will therefore use the function j ¼ ðj1; j2Þ defined on each element by

jijK ¼ jKij
jKj ;

where jKj :¼ meas K. Clearly, 06 ji6 1 and j1 þ j2 ¼ 1 so that

f/g :¼ ðj1/1 þ j2/2ÞjC
is a convex combination of / ¼ ð/1;/2Þ along C.

The method is defined by the variational problem of finding U 2 V h such that

ahðU ;/Þ ¼ Lð/Þ; 8/ 2 V h; ð4Þ
where

ahðU ;/Þ :¼ ðairUi;r/iÞX1[X2
� ð½U �; farn/gÞC � ðfarnUg; ½/�ÞC þ ðk½U �; ½/�ÞC

with k sufficiently large (see Lemma 5 below), and

Lð/Þ :¼ ðf ;/ÞX þ ðj2g;/1ÞC þ ðj1g;/2ÞC:

In this method, the conditions at C are satisfied weakly by means of a variant of Nitsche�s method.

With these definitions, we have the following consistency relation.

Lemma 1. The discrete problem (4) is consistent in the sense that, for u solving (1),

ahðu;/Þ ¼ Lð/Þ; 8/ 2 V h:

Proof. We first note that, for u solving (1),

g � farnug ¼ ðj1 þ j2Þg � farnug � j1ðg � ½arnu�Þ
¼ j2g � j1a1rnu1 � j2a2rnu2 þ j1a1rnu1 � j1a2rnu2 ¼ j2g � a2rnu2;

and, similarly,

g � farnug ¼ ðj1 þ j2Þg � farnug þ j2ðg � ½arnu�Þ
¼ j1g � j1a1rnu1 � j2a2rnu2 � j2a1rnu1 þ j2a2rnu2 ¼ ð1þ j2Þg � a1rnu1;

so that

farnug ¼ a1rnu1 � j2g ¼ a2rnu2 þ j1g: ð5Þ

Since ½u� ¼ 0, we may use (5) and Green�s formula to obtain

ahðu;/Þ ¼ ðaru;r/ÞX1[X2
� ðfarnug;/1 � /2ÞC

¼ ðaru;r/ÞX1[X2
� ða1rnu1 � j2g;/1ÞC þ ða2rnu2 þ j1g;/2ÞC

¼ �ðr 
 ðaruÞ;/ÞX1[X2
þ ðj2g;/1ÞC þ ðj1g;/2ÞC ¼ ðf ;/ÞX þ ðj2g;/1ÞC þ ðj1g;/2ÞC ¼ Lð/Þ;

which is the statement of the lemma. �
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An immediate consequence of Lemma 1 is the condition

ahðu� U ;/Þ ¼ 0; 8/ 2 Vh; ð6Þ

which we will refer to as Galerkin orthogonality.

A FE basis for Vh is easily obtained from a standard FE basis on the mesh by the introduction of new

basis functions for the elements that intersect C. Thus, we replace each standard basis function living on an

element that intersects the interface by two new basis functions, namely its restrictions to X1 and X2, re-

spectively. The collection of basis functions with support in Xi is then clearly a basis for V h
i , and hence we

obtain a basis for Vh by the identification w ¼ ðwjX1
;wjX2

Þ. If the interface coincides exactly with an element

edge, no new basis functions are introduced on these elements but the approximating functions may still be

discontinuous over such an edge. As a consequence, there are six non-zero basis functions on each element

that properly intersects C. Further implementation details are considered in Section 7.

4. Approximation property of Vh

Recall that Gh denotes the set of elements that are intersected by the interface. We will use the following

mesh dependent norms:

kvk21=2;h;C :¼
X
K2Gh

h�1
K kvk20;CK

;

kvk2�1=2;h;C :¼
X
K2Gh

hKkvk20;CK ;

and

jjjvjjj2 :¼ krvk20;X1[X2
þ kfrnvgk2�1=2;h;C þ k½v�k21=2;h;C:

We note for future reference that

ðu; vÞC 6 kvk1=2;h;Ckvk�1=2;h;C: ð7Þ

To show that functions in Vh approximates functions v 2 H 1
0 ðXÞ \ H 2ðX1 [ X2Þ to the order h in the norm

jjj 
 jjj, we construct an interpolant of v by nodal interpolants of H 2-extensions of v1 and v2 as follows.

Choose extension operators Ei : H 2ðXiÞ ! H 2ðXÞ such that ðEiwÞjXi
¼ w and

kEiwks;X 6Ckwks;Xi
8w 2 HsðXiÞ; s ¼ 0; 1; 2: ð8Þ

Let Ih be the standard nodal interpolation operator and define

I�h v :¼ ðI�h;1v1; I�h;2v2Þ where I�h;ivi :¼ ðIhEiviÞjXi
: ð9Þ

The following theorem is valid.

Theorem 2. Let I�h be an interpolation operator defined as in (9). Then

jjjv� I�h vjjj6CAhkvk2;X1[X2
; 8v 2 H 1

0 ðXÞ \ H 2ðX1 [ X2Þ:

In the proof of this result, we need to estimate the interpolation error at the interface. To that end, we

shall use the following variant of a well known trace inequality on a reference element. The crucial fact is

that the constant in this inequality is independent of the location of the interface relative to the mesh.
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Lemma 3. Map a triangle K 2 Gh onto the unit reference triangle eKK by an affine map and denote by eCC ~KK the
corresponding image of CK . Under assumptions A1–A3 of Section 3 there exist a constant C, depending on C
but independent of the mesh, such that

kwk20;~CC ~KK
6Ckwk0; ~KKkwk1; ~KK ; 8w 2 H 1ðeKK Þ: ð10Þ

Proof. We start by showing that

kwk20;~CC ~KK
6Cðkwk20;~CC ~KK;h

þ kwk0; ~KKkwk1; ~KKÞ: ð11Þ

Recall that CK;h is the straight line connecting the points of intersection between C and the element K and

CK ¼ fðn; gÞ : 0 < n < jCK;hj; g ¼ dðnÞg:
Assume first that dðnÞ > 0. Since the curvature of the interface is bounded, jd0ðnÞj6CjCK;hj. As the mesh

is non-degenerate this implies that on the reference element we may write, using again ðn; gÞ as local co-
ordinates,

eCC ~KK ¼ fðn; gÞ : 0 < n < jeCC ~KK;hj; g ¼ ~ddðnÞg;

where j~dd0ðnÞj6C. We now let D denote the domain bounded by eCC ~KK and eCC ~KK;h and note that by the diver-
gence theorem,

2

Z
D
w
ow
og

dndg ¼
Z
D
divð0;w2Þdndg ¼ �

Z
~CC ~KK;h

w2 dn þ
Z
~CC ~KK

w2ð1þ ð~dd0Þ2Þ�1=2
ds: ð12Þ

As ~dd0 is bounded,

kwk20;~CC ~KK
6C

Z
~CC ~KK

w2ð1þ ð~dd0Þ2Þ�1=2
ds;

whence (11) follows from (12) using Cauchy–Schwarz� inequality.
In a general case where d may switch sign, the same argument may be applied for each part between the

intersections of eCC ~KK and eCC ~KK;h.

It remains to show that the first term on the right in (11) is appropriately bounded. To that end we shall

map the triangular part eKKt and the quadrilateral part eKKq of eKK onto new reference domains. We may assume

that eCC ~KK;h intersects eKK in ða; 0Þ and in ð0; bÞ, and, by symmetry, that 06 a6b6 1.

For a ¼ b ¼ 1, the desired trace inequality

kwk20;~CC ~KK;h
6Ckwk0; ~KKkwk1; ~KK ð13Þ

is valid. For 1=2 < a6 b < 1, we may map the triangular part eKKt onto the unit reference triangle by a linear

map. By the bound from below on a and b, this map is bounded, uniformly in a and b, with uniformly

bounded inverse, and hence (13) is valid also in this case. For 1=2 < a < b ¼ 1 the same argument holds,

choosing this time eKKt as the triangular part which contains the origin.

Assume now that a6 1=2. Let

ðx̂x; ŷyÞ ¼ Mð~xx; ~yyÞ ¼ ð~yy; ð1� aÞ�1ð~xxþ ~yy � 1ÞÞ:
Then the image bKKq ¼ MðeKKqÞ has its corners in ð0; 0Þ, ð1; 0Þ, ð0; 1Þ, bPP ¼ ðb; ð1� bÞ=ð1� aÞÞ, and there

holds

kwk20;ĈCK̂K;h 6CðbPP Þkwk0;K̂Kq
kwk1;K̂Kq

: ð14Þ
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An additional argument is needed to show uniformity in bPP . Since 06 a6 1=2 and a6b6 1, bPP varies in the

domainbDD :¼ f06 x̂x6 1=2; 1� x̂x6 ŷy6 1g [ f1=26 x̂x6 1; 1� x̂x6 ŷy6 2ð1� x̂xÞg
as a and b vary. Let

F ðbPP ; ŵwÞ ¼ kwk20;ĈCK̂K;h
kwk0;K̂Kq

kwk1;K̂Kq

:

We will show that F ðbPP Þ ¼ supw2H1ðK̂KqÞ F ðbPP ; ŵwÞ is uniformly bounded. For points bRR and bSS in bDD, assuming

without restriction that F ðbRRÞP F ðbSSÞ, we have for any w that

F ðbRRÞ � F ðbSSÞ ¼ sup
v̂v
F ðbRR; v̂vÞ � sup

v̂v
F ðbSS ; v̂vÞ6 j sup

v̂v
F ðbRR; v̂vÞ � F ðbRR; ŵwÞj þ jF ðbRR; ŵwÞ � F ðbSS ; ŵwÞj ¼ I þ II :

Given � > 0 we may choose ŵw such that I 6 �=2. Note that F ðbRR; v̂vÞ is continuous for fixed v̂v since the only
dependence of bRR lies in the domains of integration. We may thus take jbRR � bSS j small enough so that II 6 �=2.
Hence F ðbPP Þ is continuous on the compact set bDD, and thus (14) holds uniformly in bPP . Finally, since M is

bounded, uniformly in a and b, with uniformly bounded inverse, (13) follows and the proof is complete. �

Proof of Theorem 2. Recall that Ki ¼ K \ Xi and let v�i ¼ Eivi denote the extension of vi to X. By a standard

interpolation estimate we obtain

krðvi � I�h;iviÞk0;Ki ¼ krðv�i � Ihv�i Þk0;Ki 6 krðv�i � Ihv�i Þk0;K 6Chkv�i k2;K :

Summing over all triangles that intersect Xi, it follows by (8) that

krðvi � I�h;iviÞk
2

0;Xi
6Ch2

X
K\Xi 6¼;

kv�i k
2

2;K 6Ch2kvik22;Xi
: ð15Þ

Next we consider the jumps on the interface. Since the mesh is non-degenerate, it follows from Lemma 3,

scaled by the map from the reference triangle, that

h�1
K kwk20;CK 6Cðh�2

K kwk20;K þ kwk21;KÞ; 8w 2 H 1ðKÞ:

Hence it follows, using again a standard interpolation estimate, that

h�1
K k½v� I�h v�k

2

0;CK
6Ch�1

K

X
i

kvi � I�h;ivik
2

0;CK
¼ Ch�1

K

X
i

kv�i � Ihv�i k
2

0;CK

6C
X
i

ðh�2
K kv�i � Ihv�i k

2
0;K þkv�i � Ihv�i k

2
1;KÞ6Ch2K

X
i

kv�i k
2
0;K :

Summing the contributions from K 2 Gh, we get from (8) that

k½v� I�h v�k1=2;h;C 6Ch
X2
i¼1

kv�i k2;[K2Gh 6Chkvk2;X1[X2
: ð16Þ

Finally, Lemma 3 applied to rnw and scaling gives

hKkrnwk20;CK 6Cðkwk21;K þ h2Kkwk
2
2;KÞ; 8w 2 H 2ðKÞ;

whence similar arguments as above yield

krnðvi � I�h;iviÞk�1=2;h;C 6Chkvik2;Xi
: ð17Þ

Since ji < 1, the theorem now follows from (15)–(17). �
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5. A priori error estimates

We will first show coercivity of the discrete form, for which purpose we will need the following inverse

inequality.

Lemma 4. For / 2 Vh, the following inverse inequality holds:

kfrn/gk2�1=2;h;C 6CIkr/k20;X1[X2
:

Proof. Since / 2 Vh is linear on Ki, we have

hKkjirn/ik
2
0;CK

6 hKj2
i jCK jjr/ij

2 ¼ hKj2
i

jCK j
jKij

kr/ik
2
0;Ki

¼ hK
jCK jjKij
jKj2

kr/ik
2
0;Ki

6Ckr/ik
2
0;Ki

:

In the last step above we have used that jCK j6 hK , jKij6 h2K , and, since the mesh is non-degenerate,

jKjP ch2K . The result follows by summation over the elements. �

Lemma 5. The discrete form ahð
; 
Þ is coercive on V h, i.e.,

ahðv; vÞPCjjjvjjj2 8v 2 V h;

provided k is chosen sufficiently large. It is also continuous, i.e.,

ahðu; vÞ6Cjjjujjj jjjvjjj 8u 2 V ; 8v 2 V :

Proof. Continuity of the discrete form follows directly from the definitions. To prove coercivity, we use (7)

to find that for any � > 0

ahðv; vÞ ¼ ka1=2rvk20;X1[X2
� 2ð½v�; farnvgÞC þ kk1=2½v�k20;C

P ka1=2rvk20;X1[X2
� 2kfarnvgk�1=2;h;Ck½v�k1=2;h;C þ kk1=2½v�k20;C

P ka1=2rvk20;X1[X2
� 1

�
kfarnvgk2�1=2;h;C þ

X
K2Gh

k

�
� �

hK

�
k½v�k20;CK :

It then follows from Lemma 4 that

ahðv; vÞP
1

2
ka1=2rvk20;X1[X2

þ 1

2

�
� 2CI maxX a

�

�
ka1=2rvk20;X1[X2

þ 1

�
kfarnvgk2�1=2;h;C þ

X
K2Gh

k

�
� �

hK

�
k½v�k20;CK :

Taking � ¼ 4CI maxX a, coercivity follows if kjK ¼ ch�1
K where c > 4CI maxX a. �

Theorem 6. Under assumptions A1–A3 of Section 3, and for U solving (4) and u solving (1), the following a
priori error estimates hold:

jjju� U jjj6Chkuk2;X1[X2
ð18Þ

and

ku� Uk0;X 6Ch2kuk2;X1[X2
: ð19Þ
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Proof. For any v 2 V h, jjju� U jjj6 jjju� vjjj þ jjjv� U jjj. Further, by Lemma 5 and orthogonality, we

have that

jjjU � vjjj2 6CahðU � v;U � vÞ ¼ Cahðu� v;U � vÞ6Cjjju� vjjj jjjU � vjjj;

and it follows that

jjju� U jjj6Cjjju� vjjj 8v 2 V h:

Taking v ¼ I�h u and invoking the interpolation result of Theorem 2, (18) follows.

For (19) we use a duality argument. Define z ¼ ðz1; z2Þ by

�r 
 ðairziÞ ¼ ei in Xi; i ¼ 1; 2;

zi ¼ 0 on oX \ oXi;

½z� ¼ 0 on C;

½arnz� ¼ 0 on C;

ð20Þ

where ei ¼ ui � Ui. By Green�s formula and (5) with u ¼ z, g ¼ 0, we have that

kek20;X ¼ �ðr 
 ðarzÞ; eÞX1[X2
¼ ðarz;reÞX � ða1rnz1; e1Þ þ ða2rnz2; e2Þ

¼ ðarz;reÞX � ðfarnzg; ½e�ÞC ¼ ahðz; eÞ

since ½z� ¼ 0. Thus, using the symmetry of ahð
; 
Þ and applying the orthogonality relation (6) and Theorem
2, we find that

kek20;X ¼ ahðz� Ihz; eÞ6Cjjjz� Ihzjjj jjjejjj6Chkzk2;X1[X2
jjjejjj: ð21Þ

Finally, by the elliptic regularity result (3), we have kzk2;X1[X2
6Ckek0;X, whence the estimate (19) follows

from (21) and (18). �

6. A posteriori error estimates

In this Section, we prove a posteriori error estimates and formulate adaptive algorithms for the finite

element method (4), following Becker and Rannacher [3].

We will consider control of linear functionals jðeÞ of the error, and define the local and global estimators

as

EKðUÞ ¼ ðh2Kkf þr 
 ðarUÞk20;K1[K2
þ hKk½airUi�k20;oK þ hKkg � ½arU �k20;CK þ h�1

K k½U �k20;CK Þ
1=2 ð22Þ

and

EðUÞ ¼
X
K2Th

h2KEKðUÞ2
 !1=2

: ð23Þ

We then have the following a posteriori error estimate.

Theorem 7. For a continuous linear functional jð
Þ on L2ðXÞ, let J 2 L2ðXÞ be defined by Riesz’ representation
theorem, i.e., jð
Þ :¼ ðJ ; 
ÞX. Then there is a positive constant C such that

jðeÞ6CEðUÞkJk0;X: ð24Þ
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Proof. Let z be the solution to the problem

�r 
 ðairziÞ ¼ J in Xi; i ¼ 1; 2;

zi ¼ 0 on oX \ oXi;

½z� ¼ 0 on C;

½arnz� ¼ 0 on C:

ð25Þ

We first note that

ðe; JÞX ¼ ðare;rzÞX1[X2
� ða1rnz1; e1ÞC þ ða2rnz2; e2ÞC:

Now, since ½u� ¼ 0, we see that, by (5),

�ða1rnz1; e1ÞC þ ða2rnz2; e1ÞC ¼ ðU1; a1rnz1ÞC � ðU2; a2rnz2ÞC ¼ ð½U �; farnzgÞ:

Thus,

jðeÞ ¼ ðe; JÞX ¼ ðare;rzÞX1[X2
þ ð½U �; farnzgÞ: ð26Þ

Now, take Z 2 Vh. From Galerkin orthogonality we then have ahðe; ZÞ ¼ 0, and since ½z� ¼ 0, ½u� ¼ 0 on the

interface, we get

0 ¼ ahðe; ZÞ ¼ ðare;rZÞX1[X2
� ð½e�; farnZgÞC � ðfarneg; ½Z�ÞC þ ðk½e�; ½Z�ÞC

¼ ðare;rZÞX1[X2
þ ð½U �; farnZgÞC þ ðfarneg; ½z� Z�ÞC þ ðk½U �; ½z� Z�ÞC: ð27Þ

Denote by nK the outward pointing unit normal to K. Subtracting (27) from (26) and integrating by parts

we get

jðeÞ ¼ ðare;rðz� ZÞÞX1[X2
þ ð½U �; farnðz� ZÞgÞC � ðfarneg; ½z� Z�ÞC � ðk½U �; ½z� Z�ÞC

¼
X
K2Th

ðf �r 
 ðarUÞ; z� ZÞK1[K2
þ ð½U �; farnðz� ZÞgÞC � ðfarneg; ½z� Z�ÞC � ðk½U �; ½z� Z�ÞC

� 1

2

X
K2Th

ð½anK 
 rU �; z� ZÞoKnC þ ða1rne1; z1 � Z1ÞC � ða2rne2; z2 � Z2ÞC:

We now note that

ða1n 
 re1; z1 � Z1ÞC � ða2n 
 re2; z2 � Z2ÞC � ðfarneg; ½z� Z�ÞC
¼ ða1rne1; z1 � Z1ÞC � ða2rne2; z2 � Z2ÞC � ðj1a1rne1 þ j2a2rne2; ½z� Z�ÞC
¼ ðj2½arne�; z1 � Z1ÞC þ ðj1½arne�; z2 � Z2ÞC
¼ ðj2ðg � ½arnU �Þ; z1 � Z1ÞC þ ðj1ðg � ½arnU �Þ; z2 � Z2ÞC

¼
X2
j¼1

ðð1� jjÞðg � ½arnU �Þ; zj � ZjÞC

and thus we find that

jðeÞ ¼
X
K2Th

ðf
�

�r 
 ðarUÞ; z� ZÞK1[K2
� 1

2
ð½anK 
 rU �; z� ZÞoKnC

�

þ
X
K2Gh

ð½U �; farnðz� ZÞg � k½z� Z�ÞCK
þ
X
K2Gh

X2
j¼1

ðð1� jjÞðg � ½arnU �Þ; zj � ZjÞCK
: ð28Þ
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Further, by Cauchy–Schwarz� inequality, and choosing kjK ¼ ch�1
K with c > 4CI maxX ai,

jðeÞ6
X
K2Th

X2
j¼1

qK;jxK;j þ
X
K2Gh

X2
j¼1

qS;jxS;j; ð29Þ

where

qK;1 ¼ hKkf þr 
 ðarUÞk0;K1[K2
; xK;1 ¼ h�1

K kz� Zk0;K1[K2
;

qK;2 ¼ 1
2
h1=2K k½anK 
 rU �k0;oKnC; xK;2 ¼ h�1=2

K kz� Zk0;oKnC;

qS;1 ¼ h�1=2
K k½u�k0;CK ; xS;1 ¼ h1=2K kfarnðz� ZÞg � c½z� Z�=hKk0;CK

and

qS;2 ¼ h1=2K kg � ½arnU �k0;CK
; xS;2 ¼ h�1=2

K max
j

kzj � Zjk0;CK
:

Note that the right hand side of (29) is a weighted sum of local residuals qK;i, qS;i. To conclude the proof

we bound the weights in (29) by choosing Z ¼ I�h z, applying the interpolation estimates (15)–(17) and finally

the regularity estimate

kzk2;X1[X2
6CkJk0;X;

whence (24) follows. �

7. Implementation and numerical examples

Recall that a FE basis for Vh is obtained from a standard FE basis on the mesh by replacing each

standard basis function living on an element that intersects the interface by two new basis functions, namely
its restrictions to X1 and X2, respectively. Both these new basis functions are, however, represented in the

implementation using the same nodes from the original triangulation. The points of intersection between

the element edges and the interface are not used to represent the new basis function, and the geometry of the

interface and the element parts does not come into play until integrating the terms in the bilinear form. One

may thus alternatively think of the approximation as being defined on two overlapping meshes formed by

triangles covering the subdomains.

In order to implement the discontinuous approximation, we first determined the set Gh of triangles

intersected by C. For each K 2 Gh, we assigned two identical copies K 0 and K 00. We assumed that K, with
nodes fi; j; kg was split by C into a triangle and a quadrilateral; the case of a split into two triangles was

handled by creating a quadrilateral with one side of zero length. We assigned to K 0 the triangular part and

to K 00 the quadrilateral part. Thus, on K 00 we created a new node i0 on the far side of C, and on K 0 we created

two new nodes, k0 and j0, on the other side of C, see Fig. 1. To ensure continuity across the edges of K 0 and

K 00 (away from C), we also checked if the new nodes had already been created by the same process on the

neighboring elements. After having completed this process, we thus had two independent meshes, one

completely covering X1, and the other completely covering X2. The elements crossed by C had been dou-

bled, but coincided geometrically.
To numerically evaluate ahð
; 
Þ and Lð
Þ, we used the following strategy. The triangles that were not

crossed by C were handled in the usual way. On the elements crossed by C, we used centroid quadrature to
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evaluate all terms, both on the quadrilateral side and on the triangular side. On the interface, we used two-

point Gaussian quadrature. All contributions were then assembled using the old and new nodes defined

by the splitting process. We emphasize that the new nodes i0, j0, and k0 are to be considered convenient

support points for the definition of a continuous, piecewise linear, approximation rather than nodes in

the standard finite element sense. The solution at these points is computed but is outside the domain of

interest.

7.1. Example 1

We considered solutions to the ordinary differential equation

�
X
i

d

dx
ai
dui
dx

� �
¼ 1; ½uð1=2Þ� ¼ 0; a1

du1
dx

ð1=2Þ ¼ a2

du2
dx

ð1=2Þ:

The domain is ð0; 1Þ, with an interface at x ¼ 1=2. While this is a one-dimensional problem, we solved it

numerically in 2D on the domain ð0; 1Þ � ð0; 1Þ, with zero Neumann boundary conditions at y ¼ 0 and

y ¼ 1. The equation has a closed-form solution, given by

u1ðxÞ ¼
ð3a1 þ a2Þx
4a2

1 þ 4a1a2

� x2

2a1

; u2ðxÞ ¼
a2 � a1 þ ð3a1 þ a2Þx

4a2
2 þ 4a1a2

� x2

2a2

:

We chose a1 ¼ 1=2, a2 ¼ 3 and performed a numerical convergence test for different approaches: a

standard unfitted FE method, a fitted standard FE method, and the proposed unfitted method. The con-

vergence results are given in Fig. 2, and show the suboptimal behaviour of a standard unfitted method, and
the small difference in computational error between the proposed method and a fitted method. We remark

that an exact correspondence cannot be obtained, since the meshes will not be exactly the same for the fitted

and unfitted methods. In Fig. 3 elevations of the solutions obtained with the different unfitted methods are

shown on the final mesh consisting of 2048 elements.

 i

 j

 k

 K

Γ

 i

 j′
 k′

 K′

 i′

 j

 k

 K′′

Fig. 1. The split of a triangle used in the implementation of the proposed method.
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7.2. Example 2

Here we considered a less trivial two-dimensional example (from [7]). The exact solution is given by

uðx; yÞ ¼

r2

a1

; if r6 r0;

r2

a2

� r20
a2

þ r20
a1

; if r > r0;

8>><>>:
where r :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and, on the domain ð0; 1Þ � ð0; 1Þ, we chose r0 ¼ 3=4, a1 ¼ 1, and a2 ¼ 1000. The

boundary conditions were symmetry boundaries at x ¼ 0 and y ¼ 0 and Dirichlet boundary conditions
corresponding to the exact solution at x ¼ 1 and y ¼ 1. The right-hand side yielding this exact solution is

f ¼ �4. In Fig. 4, we give the elevation of the approximate solution on the last mesh in a sequence. The

corresponding L2- and maximum norm convergence is given in Fig. 5. We note in particular that the order

of convergence in maximum norm seems to be approximately equal to the (second order) L2-norm con-

vergence, though we have no theoretical results to back this up.
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Fig. 2. L2-norm convergence of different methods applied to the interface problem.

Fig. 3. Elevation of the discontinuous approximation obtained from the proposed method (left) and the continuous standard FE

approximation (right) on the final mesh.
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7.3. Example 3

The third example was solved on the domain ð0; 1Þ � ð0; 1Þ, with zero Dirichlet boundary conditions.

Centred in the domain is an ellipsoidal inclusion with conduction parameter amin ¼ 1; outside of the ellipse

we set amax ¼ 6. In Fig. 6 we show the first mesh and associated solution. We used an adaptive algorithm

corresponding to control of the L2ðXÞ-error, but made no attempt to tune the interpolation constants or

solve a dual problem. Thus, the example only gives an indication of how the adapted meshes appear in such

a case. For each successive mesh we refined the third of the elements containing the highest element

contribution to the total error as defined by (29). In Fig. 7 we give the last adapted mesh in a sequence,
together with an elevation of the corresponding solution.
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Fig. 4. Elevation of the approximate solution.
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Fig. 5. L2-norm and maximum norm convergence.
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8. Concluding remarks

In this paper, we have introduced and analysed a new method for elliptic interface problems on unfitted

meshes, i.e., meshes which are independent of the location of the interface. Unlike the standard unfitted

finite element method, the proposed approach leads to optimal convergence rates. This have been shown in

the model situation of piecewise linear approximations in two dimensions. In future work, we will address

the general situation of higher order polynomial approximations in three dimensions. Other extensions
under consideration include Stefan problems and fictitious domain type simulations.
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