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MULTIPLIER METHODS FOR ENGINEERING 
OPTIMIZATION 

J. S. ARORA, A. I. CHAHANDE AND J. K. PAENG 

Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, IA 52242, U.S.A. 

SUMMARY 

Multiplier methods used to solve the constrained engineering optimization problem are described. These 
methods solve the problem by minimizing a sequence of unconstrained problems defined using the cost and 
constraint functions. The methods, proposed in 1969, have been determined to be quite robust, although not 
as efficient as other algorithms. They can be more effective for some engineering applications, such as 
optimum design and control oflarge scale dynamic systems. Since 1969 several modifications and extensions 
of the methods have been developed. Therefore, it is important to review the theory and computational 
procedures of these methods so that more efficient and effective ones can be developed for engineering 
applications. Recent methods that are similar to the multiplier methods are also discussed. These are 
continuous multiplier update, exact penalty and exponential penalty methods. 

1. INTRODUCTION AND MOTIVATION 

This paper presents a review of the multiplier methods for optimum ·design of engineering 
systems. These are also called the augmented Lagrangian methods, so the two names will be used 
interchangeably. The basic idea of the methods is to transform the given constrained problem 
into a sequence of unconstrained problems. The functional for the unconstrained problem is 
defined using the cost and constraint functions of the original constrained problem and certain 
multipliers for the constraints. The sequence of solution points for the unconstrained problems 
converges to the solution of the original problem. This idea is very attractive for several 
engineering applications, especially for dynamic response and optimal control problems. 69 

However, the methods need to be carefully studied so that efficient computational procedures for 
such applications can be developed. This then is the basic purpose of the present paper-to study 
various multiplier methods with respect to their computational procedures and rate of conver­
gence, and discuss their applicability to engineering problems. 

A general framework for efficient use of multiplier methods for optimal design of structural and 
mechanical systems under static loads was presented by Belegundu and Arora.8

-
10 It was shown 

that the adjoint variable method4
•
47 for calculating the gradient of the transformed functional 

does not require gradients of the individual functions. As a result, the unconstrained minimiza­
tion steps could be performed efficiently. This advantage becomes much more effective for many 
engineering applications where most constraints are implicit functions of the design variables. 
For example, many constraints in dynamic response and control optimization problems are 
functions of the nodal displacements that are in turn dependent on design variables and time. 
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This implicit nature of the constraints makes computation of the functions and their gradients 
very expensive. In primal methods, the gradient ~f each pointwise dynamic. constraint at all the 
local maximum points is required in calculating the search direction.49 - 52 This requires large 
computational effort. But in the multiplier methods, all pointwise implicit constraints are 
summed up and integrated over the time interval. That is, they are collapsed into one equivalent 
constraint functional. 69 Therefore, the gradient of only one functional is needed in search 
direction calculation. 

The original multiplier method requires exact unconstrained minimization at each step. This is 
numerically impossible, as it may require many iterations and, therefore, many function evalu­
ations. However, there are variations of the methods that work quite well with inexact uncon­
strained minimization at each step. Even then it can result in too much computational effort for 
large scale problems. Therefore, it may be desirable to quit unconstrained minimization after 
a fixed number of iterations, e.g. 1 to 2n, where n is the number of design variables. The effect of 
inexact unconstrained minimization on the multiplier methods needs to be analysed and under­
stood. This is done in Section 3. 

The performance of the multiplier methods also depends quite heavily on the rate of conver­
gence of the unconstrained minimization algorithm used. Therefore, it is important to use a good 
unconstrained minimization method. Considerable advances have recently been made in uncon­
strained minimization techniques. These advances will be described in a separate paper. 

An overview of the multiplier methods is presented in Section 2. The steps of a general 
algorithm that need to be investigated to improve its performance are identified. Fundamentals of 
the methods are described in Section 3. Augmented functionals are defined, necessary and 
sufficiency conditions are given, duality is discussed, and an implementable algorithm is stated. In 
Section 4, the continuous update methods that allow the multipliers to be updated more often are 
described. These methods have potential for engineering applications that needs to be exploited. 
The exact penalty methods are discussed in Section 5. The exponential penalty methods are 
described in Section 6. They also need to be investigated for engineering applications. 

2. OVERVIEW OF MULTIPLIER METHODS 

Multiplier methods were originally proposed by Hestenes48 and Powell. 74 They were also 
proposed a year later by Haarhoff and Buys.41 A review of the literature on these methods can be 
found in the survey papers and books by Rockafellar, 76 Fletcher, 33 Pierre and Lowe, 70 

Bertsekas16 and Powell. 75 Local convergence rate with both increasing and finite penalty, and 
the effect of approximate unconstrained minimization are discussed by Buys. 20 Polak and 
Sangiovanni-Vincentelli,71 Poljak and Tretyakov73 and Bertsekas.19 

To discuss the methods and their basic ideas we shall consider the following general equal­
ity-inequality constrained problem: 

Problem P. Find x ERn to minimize a cost function f(x) subject to 

equality constraints: (1) 

inequality constraints: gi(x) ~ 0; i = 1 + 1, m (2) 

Many concepts and procedures can be discussed using only equality constraints. This will be 
called the equality constrained problem (ECP). When only inequality constraints are considered, 
1 is zero in (1) and the corresponding problem will be called ICP. 

It has been shown clearly in many journal articles and books that Problem Pis quite general 
and can be used to model a wide variety of engineering optimization problems (Haug and 

2



Arora,47 Arora and Thanedar,5 Arora,2
•
3 and many references cited therein). One difficulty with 

engineering applications is that many of the functions of the problem depend implicitly on the 
design variables. This makes their gradient evaluation computationally tedious and expensive. 
Some of the multiplier methods can help alleviate this difficulty as they require the gradient of 
only one augmented functional. This gradient can be evaluated efficiently using the adjoint 
variable method4 without requiring gradients of individual constraints. 8 •

69 This is an important 
aspect of these methods for engineering applications that will be emphasized throughout the 
paper. It will be seen that the multiplier methods requiring gradients of individual constraints are 
not suitable for engineering applications. 

Since the Lagrangian for the Problem P will be referred to and used throughout, we define it as 
m 

L(x, u) = f(x) + L uigi(x) (3) 
i= 1 

where u is a vector of Lagrange multipliers. The multiplier methods employ augmented 
Lagrangians in which some penalty terms involving constraints are added to the ordinary 
Lagrangian in (3). The methods can also be viewed as an extension of the primal-dual methods 
and penalty function methods. This will be explained in the next section. The Lagrange multi­
pliers and certain penalty parameters for each constraint are used in constructing a transformed 
functional that, in general, can be written as 

Cl>(x, u, r) = f(x) + P(g(x), u, r) (4) 

where P(g(x), u, r) is a generalized penalty functional and r contains penalty parameters. It will be 
seen later that Cl>(x, u, r) can be formed by adding penalty terms to the ordinary Lagrangian in (3); 
therefore it is called the augmented Lagrangian. Values of u and r are chosen at the beginning of 
each unconstrained minimization and then the functional Cl>(x, u, r) is minimized with respect to x. 
At the end of this minimization, u and r are updated and the process repeated until convergence. 

Effectiveness of the multiplier methods for optimal engineering design had not been realized 
until the adjoint variable procedure of design sensitivity analysis for the augmented Lagrangian 
was developed. 8 However, a more comprehensive numerical study showed the methods still to be 
inefficient compared to the primal methods for static response structural design problems.10 The 
primary reason for this inefficiency was attributed to the unconstrained minimization and update 
procedures for u and r. But encouragingly, better performance than the primal methods was 
observed when the method was applied to dynamic response optimization problems. 68

• 
69 It is 

this behaviour that has motivated the present study in the hope of developing better methods for 
optimum design of large and complex systems. 

The basic motivation for the methods is to avoid the ill-conditioning associated with the usual 
penalty function methods. 30 In contrast to the penalty function methods, the penalty parameters 
r need not go to infinity to achieve convergence of the multiplier methods. As a consequence, the 
augmented Lagrangian Cl>(x, u, r) has good conditioning. 

To show basic steps of a multiplier method, we state the following general algorithm: 

Algorithm A: Basic steps of a multiplier method 

Step 1. Set k = 0. Estimate u<0
> and penalty parameters r<0 >. 

Step 2. Minimize Cl>(x, u<k>, r(k)). Let x<k> be the solution. 
Step 3. If convergence criteria are satisfied, stop the iteration process. 
Step 4. Update u<k> and increase r<k>, if necessary. 
Step 5. Set k = k + 1 and go to Step 2. 
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Conceptually a multiplier method is quite simple and its essence is contained in Steps 2 and 
4 only. Therefore, the performance of the method depends on how well these two steps are 
executed. In Step 2, the unconstrained minimization method used and the accuracy requirement 
for the minimum of <I> determine the behaviour and efficiency of the method. Procedures for 
updating u and r also govern robustness and efficiency of the method. The foregoing two aspects 
are critical for performance of the method and will be discussed throughout. 

In Step 2, unconstrained minimization is usually terminated when 

(5) 

is satisfied, where ek--+ 0 as k--+ oo. (Note that V and V2 will represent gradient and Hessian 
operators with respect to the design variables x throughout, unless noted otherwise.) One way to 
increase efficiency of the method is· to terminate the unconstrained minimization with a crude 
approximation to the solution. This enables the Lagrange multipliers u to be updated more 
frequently, which is important for large scale engineering optimization problems where an exact 
minimization is impossible and highly inefficient. To accomplish this, it is better to terminate the 
unconstrained minimization when the gradient of the augmented Lagrangian is less than some 
measure of the infeasibility of the constraints as16 

(6) 

where' is some fixed positive parameter and the norm on the right hand side is over the violated 
constraints only. Some authors24 have suggested to reduce 'in certain situations, resulting in the 
following convergence criterion: 

II V<l>(x<k>, u<k); r<k>) II ~ 'k II g(x<k>) II (7) 
or 

II V<l>(x<k>, u<k>, r<k>) II ~ min { eb 'k II g(x<k>) II} (8) 

where 'k--+ 0 and ek--+ 0 ask--+ oo. In addition to the above termination criterion, a limit on the 
number of unconstrained minimization iterations may be imposed. In this regard, continuous 
update methods (discussed later in the paper), where only few unconstrained minimization 
iterations are performed in Step 2, have been successfully used. Computational experience thus 
far indicates that considerable savings are realized by accepting an inexact unconstrained 
mimmtum. 

A simple Lagrange multiplier update procedure needed in Step 4 of Algorithm A is derived for 
the ith equality constraint as48

• 
74 

(9) 

where O~k) define the Lagrange multipliers as u1k> = riO~k> and k denotes the unconstrained 
minimization stage. It is important to note that (9) does not require gradients of individual 
constraints, making it quite suitable for engineering applications. This is generally called the 
Hestenes- Powell formula. The following multiplier approximation for equality constraints, called 
the projection formula, has been also used:31

•
41

•
63 

(10) 

where Vg(x) is ann x l matrix whose ith column is the gradient of gdx). Even though (10) is used, 
the method is equivalent to the Hestenes-Powell multiplier method (Proposition 4.5, Reference 
89). A drawback of (10) is that gradients of individual constraints are needed, making it unsuitable 
for engineering applications. 
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When inequality constraints are present, the multipliers can be updated using the constraint 
function values as 77

• 
82 

8~k+l> = 8~k> + max(g.(x<k)) - O~k>)· O~k+l> >- O· i = l + 1 m 
I I I'!' I r, ' (11) 

It has been shown that the update procedures in (9) and (11) are merely the steepest ascent 
methods for an equivalent dual of the Problem P. 20 A Newton-like update procedure which 
requires curvature information has been suggested to establish a faster rate of convergence.20

•
34 

Convergence properties of the multiplier methods using various update procedures have been 
analysed and a more sophisticated update procedure to obtain faster convergence rate has been 
suggested. 89 However, these procedures require gradients of individual constraints, making them 
unsuitable for engineering applications. Other update formulas are discussed later in the paper. 

Miele and co-workers61
•
62

•
64

•
65 presented many computational results for equality con­

strained problems using (9) and several other update procedures. In one algorithm the Lagrange 
multipliers u were determined to minimize the error in the optimality conditions for a given x. In 
another algorithm, they were determined so that the constraints were satisfied to the first order. 
In yet another algorithm,65 a modified Powell-Hestenes procedure was used as 

u<k+l) = u<k> + sg(x<k>) 

where the scalar parameter s was determined so that the error in the optimum conditions is 
minimized. Two variations of all these algorithms were studied. In one, penalty parameters were 
held constant, and in another one they were varied. The algorithm using the multiplier update 
procedure with varying penalty parameters performed better. It was also suggested to update 
multipliers more frequently for better convergence. However, all these procedures require gradi­
ents of individual constraints. Therefore, they are not suitable for engineering applications. 

In many engineering applications, if the design variables do not remain within certain bounds, 
singularities can occur in the problem formulation. Therefore, the explicit design variable bound 
constraints must be imposed during unconstrained minimization in Step 2. This can be done 
quite easily by modifying the unconstrained minimization routine.9

• 
79 Proper scaling of the cost 

and constraint functions can improve performance of the multiplier methods. This aspect has also 
been studied. 79 

3. FUNDAMENTALS OF MULTIPLIER METHODS 

In this section, we will discuss some fundamental concepts and procedures associated with the 
multiplier methods. 

3 .1. Augmented Lagrangian 

The augmented Lagrangian can be defined in several ways. The most popular and commonly 
used functional includes quadratic penalty terms that are defined for the Problem P as 

1~ 2 2 1~ 2 2 
<l>(x, 0, r) = f(x) + 2 i~l r;[(g; + 0;) - 8;] + 2 i=~ 1 

r;[(g; + 0;)+ - 8;] (12) 

where r;O;( = ud are the Lagrange multipliers and (h)+ = max(O, h). This functional, suggested by 
Rockafellar, is closely related to the following one suggested by Fletcher:34 

- 1 l 1 m 

<l>(x, 0, r) = f(x) + 2 i~l ri(g; + 0;)2 + 2 i=~ 1 
r;(g; + 0;)~ (13) 
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The relationship between the two functionals is given as 

- 1 m 
<l>(x, 9, r) = <l>(x, 9, r) - 2 i~t r;B[ (14) 

The term ~ I rJJl is independent of x. Therefore, the minimum solution x* of both the 
i= 1 

functionals for given rand 9 (or u) is the same, though the functional values are different. The 
functional in (12) has a suitable structure for duality that is discussed in Section 3.4. In a dis­
cussion of duality, it is simpler to work with u/s instead of 0/s. Therefore, the augmented 
Lagrangian in (12) is written in terms of u/s as follows: 

l (1 ) · m (1 ) ( ) 2 2 • · U; • . 

{ 

f(x) + .L -
2 

r;g; + u;g; + . L -
2 

r;g; + uigi , tf gi + ~ ~ 0 for l >I 
J=l r=l+l r, 

<l>(x, u, r) = (15) 

l (1 ) m 2 ( ) 2 U; . U; . 
f(x) + L - r;g; + uigi - L -; tf gi +- < o- for l > l 

i=t 2 i=l+t2r; r; 

It can be clearly seen from the above expression that <l>(x, u, r) has certain penalty terms that are 
added to the ordinary Lagrangian in (3); hence it is called the augmented Lagrangian. 

The augmented Lagrangian functional in (13) suggests an interesting interpretation for the O;'s. 
First consider inequality constraints only. At the beginning, Oi = 0 (i = 1, m) is generally chosen 
that corresponds to the exterior penalty method. 30 At this stage only g/s with positive values are 
penalized. For the next stage the corresponding O;'s may become positive (note that O;'s for 
inequalities remain non-negative). This not only increases the penalty for g/s with a positive 
value, but also penalizes g; even if it has a negative value that is greater than the corresponding 
- 0;; i.e. if g; + 0; ~ 0. In subsequent stages, further increase or decrease of 0; is made according 
to the sign of the corresponding g;. In this way, 0; is seen as a parameter that shifts the threshold 
level for the penalty term corresponding to gb as shown in Figure 1. In view of this it can be seen 
that the violated constraints are driven monotonically to zero in successive stages with smaller 

Shifting Threshold ~I 
Level 1 

(gj + 9i i -
Penalty Term 

Figure ·1. Interpretation of (Ji for an inequality constraint 
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2 
(gi + 9i) 

Penalty Term 

2 
(gi + 9i) 

Penalty Term 

Case 1: 9i ~ 0 

Case 2: 9i ~0 

Figure 2. Interpretation of Oi for an equality constraint 

positive increments added to the corresponding 8/s each time. However, this is not always the 
case. In earlier stages, a constraint gi may be violated but strictly satisfied at the solution, i.e. 
gi(x*) < 0. The algorithm adjusts to this by causing corresponding (Ji to relax to zero in the later 
stages as the value of gi becomes negative. 

In case of equality constraints, the role of the 8/s becomes clear from Figure 2. In this case, 
initially when ei = 0 (i = 1, /),all non-zero constraints are penalized. In the next stage, the sign of 
8; depends on the corresponding sign of Ui· In the subsequent stages the value of 8; increases if gi is 
positive and decreases if Ui is negative. However, the penalty decreases only if Ui-+ - (Ji from 
either side. Also, for ei # 0, the penalty is non-zero even for gi = 0. Thus, all the equality 
constraints are penalized all the time. 
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3.2. An analysis of the method 

In order to understand the basic ideas of the multiplier method and see its differences from the 
penalty methods, consider a one-dimensional problem: 

minimize f(x) = (x - 2f subject to g(x) = (x - 1) ~ 0 

The minimum for the problem is at x* = 1. The exterior penalty function for the problem is 
gtven as 

<b(x) = (x- 2)2 + fr(x- 1)i 

where r is a given positive scalar. The minimum of this penalty function is at x = (r + 4)/(r + 2). 
The only way this approaches the solution of the original problem is when r --+ oo . Even then, 
x = 1 cannot be obtained exactly. 

The second-order derivative of the penalty function is 

d 2<b { 2 + r; for x ~ 1 
dx2 = 2; otherwise 

As r becomes larger the curvature of the penalty function to the right of x = 1 becomes larger (see 
Figure 3). Thus, the penalty function becomes more and more ill-conditioned. This affects the 
ability of a numerical procedure to locate the exact minimum of the penalty function, although it 
gets quite close to x = 1. 

To see how difficulties encountered by the exterior penalty function can be alleviated by the 
multiplier method, consider the augmented Lagrangian functional in (13) for the problem as 

<b(x) = (x- 2)2 + !r(x- 1 - 8)i 

The minimum for this functional is at x = [r(l - 8) + 4]/ [r + 2]. In this case also, x approaches 
the solution of the original problem for finite 8 with r --+ oo . However, exact solution of the 

2 
f(x) = (x- 2) 

Cl>(x) x = 1 

Figure 3. Exterior penalty function 

2 l/2r(x-1)+ 
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original problem can be obtained for a finite value of r if an appropriate value of() is chosen. To 
get x = 1, the values of() and r should have the relation () = 2/r. For example, if r = 10 and 
() = 0·2, the exact solution x = 1 is obtained. Thus, exact solution of the original problem can be 
obtained if proper values of() and rare known. Since the value of r need not become very large, 
the curvature of the augmented functional need not be large. The functional is not ill-conditioned. 

Let us see the effect of choosing different values of() for r = 10 on the sol uti on of the augmented 
Lagrangian functional. The optimum values for x with different values for () are given in Table I. 

It can be seen that, as the value of() becomes larger, the minimum of the functional shifts to the 
left of x = 1 and vice versa (see Figure 4). As the value of() becomes closer to 0·2 from either side, 
the minimum of the functional comes closer to the solution of the original problem. This then 
should be the goal of any multiplier update procedure; i.e. to change ()i at every iteration so as to 
bring the corresponding ui closer to its true value. It can be seen that this is achieved by procedure 
in (11) for arbitrary initial choice of e. 

e 

X 

2 

-6 
12 

1 

4 

12 

Table I 

0·2 

1 

<l>(x) x = 1 

4/12 (1 - 0.2) 1 /12 
(1- 0.1) 

0·1 

13 

12 

0·05 

13·5 

12 

9=1 

9=0.1 . 

2 
1/2 r (x - 1 + 9) 

+ 

Figure 4. Augmented Lagrangian functional (r = 10) 
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3.3. Necessary and sufficient conditions 

In this section we compare the necessary and sufficient conditions for the Problem P and those 
for the unconstrained problem of minimizing the functional given in (12) for sufficiently large k, ie. 
after sufficient number of iterations. 

Let x* be the required solution and Vg;(x*); i e E u I be linearly independent at x*, where E is 
the index set for equality constraints defined as E = {i: i = 1, 1} and I is the index set for active 
inequalities defined as I = {i: uf > 0, i = 1 + 1, m}. Then there exist unique Lagrange multipliers 
u* such that the gradient of the Lagrangian in (3) vanishes, i.e. 

m 

· Vf(x*) + L utVg;(x*) = 0 (16) 
i= 1 

Let x<k> be the minimum of <l>(x, u<k>, r), where r > 0 and u<k> are the · current values of the 
parameters at the kth iteration. First-order optimality conditions for the augmented Lagrangian 
in (12) give 

l 

V<l>(x<k>, u<k>, r) = Vf(x<k>) + L r;(g;(x<k>) + tW>)Vg;(x<k>) 
i= 1 

m 

+ L r;(g;(x<k>) + 9~k>)+ V g;(x<k>) = 0 
i=l+ 1 

Here we have assumed that 

V(g;(x<k>) + O~k>)~ = 2(g;(x<k>) + O~k>)+ Vg;(x<k>); i = 1 + 1, m 

This makes V<l> continuous. 59 

Since (g; + 0;)+ = max(g; + 0;, 0) = 0; + max( - 0;, g;), (17) can be written as 
l 

V<l>(x<k>, u<k>, r) = Vf(x<k>) + L r;[O~k> + g;(x<k>)]Vg;(x<k>) 
i=1 

m 

(17) 

+ L r;[8~k) +max(- e~k>,g;(X(k)))]Vg;(X(k)) = 0 (18) 
i=l+ 1 

Assume that e~k> are chosen to satisfy (9) for equality constraints and (11) for inequality 
constraints. Also assume that, for some large k, O~k>-+ Ot (i = 1, m), which implies that 

g;(x<k>) = 0; i = 1, 1 (19) 

(20) 

and (18) is reduced to (16). Therefore, we may conclude that x<k> = x* and r;O~k> = r;Ot = uf. Note 
that (20) can be satisfied only when e~k> = 0 or g;(x<k>) = 0 or both are zero. These conditions can 
also be written as e~k> g;(x<k>) = 0; i = I+ 1, m. Thus (18) to (20) are equivalent to requiring the 
following Kuhn-Tucker necessary conditions for the Problem P: 

m 

Vf(x<k>) + L u~k>Vg;(x<k>) = 0 (21) 
i= 1 

(22) 

u~k> ~ 0, g;(xk>) ~ 0, and u~"> g;(x<">) = 0; i = I + 1, m (23) 

From the foregoing discussion it is evident that the aim of choosing u; (or 0;) in (9) and (11) is 
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such that gi(x<k)) ~ 0; i = 1, land max(- O~k>, gi(x<k>)) ~ 0; i = l + 1, m. This results in x<k> ~ x*.lt 
has been proved that x* is an isolated local minimum point of ~(x, u*, r) provided that ri are 
sufficiently large but finite. 34 

It has been assumed that Vgi(x*); ieE uJ are linearly independent. This is equivalent to saying 
that x* is a regular point. If x* is a regular point, then the Lagrange multipliers uf, i = 1, m are 
unique. The assumption that x* is a regular point should be made with caution as it is not valid for 
the following cases. 

1. If any equality constraint g;(x) = 0 is expressed as a pair of inequalities as gi(x) ~ 0 and 
g;(x) ~ 0, then x* cannot be a regular point. 

2. If the inequality constraints g;(x) ~ 0, i = l + 1, m are expressed as an equivalent constraint 
m 

L (gi)t = 0, then x* cannot be a regular point. 
i=!+ 1 

3. Consider a continuum constraint gi(x, t) ~ 0 for t E [t0 , t 1]. This constraint may be ex-
pressed in an equivalent form that eliminates the parameters t as 

I.
tf 

(gi(x, t) )t dt = 0 
to 

(24) 

then x* is not a regular point. 

If the problem is so formulated that x* is not a regular point, then a method that works with the 
Lagrange multipliers may not be the best choice. The Lagrange multipliers are not necessarily 
unique in that case. 

So far, the discussion has centred on necessary conditions for x* to be a local minimum of 
~(x, u, r). Now sufficiency conditions are stated. Assume that f(x) and g;(x), i = 1, m are twice 
continuously differentiable. Then as a sufficient condition for x* to be an isolated local minimum 
point of the Problem P, the following inequality must hold: 

(x, V2L(x*, u*)x) > 0 (25) 

for all x =I= 0 and satisfying the conditions 

(Vgi(x*),x)=O; ieEul 

(Vgi(x*), x) ~ 0; i¢E u I 

(26) 

(27) 

where V2 Lis the Hessian of the Lagrangian in (3) and (a, b) implies a Tb. If V2 L(x*, u*) is positive 
definite then we have a stronger sufficiency condition for x* to be an isolated local minimum. Note 
that, if the foregoing conditions are not satisfied, then x* is not an isolated local minimum, but it 
may still be a local minimum.2 Let x<k) be such that, for sufficiently large k, it satisfies the necessary 
conditions in ( 18) to (20). As the sufficiency condition for x<k) to be a local minimum of ~(x, u<k>, r), 
V2 ~(x<k>, u<k>, r) must be positive definite. For x<k> = x* the conditions in (25) and (27) do not 
guarantee positive definiteness of V2~(x*, u*, r). However, the penalty parameters r can be 
increased such that ri ~ r; (for some i; > 0; i = 1, m) make V2~(x*, u*, r) positive definite. Also, if 
V2 L(x*, u*) is positive definite, so is V2~(x*, u*, r). 

3.4. Duality theory 

The duality theory will show that the optimum Lagrange multipliers u are determined by 
a maximization problem. This problem is unconstrained even if there are inequality constraints. 
However, to make sure that Lagrange multipliers are non-negative for inequality constraints, 
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simple constraints must be imposed on them in numerical computations. Here we discuss some 
important results of duality for general non-convex programming problems. 

Duality theory for the augmented Lagrangian is developed based on the duality theory 
originally developed for the Lagrangian defined in (3). It turns out that the point (x*, u*) 
corresponds to a local minimum of the Problem P in (1) and (2) if it is also a saddle point of 
L(x, u). A point (x*, u*) is called the saddle point of L(x, u) if it satisfies the following inequalities: 

L(x*, u) ~ L(x*, u*) ~ L(x, u*) (28) 

with L(x*, u*) bounded below and for xES and u E T, where Sand Tare subsets of the domain for 
L(x, u) in the neighbourhood of the point (x*, u*). If a saddle point exists, then the problem of 
finding a local minimum of Problem P can be viewed as the problem of finding a saddle point of 
the function L(x, u). These saddle points exist for xES only if the cost function is convex, every 
equality constraint is linear and every inequality is convex; i.e. if the problem is convex. However, 
a saddle point for the augmented Lagrangian <D(x, u, r) exists if penalty parameters are sufficiently 
large, i.e. ri are greater than some threshold value fi.37 

Methods based on a technique that searches for saddle points of the function to find a solution 
to the Problem Pare referred to as primal-dual methods. Problem Pis called the primal and the 
corresponding dual is defined as12

•
34 

Problem D. For some constant r 

maximize <P (u) for u E T 

where the dual function <f>(u) is defined as 

<f>(u) = min <l>(x, u, r) 
xeS 

It is well known that the optimum solutions of Problem P and Problem D satisfy 

inf ( P) ~ sup(D) 

(29) 

(30) 

(31) 

In (30), if <D(x, u, r) is replaced by L(x, u), then in (31) equality may not hold, unless the setS and 
the cost function are convex. The difference between inf( P) and sup(D) in (31) is termed the duality 
gap. However, if certain assumptions are made on the convexity of the original problem, the 
duality gap can be eliminated using the augmented Lagrangian. 78 This is called strong duality. In 
general, for an engineering problem the assumptions required for the strong duality cannot be 
guaranteed to satisfy for any setS. However, if S* c: Sis considered as a very small neighbour­
hood of a local minimum then the necessary and sufficient conditions for the local minimum are 
enough to show duality. This is known as the local duality theory. Fletcher34 reviewed and 
extended local duality theory for the equality-inequality constrained problem corresponding to 
the augmented Lagrangian. Local duality can also be found in Luenberger59 for the ordinary 
Lagrangian and in Buys20 for the augmented Lagrangian. 

Here we present major results of the duality theory in a simplified form; more details can be 
found in Mangasarian,60 Rockafellar,76 Fletcher,34 Tapia89 and Bertsekas.19 Consider a point 
(x*, u*) satisfying first-order necessary conditions and second-order sufficiency conditions for 
a local minimum of Problem P. 

Theorem. There exist ri > 0 (i = 1, m), such that, for any r1 ~ r1 (i = 1, m), x* is a local 
minimum of <l>(x, u*, r) and V2<1>(x*, u*, r) is positive definite. 

This is an important result that implies that, if penalty parameters are sufficiently large and if u* is 
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known, then x* can be obtained by just one unconstrained minimization of <l>(x, u*, r). This 
suggests that the Lagrange multipliers u should be estimated more accurately. 

For further discussion, assume that the penalty parameters are sufficiently large, as required by 
the foregoing theorem. Also consider the Problem P with equality constraints only; inequalities 
will be discussed later on. Consider x(u) as a function that is implicitly determined by solving the 
non-linear necessary conditions for minimization: 

V<l>(x, u) = 0 (32) 

From the foregoing theorem, we known V2<l>(x*, u*) is positive definite for sufficiently large 
ri (i = 1, m). Then according to the implicit functions theorem, there exists an open neighbour­
hood T* c Tabout u* and S* c S about x* such that for any u E T* there exists a unique x inS* 
satisfying (32). Furthermore, x(u) is continuous and continuously differentiable, and V2ct>(x, u) is 
positive definite for all u E T*. Further, the following results can be stated: 

x(u*) = x* · (33) 

Vux(u) = - Vg(x?[V2<l>(x, u)]- 1 

Vu</J(u) = g(x(u)) 

Vutf>(u*) = g(x*) = 0 

V;u</J(u) = - Vg(x)TV2 cl>(x, u)- 1 Vg(x) 

(34) 

(35) 

(36) 

(37) 

where l/>(u) is the dual function defined in (30) with T replaced by T* and S replaced by S*. 
Equation (36) shows that the dual function is stationary with respect to the Lagrange multipliers 
at u*. Since V2cl>(x*, u*) is positive definite, (37) shows that v;utf>(u) is negative definite. Therefore 
it can be concluded that, if x* solves the primal problem, its associated Lagrange multiplier u* 
solves the dual problem since necessary and sufficient conditions of optimality are satisfied. This 
observation and (35) and (9) show that the Hestenes-Powell multiplier update procedure is the 
steepest ascent method to solve the dual problem with step size as one. This motivates development 
of different multiplier update procedures20

• 
34

• 
89 that are reviewed in a later section. 

For the general equality-inequality Problem P, ·results similar to the foregoing can be 
derived:34 

(38) 

=max(- Oi, gi); i = I+ 1, m (39) 

[
- VgTB- 1Vg 0 J iEJ v2 <P = 

uu . 0 - diag(1/ ri) i ~ J 
(40) 

where J = { i: i = 1, land i = I+ 1, m for (gi + Or) > 0}, diag(l/ri) is a diagonal matrix with 1/ri as 
the diagonal elements, and B = V2 cl>(x, u). It can be shown that the matrix in (40) is non­
singular. 34 Therefore, to get an approximation to the Lagrange multipliers u*, we can either solve 
the dual Problem D by taking a step based on gradient-like methods or Newton-like methods. 
For very large penalty parameters it is shown that the Newton step is approximately the same as the 
steepest ascent step (with unit step length). But for smaller values of the penalty parameters, the 
Newton-like step can still be advantageous (only when gradients of individuals constraints are 
easier to compute). 

It is evident from (38) and (39) that the conditions in (19) and (20) are simply the necessary 
condition for lj>(u) to have a maximum (or stationary) point. In this event, duality theory provides 
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an excellent way of proving convergence properties of the multiplier algorithms. Local duality 
gives only local convergence results for some fixed values of the penalty parameters. The role of 
penalty parameters in order to achieve global convergence is discussed in later sections. 

Finally, a stronger result can be stated: if x(u) can be guaranteed to be a global minimizer of 
<l>(x, u) for the Problem P, then u* is a global maximizer of the dual function cf>(u). 

3.5. Convergence properties 

Global convergence of multiplier methods was established by introducing automatic proced­
ures for revising penalty parameters r;, i = 1, m. 15

• 
34

• 
74 An automatic penalty limitation proced­

ure has also been introduced with a proof of global convergence. 72 

Global convergence of the multiplier methods can be discussed by imbedding them into the 
general penalty function methods. 15 This viewpoint yields global convergence results. By global 
convergence we mean convergence to a local minimum starting from an arbitrary point x; it does 
not imply a global minimum point. For a general penalty function method, there exist non­
negative r<0l and ME (0, oo) such that 

M II x<k) - x* II ~ II u<k> - u* II 
~ llr<k> II (41) 

and 
M . 

II u<k + 1> - u* II ~ II u<k> - u* II 
~ II r<k) II (42) 

for all dkl > d 0 l > 0 and u<kl E T; where Tis an open sphere centred at u*. The results shown above 
can be used to establish global convergence of the multiplier method. The only assumption here is 
that II r<k> II > M and dkl > d0> > 0 for all k. Furthermore, the result shows that the sequence 
II u<kl - u* II converges at least linearly if II r<kl II is bounded above and superlinearly if II r<k) II goes to 
infinity. 

The rate of convergence of multiplier methods is critically dependent on the Lagrange 
multiplier update procedures. The simplest procedure given .in (9) gives rise to linear convergence. 
If superlinear convergence is required for bounded II r II, it becomes necessary to use a more 
accurate procedure. 24 

In Powell's algorithm 74 (given in Section 3.8), a parameter K is used to enforce global 
convergence. This non-negative parameter represents the maximum constraint violation as 

K =max { max lgd; max lmax(gi, - Oi)l} (43) 
1 ~ i ~ l l+ 1 ~i~m 

To enforce global convergence, K is required to reduce at every iteration of the unconstrained 
minimization algorithm, and the entire iterative process is stopped if the following criteria are 
satisfied: 

(44) 

where e is an error tolerance. If K is not reduced at a particular iteration, then the value of ri is 
increased by some automatic procedure. 34 Therefore the role of the penalty parameters r is 
important for obtaining global convergence of the multiplier methods. We aim to force conver­
gence to a Kuhn- Tucker point (x*, u*) by adjusting x, u and r iteratively. 

The foregoing scheme is not guaranteed to work, although it appears to be well conceived. 
A different scheme has been proposed that is proved (theoretically) to be globally convergent. 72 It 
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has been shown that, when conditions in (41) and (42) hold, II u(k+ 1> - u<k> II -+ 0 linearly, with the 
rate constant being proportional to 1/ II r<k> 11 . It is suggested that the penalty be increased on the 
basis of a test on the norm of the difference of successive multipliers: 

II uJk+ 1>- u<k> II ~ Mek (45) 

with M > 0, Bk E (0, 1 ). The test will eventually be satisfied for a large enough penalty r. Such a test 
is used to detect when the penalty parameters r are large enough. This algorithm needs an a priori 
estimate of the maximum magnitude of the multipliers. For a general non-convex problem this is 
not possible. Therefore, further modification of the algorithm is needed for practical applications. 
Apart from this, to achieve global convergence, the maximum · step length to be used in the 
unconstrained minimization algorithm needs to be decreased when the multipliers are updated 
(multipliers are updated using (9) and (11)). Therefore, for best results it is necessary to use an 
unconstrained minimization algorithm that converges precisely to isolated minimum points. 

To conclude, the multiplier methods are globally convergent and can be implemented in 
a robust manner. The problems associated with step size calculations in the primal methods to 
force global convergence are not present; i.e. a separate descent function is not needed to calculate 
the step size. The methods can be expected to be more reliable as a result. 

3.6. Forms of augmented Lagrangians 

The quadratic form of the augmented Lagrangian given in (12) has been most widely used in 
practical implementations of the multiplier methods. However, for the following reasons, it may 
be occasionally advantageous to use other forms. 19 

1. While the cost function may be bounded below in the · constraint set, the augmented 
Lagrangian need not be (over the entire space) for all valu.es of the penalty parameters. 

2. The methods most likely to be used for unconstrained minimization of the augmented 
Lagrangian rely conceptually on continuity of second derivatives. Under extreme circum­
stances, discontinuity in the augmented Lagrangian can considerably slow down the rate of 
convergence of these methods and can be the cause of algorithmic failure~ Exponential 
penalty functions discussed in Section 6 have better continuity than the augmented 
Lagrangian in ( 12). 

3. Multiplier methods corresponding to different types of penalty functions, used to construct 
the augmented Lagrangians, can exhibit drastically different rates of convergence. 

A few other forms of the augmented Lagrangians have been suggested by some researchers 
during the 1970s.19

•
68 

3.7. Other aspects of multiplier methods 

3.7.1. Geometric interpretation. This section provides a simple geometric interpretation of 
multiplier methods that also motivates the convergence analysis. The iterative process for 
problems with only inequality constraints is shown in Figure 5.10T.his geometrical interpretation 
is based on the result proved by Powell. 7 4 He showed that minimizing Cl>(x, u, r) to obtain x(u) is 
equivalent to solving the problem 

Il1tmmtze f (x) 

subject to i =1m ' 

15
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X ,U 

/-\7f 

Figure 5. Direction vector in multiplier methods 

The constraints in the above problem define a modified feasible domain for given u, as shown in 
Figure 5. Once the minimum of the foregoing problem is obtained, the constraints are modified 
and the process repeated. The equality constraints can be included in the definition of the 
foregoing problem. By requiring the parameter K in (43) to go to zero at the .optimum, the 
artificial and the real constraint boundaries merge. 

Another geometrical interpretation of the multiplier methods can be given by considering the 
equality constrained problem ECP. It can be shown that minimizing <l>(x, u, r) to obtain x(u) is 
equivalent to solving the constrained problem:15 

minimize f(x) subject to gi(x) = ei; i = 1, l 

with ei as a perturbation of gi(x) = 0. 
Let p(e) be the solution of the perturbed problem. defined in (46); i.e. 

p(e) = min f(x) 
, . g(x)=e 

It is known that 

p(O) = f(x*) .:._optimal solution of (46) with e = 0 

op(O) * 
--- -U· 

Oej - I 

For a scalar r, we can write 

min <l>(x,u, r) =min [ min {f(x) + (u, g)+! r(g, g)}] 
x e g(x)::o:e 

From the definition in (47), (50) can be rewritten as 

min <l>(x, u, r) = min {p(e) + (u, e) + ,! r(e, e)} 
x e 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

The above equation can be interpreted geometrically as shown in Figure 6. In the figure, e and 
r are treated as scalars for simplicity. The parabolic curve Pc(e) stands for the augmented 
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----min <1> (x, 0, r) 
X 
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0 

Figure 6. Geometric interpretation of augmented Lagrangian 

Lagrangian of the perturbed constrained problem. Note that the addition of 1/2 r(e, e) to p(e) has 
an important convexification effect. We see that, as u gets closer to the Lagrange multiplier u*, the 
corresponding value of <l>(x, u, r) gets closer to the optimum for the problem. This leads to the 
conclusion that convergence of the multiplier algorithms can be accelerated if an .appropriate 
Lagrange multiplier update procedure that forces u<k> ~ u* is used. 

3.7.2. Potential constraint strategy. Because of the structure of the augmented Lagrangian, 
only violated, active or nearly active constraints are considered in each iteration. The inequality 
constraints that are satisfied (excluding active and nearly active) are not required in constructing 
the augmented Lagrangian function and its derivative (see Figure 1). This is called the potential 
constraint strategy. 

For a general inequality-equality problem, a potential constraint set is defined as 

IP = { i: i = 1, 1 and i = l + 1, m for (gi + Oi) ~ 0} 

where Oi are small positive numbers determined from ui and ri as (Ji = udri. If we have more than 
500 inequality constraints, then, depending on the number of design variables, the set JP may 
consist of only 10 to 15 inequality constraints near the solution. The potential constraint strategy 
is very important in engineering applications as it reduces the computational effort. One of the 
advantages of using the multiplier method is that the potential constraint strategy is automati­
cally incorporated. 

3.7.3. Lagrange multiplier update procedures. The convergence properties of multiplier 
methods are highly dependent on the Lagrange multiplier update procedures, as noted pre­
viously. The usual way of implementing multiplier methods is to minimize the augmented 
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Lagrangian for a fixed value of the multipliers and then update them. However, they can be 
updated more frequently, as in continuous multiplier update methods that are discussed in 
Section 4. 

A multiplier update procedure can be generally defined as89
• 
90 

(52) 

with the property that 

u* = U(x*,u*,r*) (53) 

where (x*, u*) is a solution of the problem. If 1J does not depend explicitly on u, i.e. 

au . 
;:;-- (x, u, r) = 0, z = 1, m 
uUi . 

(54) 

then U is said to be a Lagrange multiplier approximation procedure. Several multiplier update 
procedures for the equality constrained problem that have appeared in the literature are given as 
follows: 

UHp(X, u, t) = u + Rg 

UF(x, u, r) = - [VgTVg] -l Vg TV! 

UM(x, u, r) = [VgTVg] -l [g - VgTVf] 

UB(x, u, r) = u + [VgTB- 1 Vg]- 1g 

UT(x, u, r) = [VgTD- 1 Vg]- 1 [g- VgTD- 1Vf]- Rg 

UG(x, u, r) = u + [VgTD- 1 Vg + A]- 1 [g- VgTD- 1 V«f>] 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

The matrix R is diagonal with the penalty parameter ri as its ith diagonal element. D- 1 in (59) and 
(60) is ann x n matrix (see discussion following (79) for choices of this matrix), and A in (60) is an 
m x m matrix (these can be taken as identity matrices). B -l in (58) is the inverse of the Hessian of 
the augmented Lagrangian or its approximation. 

It is of interest to observe that (55) to (57) use only first-order information, whereas (58) to (60) 
use second-order information. It is impossible to accurately credit those responsible for each of 
these multiplier update formulas. However, in the literature they are often credited as follows. 
Formula (55) was introduced independently by Hestenes48 and Powell74 and is, therefore, known 
as the Hestenes-Powell (U HP) ·multiplier update procedure. Rockafellar 7 7 and Sch uldt8 2 both 
independently suggested modification to this formula to include inequality constraints. Rosen80 

was probably first to introduce the f{)rmula in (56). Later it was introduced and used by several 
authors. 31

•
41

• 
61 

-
65 Note that the formula (56) is the least-square solution for u of the overdeter­

mined linear system 

Vf + Vgu = 0 (61) 

Equivalently, (56) also arises when Vf is projected onto the tangent subspace of the constraints, so 
it is called a projection formula. 89 Glad and Polak39 suggest slight modification to the formula to 
include inequality constraints. Formula (57) is a special case of a class of formulas used by Miele 
et al. 64 Formula (58) was introduced by Buys. 20 The multiplier method in conjunction with Buys 
update formula has been extended to inequality constraints by Fletcher. 34 The multiplier update 
formula in (59) was introduced by Tapia.88 A special case of this formula could be traced back to 
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Bard and Greenstadt.6 A similar formula from a different direction was also independently 
introduced by Han.46 Tapia89

•
90 suggested extension of this formula to include inequality 

constraints using squared slack variables. Tapia89 also introduced formula (60). All these update 
formulas correspond to the augmented Lagrangian given in (12). Update formulas corresponding 
to other augmented Lagrangians can be derived using the theory used to derive (55)-(60); see 
Bertsekas. 1 9 

The following theorem is worth mentioning here. 90 

Theorem. Formulas (57), (58) and (59) are all special cases of the formula (60). Moreover, 
formulas (55) and (56) are special cases of (60) if and only if ri > 0 (i = l, l) in (12). 

The update formulas UHP and UF are equivalent, as are U 8 and UT with exact unconstrained 
minimization. 89 This is not true for the continuous version of the multiplier method discussed 
later. It is important to note that only the formula in (55) does not require gradients of individual 
constraints, so this is the most appropriate formula for engineering applications. 

3.7.4. Penalty parameters. The behaviour of multiplier methods depends on initial penalty 
parameters r<o> and the rate at which they are changed. Instead of using the vector r containing 
a different penalty parameter for each constraint, we can use the same penalty parameter r (scalar) 
for all of them. But using a different penalty parameter for each constraint is beneficial for 
problems with poorly scaled constraint functions. Also, we can develop a scheme in which each 
penalty parameter is changed depending on the behaviour of the corresponding constraint. 

The main considerations in selecting the penalty parameter sequence are as follows. 19 

l. The parameters r should eventually become larger than a threshold level necessary to bring 
to bear the positive features of the multiplier iterations. 

2. The initial parameters r<0
> should not be so large that ill-conditioning is forced upon the 

unconstrained minimization routine too early. 
3. The parameters r are not increased too slowly, at least in the early minimizations, to the 

extent that the multiplier iteration has a poor convergence rate. 

These requirements are to some extent contradictory. In addition, for non-convex problems, it 
is difficult to know a priori the corresponding threshold level for the penalty parameters. The 
augmented Lagrangian attains a very important feature if the penalty parameters are increased 
beyond their threshold levels. This important feature is the existence of a saddle point37 which 
does not require convexity of cost function or constraint functions. 

The penalty parameters play an important role in achieving better convergence properties. 
This is illustrated from the result: if penalty parameters ri-+ oo (i = 1, m) and ei ( i = 1, m) are 
fixed, then gi-+ 0 (i = 1, l), max(gi, - Od-+ 0 (i = l + 1, m), and they behave asymptotically as 

constant 
gi ...:_ i = 1, l 

r; 
(62) 

(63) 

Thus it is important to increase penalty parameters so as to force iterates of Lagrange multipliers 
u into a region about u* in which local convergence is guaranteed by local duality theory. 34 Once 
in this region, the penalty parameters could be held fixed and only the Lagrange multipliers 
u varied such that u-+ u* at the appropriate rate. 

19



3.8. A multiplier algorithm 

Based on all the foregoing considerations, the following multiplier algorithm due to Powell is 
stated: 

Algorithm B: Powell's multiplier algorithm 

Step 1. Set k = 0, K = <Xl; estimate vectors x<0 >, o<O), rand scalars ex > 1, p > 1, e > 0, where e is 
the desired accuracy; a is used to enforce sufficient decrease in the constraint violations, 
and P is used to increase the penalty parameters. 

Step 2. Set k = k + 1. 
Step 3. Minimize $(x, o<k>, r) of (12) or (13) with respect to x. Let x<k> be the best point obtained in 

this step. 
Step 4. Evaluate g;(x<k)); i = 1, m. Set K of (43) and check for convergence criteria in (44). If these 

criteria are satisfied, then stop. Otherwise, establish the following sets of equality and 
inequality constraints whose violation did not improve by the factor a: 

IE= {i: lgd > Kjex, i = 1, 1} (equalities) 

I1 = { i: lmax(gi, - Oi)l > Kja, i = l + 1, m} (inequalities) 

(64) 

(65) 

Step 5. If K ~ K (i.e. constraint violation did not improve), set ri = {Jri and e~k+ 1) = e~k) I p for all 
i E IE u I 1, and go to Step 2. That is, increase the penalty parameters by the factor p and 
reduce the corresponding 0; by the same factor, thus keeping the multipliers unchanged. 

Step 6. Update O~k> by setting (note that this step is executed only when the constraint violations 
have improved) 

e~k+ 1) = e~k) + g.(x(k)). i = 1 l 
' ' ' ' ' 

(66) 

O~k+t> = 01k> + max(gi(x<k>),- O~k>); i =I+ 1,m (67) 

If K ~ Kja (constraint violation has improved by the factor a), set K = K and go to 
Step 2. 

Step 7. Set r;={Jr; and O~k+l)=O~k+o;p for each ieJEuJ1 (note that this step is executed 
only when the constraint violations do not improve by the factor ex). Set K = K and go to 
Step 2. 

For engineering design problems, it is necessary to impose the design variable bounds during 
unconstrained minimization in Step 3 to prevent absurd designs. This needs to be treated in the 
unconstrained minimization routine. 

The initial choices of 8, r, a and Pare very important. Usually initial fJ; ( i = 1, m) are set to zero. 
The initial choices of penalty parameters ri (i = 1, m) are important from the point of view of the 
rate of convergence, as discussed before. Penalty parameters are usually chosen to satisfy 
1/2 rigf(x<0>) = I L\f(x<0 >)1, where I L\f(x<0 >)1 is the expected decrease in the cost function at the 
initial design point x<0). This requires some prior knowledge about the problem. Another way to 
choose the initial penalty parameters is to require the cost function and the generalized penalty 
functional (see (4)) or the norm of their gradients to be equal at the initial point x<0 >. ex = 1·5 and 
p = 10 were used by Belegundu and Arora10 and Paeng and Arora.68 On the other hand, a= 4 
and p = 10 were chosen by Powel1.74 The initial design x<0> can be feasible or infeasible. To 
prevent excessive iterations, a limit on the maximum number of function and gradient evaluations 
may also be imposed. 

20



3.9. Effect of inexact minimization 

It is tempting to terminate the unconstrained minimization process in Step 3 of the algorithm 
with an inexact solution. This way the number of function and gradient evaluations may be 
reduced. Here we study the effect of inexact minimizations by considering the same example as 
considered in Section 3.2. 

Let us first consider that accurate minimum of the augmented functional is obtained in Step 
3 of the algorithm. Let r = 10 for the entire procedure and 0 = 0 initially. Then after the first 
unconstrained minimization the solution is x = 14/12. The update procedure (11) yields 
e = 0 + max(0·19, 0) ~ 0·19. Thus 0 is increased from zero, indicating that minimum of the 
augmented functional will shift to the left. The other observation is that 0 is almost equal to 0·2 
and, after the next step, the exact minimum of the augmented functional is 12·1/12, which is very 
close to the required solution. 

Now consider an inexact minimum of the augmented functional in Step 3 as x = 18/12. The 
update procedure (11) yields 0 = 0 + max(0·5, 0) = 0·5. In this case also 0 is increased and the 
minimum of the augmented functional will be shifted to the left in the next iteration. However, the 
shift is too much in this case. The exact minimum in Step 3 with e = 0·5 is x = 9/12, and (11) 
yields 0 = 0·5 +max(- 0·25, - 0·5) = 0·25. This will shift the exact minimum of the augmented 
functional to the right and closer to the required solution. Let us assume again that the exact 
solution x = 9/12 is not obtained; instead an inaccurate neighbouring solution x = 10/12 is used. 
Then, (11) yields e = 0·5 +max(- 0·167, - 0·5) ~ 0·433, and this will also shift the minimum to 
the right, but not as close to the required solution as when the exact minimum of the functional is 
used. Now let us consider another inaccurate solution as x = 13/12, which is closer to the 
required solution; however, it is far away from the exact solution x = 9/12 of the augmented 
functional. In this case, (11) yields()= 0·5 + max(0·084, - 0·5) ~ 0·584, which·indicates that the 
minimum of the functional will shift farther to the left rather than to the right. 

In conclusion, it can be seen that an exact minimum of the augmented functional is necessary 
for each unconstrained minimization to ensure proper shift of the minimum towards the required 
solution. With an inaccurate minimum, the move towards the final solution may not be 
appropriate, resulting in convergence difficulty. Since an exact minimum of the augmented 
functional for engineering applications is inefficient, the inexact minimum may be used in some 
iterations as long as in some others an accurate minimum is used. 

4. CONTINUOUS MULTIPLIER UPDATE METHODS 

In the multiplier methods discussed in the previous section, the augmented Lagrangian is 
minimized for a fixed value of the Lagrange multipliers and penalty parameters. At the end of 
unconstrained minimization, the multipliers and penalty parameters are updated. Such algo­
rithms requiring exact unconstrained minimization can be inefficient. This is particularly true for 
large scale engineering problems. Therefore, it may be more efficient to update the Lagrange 
multipliers more often; e.g. after a few steps of unconstrained minimization.61

•
62

•
64

•
96 An 

algorithm that requires only one step of a quasi-Newton method before the multipliers and the 
penalty parameters are updated has been proposed. 89 Methods based on this idea have been 
characterized as diagonalization of the multiplier methods;21

•
89 however, we shall call them 

continuous multiplier update methods. For better results, the update procedures for x and u should 
be compatible, i.e. they should both use either first-order information only, or first- and second­
order information. The purpose of this section is to study fundamentals of this class of methods. 
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Results on global convergence and rate of convergence of the continuous update methods can 
be found in several references. 36

• 
38 Analysis of different procedures with continuous updating has 

been presented.38 Convergence with different multiplier update procedures and secant update 
procedures for the Hessian has been investigated for equality constrained problems. 36 It has been 
shown that at least a linear rate of convergence is guaranteed by all the update procedures. 
Automatic increase of the penalty parameters after each iteration of unconstrained minimization, 
depending on the value of a test function, has been proposed. 39

• 
66 Global convergence of this 

algorithm is shown with bounded penalty. 
For inequality constraints, usually a potential constraint strategy is used. Use of squared slack 

variables also results in a similar strategy. A formulation for the general equality-inequality 
problem has been presented using squared slack variables that does not result in increased 
dimension or numerical instability.91 

The basic idea of continuous multiplier update methods can be understood by relating them to 
sequential quadratic programming. This will be done in the sequel. It will be shown that one 
iteration of sequential quadratic programming corresponds to one iteration of the unconstrained 
minimization algorithm for the augmented Lagrangian, followed by an update of the multipliers. 
We first consider equality constraints only. 

Consider first only the equality constrained problem. The first-order necessary conditions give 
a system of n + l non-linear equations in n + l unknowns as follows: 

[
VL(x, u)J = 0 

g(x) 
(68) 

The methods that solve the system of equations (68) to solve Problem P are called Lagrange 
methods. 19• 59 A Newton step to solve the non-linear system in (68) gives 

[ 
B<k> Vg(x<k>) J [ Ax<k+ 1> J = ·[ - V L(x<k\ u<k>)J 

Vg(x<k>)T 0 Au<k+ l) - g(x<k>) 
(69) 

where Ax<k+l) = x<k+l)- x<k> and Au<k+l> = u<k+l>- u<k>. If B<k> = V2L(x<k>, u<k>) we have exact 
Newton method. However, for iterations in (69) to work, we need matrix B<k> to be positive 
definite and matrix Vg(x<k>) to have full column rank. The latter requirement is satisfied if 
regularity of x<k> is assumed. To satisfy the first requirement, we can replace L by <I> given in (12), 
and take B = V2<1>, since V2<1> can be made positive definite by suitably increasing the penalty 
parameters. In order to avoid explicit computation of V2 <1>, a positive definite secant approxima­
tion for it can also be used. 59 

Observe that, if we add Vg(x<k>)u<k> to the top part of (69), we get 

(70) 

Now we can show how some optimization methods are related to (70). Consider the standard 
quadratic subproblem defined in the sequential quadratic programming (SQP) methods, as 

Problem QP 

(71) 

(72) 
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where d<k> is the search directio~ and u<k> is some approximation to V2 L(x<k>, u) with the vector 
u corresponding to the multipliers obtained during solution of the Problem QP at the previous 
step. 

The first-order necessary conditions for the Problem QP are 

u<k>d<k> + Vg(x<k>)u = - Vf(x<k>) 

Vg(x<k>)T d(k) = - g(x<k>) 

(73) 

(74) 

Observe that the system of equations in (70) is the same as (73) and (74) with d<k> = Ax(k+ 1>. Also 
the multipliers u obtained by solving the Problem QP corresponding to the constraints in (72) are 
nothing but u<k+ t> in (70). So solution of the QP at each step of the SQP methods represents 
a Newton-like step in (70). With this observation, we see that one iteration of the SQP method 
updates x and u simultaneously. Once d and u have been determined, u is kept fixed and a step size 
is computed in the direction. d to minimize a descent function which can be taken as an 
augmented Lagrangian functional. Only inaccurate minimization is usually done in this step to 
improve efficiency. 

The SQP methods for the general inequality-equality constrained problem are derived from 
this connection of the Problem QP with the Newton method for solving the non-linear set of 
necessary conditions. 59 In this case, the quadratic programming subproblem is defined as 

Minimize Vf(x<k>)T d<k> + -! d<k>T u<k>d<k> 

subject to Vgi(x<k>)T d<k> + gi(x<k>) = 0; i = 1, I 

Vgi(x<k>)T d<k> + gi(x<k>) ~ 0; i = l + 1, m 

An attractive feature of these SQP methods is that it applies directly to inequality as well as 
equality constraints without the use of a potential constraint strategy, although such a strategy 
might be used to define the quadratic subproblem. 2 

With the foregoing analysis, the relationship between the SQP and the multiplier methods 
emerges. It can be seen that, if the Lagrange multipliers are updated at the end of each 
unconstrained minimization iteration using solution of the QP subproblem, then the multiplier 
method iteration is the same as the SQP iteration. This can lead to better understanding of the 
multiplier methods, and a theoretical basis for the continuous multiplier update methods. 

The idea of a multiplier update method is to avoid complete solution of the system of equations 
in (70) by directly approximating u<k + 1>. Thus, by continuous multiplier update methods we mean 
an iterative procedure such as 

u<k+ 1) = U(x<k>, u<k>) 

x<k + 1) = x<k> + d<k> 

(75) 

(76) 

where U is one of the multiplier update procedures discussed in Section 3. 7.3, and d<k> is some 
suitable direction. From the top part of the system of equations in (70), we get 

x<k+t> = x<k>- u<k>-l[VJ<k> + Vg(x<k>)u<k+t>] 

Using the definition of the Lagrangian in (3), the foregoing equation becomes 

d<k> =- u<k>-!VL(x<k>, u<k+l>) 

In general we can take 

(77) 
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where B<k> is an approximation to V2 <1»(x*, u*). Using (77) in the lower part of the system of 
equations in (70), we get 

(78) 

Solving for u<k + 1 > we get 

u<k+ 0 = [Vg(x<k>)TB<k>- 1Vg(x<k>)]- 1 [g(x<k>)- Vg(x<k>)TB<k>- 1 Vf(x<k>)] - Rg(x<k>) (79) 

If matrix Dis taken as B<k> in (59), then the expression for UT is the same as that for u<k + 1> in (79). 
Therefore, we can take U = UT in (75). This way the continuous multiplier update method is the 
same as the SQP method.59• 89·9o 

Now variations of the iterative procedure in (75) and (76) are discussed. Instead of taking 
U = UT any other multiplier update procedure discussed in Section 3.7.3 can be used. Instead of 
one step of(76) and then one step of(75), we may usernore than one step of(76) and then one step 
of (75). Consider the case where several steps of (76) are taken with constant u until convergence, 
i.e. until V L(x, u) = 0 is satisfied. This corresponds to the multiplier methods discussed before. 59 

An algorithm based on continuous multiplier update methods can be used to solve engineering 
problems such that computation of the gradient of individual constraints is not needed. For 
example, Algorithm B in Section 3.8 could be used as a continuous multiplier update algorithm 
with the Step 3 modified as 

d<k-t> = _ V~(x<k-1>, o<k>, r<k>) + f3cd<k- 2> 

x<k> is determined from 

~(x<k>) = min <ll(x<k - 1> + o:sd(k - 1>) 
as 

(80) 

and f3c is a parameter related to the conjugate gradient method. The resulting algorithm will be 
a gradient or conjugate gradient algorithm with the updating of the multipliers u (or 6) and the 
penalty parameters r imbedded into each iteration of the descent method. Note that since 6 and 
r ·are changing, the augmented Lagrangian is changing at each iteration. This technique of 
changing u at the end of each one-dimensional search has been used successfully.65

•
96 

In (80), f3c = 0 corresponds to the steepest descent method. However, f3c corresponding to some 
conjugate gradient method may be chosen, such as the Fletcher-Reeves method: 

II V<l>(x<k~ 1), o<k>, r<k)) 112 
Pc= IIV~(x<k-2>, 6<k-l),t<k-t>)IJ2 (81) 

This choice of f3c was used by Tripathi and Narendra. 96 However, it appears to be more 
appropriate to use II V<I>(x<k- 2>, o<k>, r<k>) 11

2 in the denominator of (81). Since it is not intended to 
calculate gradients of individual constraints, it is not easy to calculate V~(x<k- 2 >, 6<k>, r<k>) using 
a<k>, r<k> and other available information. One needs to calculate V~(x<k-ll, a<k>, r<k>) and 
V<I>(x<k- 2 >, 6<k>, r<k>) at each iteration, starting· from scratch. This increases the computational 
effort. To overcome this difficulty, (81) has been used to calculate f3c, even though it produces 
discontinuity in the augmented Lagrangian function. It has also been suggested to execute Step 
3 of the algorithm n times if conjugate gradient steps are taken before any multiplier or penalty 
parameter is updated.65 

Further, a modification to the Hestenes-Powell update formula in (55) has been suggested for 
equality constraints as65 

(82) 
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where sis a scalar obtained by minimizing (with respect to s)IIVL(x, u<k+l>)ll 2• However, this 
modification needs the gradient of individual constraints. It is also suggested to calculate the 

penalty parameters such that the order of magnitude of the penalty tenn with the multipliers (i.e. 

,t u,g,) and the penalty tenn with the penalty parameters (i.e. ~ ,t r,gf) are equal (see 

Section 3.1 ). 
In (80), d<k-l) could also be calculated as 

s<k-1>d<k-1> = - Vct>(x<k-1), e<k>, r<k>) (83) 

where B<k- 1> is an approximation to the Hessian matrix V2ct>(x, e, r). Note that all three 
arguments of ct> are changing at each iteration. The matrix B is updated at every iteration using 
some secant update procedure such that it satisfies the quasi-Newton condition59 

s<k>s<k-1) = y<k-1> 

where s<k-1> = x<k> - x<k-1) and 

for consistent secant update. 89 Again, since it is not intended to calculate gradients of individual 
constraints at each iteration, we need to compute Vct>(x<k>, e<k>, r<k>) and Vct>(x<k-1), e<k>, r<k>) from 
scratch. If gradients of individual constraints are available, we just need to store them at the 
previous iteration. Then Vct>(x<k-t>, e<k>, r<k>) can be calculated using the available information 
with very little effort. 

If gradients of individual constraints are available, then a more accurate multiplier update 
procedure, such as in (56) to (60), can be used. Fontecilla et al.36 referred to these methods as 
a class of quasi-Newton methods for equality constrained optimization. Under certain assum­
ptions, the following important results were proved: Let U be some multiplier update procedure 
and matrix B be updated using a secant update procedure in the continuous multiplier update 
methods. Then 

1. The continuous multiplier update method is locally linearly convergent in x. 
2. If U is the multiplier update procedure in (59) with matrix D = B, then the continuous 

multiplier method is locally superlinearly convergent in x. 

These results are a generalization and extension of the results obtained by Glad. 38 

Only limited numerical experimentation has been done in the literature with these methods.11 

Problems with only equality constraints have been considered. For some simple mathematical 
problems the methods have performed better than the original multiplier methods in terms of 
reliability and efficiency. Recently, a continuous update method was used for launch vehicle 
trajectory optimization with equality constraints.1 A modified form of the update formula (59) 
was used. This modification is similar to the one in (82) for the Hestenes-Powell formula. Here, 
u<k+ 1> is also found such that 

u<k+ 1> = u<k> + sAu<k> (85) 

minimizes (with respect to s)IIVL(x, u<k+t>)ll 2, where Au<k> is a change in the multipliers given by 
(59). This continuous multiplier update algorithm is based on the method suggested by Polak and 
Tits. 72 Specifically, the penalty parameter modification procedure is similar. Better performance 
of the method over other methods has been reported. 
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5. EXACT PENALTY METHODS 

Multiplier methods require solution of several unconstrained problems. After every uncon­
strained minimum several parameters are suitably adjusted to start the next unconstrained 
minimization. However, in the case of exact penalty methods, solution of only one unconstrained 
problem is required.19 At the beginning, if proper values of the parameters are chosen, then 
(x*, u*) corresponding to the unconstrained minimum satisfies Kuhn-Tucker necessary condi­
tions for the Problem P. The method to achieve this property uses exact penalty functionals. 
There are two classes of exact penalty functionals: non-differentiable and differentiable. Generally, 
non-differentiable functionals have been used as descent functionals in linearization algorithms 
for minmax and non-linear programming problems {e.g. sequential quadratic programming). 

There are two types of differentiable exact penalty functionals: the first one depends only on x, 
and the second one depends on x and u. A functional depending on x only can be formed by 
explicitly substituting an approximation formula for u into the augmented Lagrangian. Then the 
form of the augmented Lagrangian given in (12) for only equality constraints becomes 

1 l l 

<l>(x) = f(x) + 2 i~l rigi(x)
2 + i~l gi(x)ui(x) (86) 

Any of the multiplier approximation formulas discussed in Section 3.7.3 can be used. Note that all 
multiplier approximation formulas use gradients of individual constraints (i.e. Vg). The exact 
penalty functional with approximation formula UF in (56) was introduced by Fletcher.31 Similar 
penalty functionals have been discussed by Fletcher and Lill,35 Fletcher,32 Mukai and Polak,66 

Tapia89
•
90 and Luenberger.59 Glad and Polak39 introduced a similar penalty functional for 

equality-inequality constrained problems. That functional was shown to be exact and continu­
ously differentiable for only inequality constraints by Di Pillo and Grippo. 27 It was modified to 
include additional barrier terms on the boundary of the compact constraint set.28 

A continuously differentiable exact penalty functional depending on both x and u for equality 
constrained problems was introduced by Di Pillo and Grippo. 25 It was later extended to 
inequality constraints. 26 A similar functional for inequality constraints was proposed by 
Lucidi. 58 An implicit potential set strategy for inequality constraints has also been developed.18 

The augmented Lagrangian function introduced by Di Pillo and Grippo25 is given as (only 
equality constraints are considered) 

{87) 

where L(x, u) is the Lagrangian defined in (3), and ra > 0 and rc > 0 are penalty parameters. The 
square of the first-order necessary conditions is added to the Lagrangian to form an exact penalty 
functional. In this case, (x*, u*) is related to a local minimum of an exact penalty functional, 
rather than to a saddle point as in the multiplier methods. As a consequence, theoretical results 
are different from those for multiplier methods. From a theoretical standpoint, saddle point and 
duality theories no longer hold. The approach with the functional in (87) increases the dimen­
sionality of the problem as both x and u are simultaneously treated as unknowns in the 
minimization process. 

The presence of first-order derivatives of the constraints in the penalty functionals in (86) and 
(87) makes the problem more complicated, even if it can avoid the sequence of unconstrained 
minimizations. Computation of the gradient of individual constraints cannot be avoided. 

The choice of an unconstrained minimization algorithm is an important problem with these 
augmented Lagrangians. A quasi-Newton algorithm may be a good choice. But the gradient of 

26



~in (87) requires the Hessian of the Lagrangian, and the gradient of (86) requires second-order 
derivatives of individual constraints (since Lagrange multiplier expressions contain gradients of 
constraints). The computational aspects associated with unconstrained minimization have been 
discussed by Di Pillo et a/.29 In general, the exact penalty methods are difficult to use. They have 
not been applied to practical applications. 

6. EXPONENTIAL PENALTY METHODS. 

The purpose of this section is to describe some optimization techniques that are similar to the 
Hestenes-Powell multiplier method. These methods involve exponential functions in updating 
the multipliers and in defining the augmented functionals. The methods do not require gradients 
of individual constraints, and have been discussed for only the inequality constrained problem 
(ICP) in the literature. They have been presented from three entirely different points of view. We 
shall first present the basic ideas of these three derivations, and then propose a procedure to 
extend the methods for the general Problem P. 

Templeman and Li94 transformed the ICP to an equivalent surrogate form (SICP) as 

minimize .f(x) subject to 
X 

m m 

I vigi(x) = 0; I vi = 1; and vi ~ 0; i = 1, m (88) 
i=l i=l 

The parameters vi in (88) are called surrogate multipliers. These give relative values for the 
Lagrange multipliers, as will be seen later. However, in this section, we will refer to them as 
multipliers. 

The desired solution x* of the ICP is considered to be sought indirectly through a sequence of 
solutions of the SICP. This approach assumes that the ICP and SICP are equivalent at the 
solution point. The set of multipliers v* exists and can be found such that x* that solves the SICP 
with v*, also solves the ICP. The solution procedure is to select initial values of the multipliers 
and solve the problem in (88). The multipliers are then updated using the following formula: 

v(k+ 1) = exp(fJeUi(x<k>)) . 
I m ·' 

I exp (f3egj(x<k>)) 
j=l 

where Pe is required to be an increasing positive number. 

i = l,m (89) 

The basis for the formula (89)is found in Shannon (informational) entropy measure and Jaynes' 
maximum entropy formalism. The measure and formalism can be explained by considering 
a random process. In this process, a discrete random variable z can have any value from a set 
{zb ... , zN}· Let Pi be the probability for z to have the value zi, i = 1, N. The maximum entropy 
formalism is concerned with assigning the least biased values to the probabilities Pi using only 
information that can be inferred from the random process itself. 

The informational entropy function, called the Shannon entropy, is given as83 

N 

Se = - Ke L Piln(pi) 
i= 1 

where Ke is a positive constant. According to the maximum entropy formalism, 53 to get proper 
values of probability Pi, the function Se should be maximized over the variables Phi= 1, N 
subject to constraints that depend on any available information for the random process. One 
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additional constraint 

N 

I Pi= 1 
i= 1 

that represents the normality condition is also used. If the available information on the random 
process is in the form of me (me < N- 1) equality constraints, the problem can be posed as an 
optimization problem. A solution to the problem can be obtained using the necessary condi­
tions.95 The solution involves me Lagrange multipliers corresponding to the me constraints 
representing available information. 

In deriving the expression in (89) multipliers v; play the role of the discrete probabilities p;. 
Owing to constraints in (88), these multipliers need to satisfy the following constraints: 

m 

I v~k+ 1) = 1 (90) 
i=l 

and 
m 
I v~k + t> g;(x<k + t)) = 0 (91) 
i= 1 

Since x<k+l> is not known at this stage, (91) is mo.dified to 

m 

I v~k+ 1) g;(x<k>) = B (92) 
i= 1 

where e represents the error introduced by using g(x<k>) in place of g(x<k+ O). The updated 
multipliers v<k+ l) should be such that 

> v~k) 
I 

if g;(X(k)) > 0 

v~K+l) = v~k> 
I 

if g;(x<k>) = 0 · (93) 

< v~k> 
' 1 

if g;(X(k)) < 0 

Therefore, the value of e should be always positive. Also, it is expected that e will go to zero as we 
approach the solution. To satisfy these conditions, Pe in (89) is taken to be an increasing positive 
number. 

To assign proper values to v<k + 1> subjected to constraints in (90) and (92), a criterion is taken 
from the maximum entropy formalism. 94 This results in an optimization problem where the 
entropy of the multipliers v<k + 1> is maximized subject to the constraints in (90) and (92). The 
equality constraint in (92) is a single constraint (me = 1) representing the available information. 
Equation (89) is a solution of the resulting optimization problem obtained using the necessary 
conditions. The parameter Pe is a Lagrange multiplier corresponding to the constraint in (92). 
Templeman and Li94 gave justification for the use of these methods based on probabilistic and 
information-theoretic terms in the solution process for the inequality constrained problem that 
is deterministic. 

As an alternate derivation for the Lagrange multiplier formula (89), an augmented Lagrangian 
for the SICP is constructed as 

(94) 
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where ae and Ae are the Lagrange multipliers for the corresponding constraints in (88). The last 
term in (94) represents the entropy with p as an arbitrary positive constant. The necessary 
condition with respect to the multipliers v and its simplification using (88) gives 

exp( paegi(x)) . 
m 

I exp(paegj(x)) 
j = 1 

' i = 1, m (95) 

This is similar to the previous update formula in (89) with Pe = pae. Substituting this v into the 
augmented Lagrangian in (94), and simplifying, we get 

<I> = f(x) +~In [ I exp( paegi(x)) J 
p j=1 

(96) 

This functional is sequentially minimized with increasing values of ae and some fixed positive p to 
get a solution for the ICP. 56

•
94 

It is interesting to note that Kreisselmeier and Steinhauser55 also introduced a functional 
(without derivation) in the context of control design problems as 

KS(x) =~In [ J, exp( pO<,gJ!x)) J (97) 

which is precisely the penalty term in (96). In these problems, a vector performance index is 
optimized where gj(x), j = 1, m rate different design specifications. In other 
applications43 - 45• 84 - 86 the functional KS(x) represents a cumulative constraint for the m in­
equality constraints gj(x) ~ O,j = 1, m. gi(x) may also represent the value at thejth discrete point 
of a continuum constraint. In that case KS(x) can be used to replace the continuum constraint. 
gj(x) may also be a goal constraint corresponding to a cost function in multicriteria optimization 
problems.99 The function KS(x) represents a composite functional combining all the inequality 
constraints and the cost functions. It is important to note that the goal vector corresponding to 
which the composite functional is formed must be dimensionally homogeneous.93 It has also been 
demonstrated that the general minimax problems are closely related to vector optimization 
problems. As a consequence, a general continuous scalar optimization formulation is derived that 
uses the functional in (97) corresponding to the minimax problems. 

The functional in (97) satisfies the following inequalities: 

·· ln(m) 
max (gi) ~ KS(x) ~ max (g;) + --
i= l,m i= l,m p 

(98) 

This property is important because it gives some physical insight about the behaviour of the 
functional. It shows that the KS functional is a conservative envelope function that follows the 
maximum constraint function among g;. The larger the value of p, the closer the KS functional 
follows the maximum constraint. For a very large value of p, the gradient of the KS functional will 
follow the gradient of the maximum constraint. This can result in a discontinuous gradient 
because the maximum constraint can shift from one to another at each iteration. This can cause 
difficulties in gradient-based optimization procedures. Typical values of the scalar p are between 
5 and 200. The choice of p must be a compromise between the desire to closely follow the 
maximum constraint on the one hand and the concern for discontinuous and abrupt change in 
the gradient on the other hand. 7 It is suggested that p be chosen as follows: if the constraint 
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tolerance at optimum is e (i.e. if I gil ~ e indicates that the constraint is active), then choose p as 

Jn(m) 
p=-­

e 

In general, a small value of p is selected at the start and increased near the solution. 

(99) 

An alternate definition of the KS functional that reduces the numerical difficulties caused by 
computing the exponential of large numbers is given as 

KS(x) =Om.,+~ ln[J, exp(pg,(x)- Omoxl J (100) 

where cte is taken as one and gmax = max gi(x) is evaluated at x and taken to be a constant. Both 
i= l,m 

forms of the KS functional produce the same results, subject to roundoff errors. The first 
derivatives with respect to the design variables x for both formulations are identical, again subject 
to roundoff errors. The KS functional in (100) has been successfully used in multicriteria and 
multilevel structural optimization problems. 7 

• 
8 5

• 
99 

In the following paragraphs, two augmented functionals having exponential penalty terms are 
given. Following that, a derivation of an exponential functional that is the same as the KS 
functional is given. , 

In place of the augmented Lagrangian functional in (15), a functional having an exponential 
penalty term54 can be used to solve the ICP. This functional is given as 

1 [ m J <l>(x) = f(x) +;. i~l vi{exp(rgi(x))- 1} (101) 

where r is a scalar penalty parameter. The necessary condition for minimization of <l>(x) in (101). 
gtves 

m 

V<l>(x) = Vf(x) + L {viexp(rgi(x)))Vgi(x) = 0 
i= 1 

Comparison of (102) with (16) ~uggests the multipliers be updated as 

v~k + 1> = v~k> exp(rgi(x(k)) ); i = 1, m 

(102) 

(103) 

Note that the map of the penalty term in (101) has a form similar to the curve in Figure 1. 
However, in this case the curve passes through the origin and has a smooth curvature. 

The foregoing augmented functional in (101) has been used in a few applications, e.g. optimiza­
tion of multicommodity network flows98 and electric diode network analysis.14 In these applica­
tions there are phenomena that are described by sharply rising exponential functions. Therefore, 
considerable difficulty is encountered while solving these problems with other methods. Using the 
functional in (101) the problems are solved with relative ease. Convergence analysis for non­
convex problems relating to this functional and the associated method of multipliers has also 
been discussed. 6 7 

An augmented functional with a slightly different exponential penalty term is defined for an 
inequality constrained problem as 

1 [ m ·] <l>(x) = f(x) + ; i~l {exp(rgi(x)) - 1} (104) 

where r is scalar penalty parameter. The ICP problem is solved by minimizing this functional. The 
exponential penalty term in (104) has also been minimized to find a feasible point for the system of 
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inequalities gj(x) ~ O,j = 1, m. 81 The necessary condition for the functional gives 
m 

V<l>(x) = Vf(x) + L (exp(rgi(x)))Vgi(x) = 0 
i= 1 

Comparison of (105) with (16) suggests approximating the multipliers as 

dk+ 1> = exp(rgi(x<k>)); i = 1, m 

(105) 

(106) 

In this method the penalty parameter r is increased after every unconstrained minimization. The 
multiplier approximation in (106) is not needed for the optimization process when the exponen­
tial penalty term in (104) is used. However, (106) is given here since it will be used later to show 
how (89) can be derived deterministically. 

A functional similar to the one in (97) has also been defined in context of the following 
problem:19 

minimize y(g(x)) (107) 
X 

where x belongs to some compact set andy is some functional defined using the constraints. This 
problem is a subclass of the general non-differentiable and ill-conditioned optimization prob­
lems.17 

The problem in (107) can be equivalently stated by introducing an additional vector wE Rm as 

mm1m1ze y{g{x)- w) 

subject to w ~ 0 

Using the exponential penalty term in (101), an augmented functional for this problem can be 
defined as 

<l>(x) = y(g(x)- w) + ~ [I v1{exp(rw1)- 1} J 
The corresponding multipliers can be updated according to (103) as 

dk+ 1> = v~k> exp(rwJ; i = 1, m 

(108) 

{109) 

The additional variables wi can be expressed in terms of the variables x.17 Therefore wi in {108) 
and {109) can be eliminated. After elimination, the functional in (108) forms a good approxima­
tion to the functional in {107). The augmented Lagrangian in {15) and the corresponding 
multiplier update procedure in (11) can also be used to get expressions similar to (108) and (109). 
Inequalities similar to (98) can also be derived for these approximating functions. 13 

Using the exponential penalty term in (108) in connection with the functional 

y(g(x)) = max (gi(x)) 
i= l,m 

yields the twice differentiable functional that approximates (11 0)1 7 
• 
19 as 

1 [ m J y =;In i~1 viexp(rgi(x)) 

The corresponding multiplier update procedure is derived using (1 09) as 

v~k+ 1) = 
I 

v~k> exp(rgi(x)) . 
m 

L v)k> exp(rg j(x)) 
j= 1 

' i = 1, m 

(110) 

{111) 

(112) 
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where r is a scalar penalty parameter. The multipliers vi given in (112) satisfy the constraint in (90) 
and the non-negativity condition. Note that (111) and (112) are derived without using any 
probabilistic ideas. Inequalities similar to (98) can also be derived for the functional in (111). 

If the exponential penalty term in (104) is used instead of that in (101), and the procedure used 
to derive approximating functional in (111) is followed, we get 

j =~In Lt exp(rg1(x)) J 
If (106) is used, instead of (103), we get a multiplier update procedure similar to (112) as 

m 

L exp(rgi(x)) 
j= 1 

i =1m ' 

(113) 

(114) 

where r is a scalar penalty parameter. No probabilistic ideas are used to derive (113) and (114). 
Inequalities similar to (98) can also be derived for the functional in (113). 

It is interesting to note that the functional in (113) is the same as the penalty term in (96) and the 
KS function in (97) with r = p (<Xe = 1). Also, the update procedure in (114) is the same as in (89) 
and (95) with r = Pe = p (<Xe = 1). As noted earlier, derivation of (89), (95) and (96) is based on 
probabilistic ideas. However, derivation of (113) and (114) is based on only deterministic 
concepts. The functionals given in (113), (111) and (97) are related to the same functional defined 
in (110). In conclusion, functionals given in (97) and (113), and the penalty term for the functional 
in (96), are closely linked. There must be some relationship between the probabilistic ideas used to 
derive the expressions in (89), (95) and (96) and the deterministic methods used to derive (113) and 
(114). Thus, a different interpretation of the surrogate problem (SICP) may be possible. 

During calculation of yin (111), it is possible that computer overflow (or underflow) will occur 
ifrgi(x) is too large (small). To eliminate this difficulty, an alternate form has been suggested as19 

with 

1 { m } a y = -In L vici + y(g(x)) - -
r i=l r 

_ {exp{a- r[y(g(x))- gi(x)]}; if a- r[y(g(x))- gi(x}] > 
ci- 0; otherwise; i = 1, m 

(115) 

-a 
(116) 

where y(g(x)) is given in (110) and a> 0 is a large scalar such that both e-a and ea lie within the 
computer range. The alternate form for the multiplier update procedure in (112) becomes 

v~k+ 1) = 
I 

where ci is given in (116). 

m 

" v<.k) c · L. J J 
j= 1 

i = 1,m (117) 

In the following paragraph, several ways to solve the ICP using exponential functionals in (97), 
(111) and (113) are suggested. 

Converting a constrained optimization problem to an unconstrained problem requires that the 
cost function be combined with the constraints in some manner as is done with penalty function 
methods. Using this philosophy, all the cost functions appearing in the multicriteria optimization 
problem are transformed to equivalent goal constraints at the beginning of each unconstrained 
minimization.99 Then the KS functional is used to form a composite functional corresponding to 
all the resulting constraints. This can also be done for problems with a single cost function. 
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Another way is to use the KS functional (or the one in (113)) to form a composite functional for 
the constraints only and add it to the cost function, much like penalty functions. This will give the 
functional <J) in (96). Still another way would be to use they functional in (111) to form the penalty 
term and define the augmented functional as 

1 m 

<J) = f(x) + -In 2: v; exp(rg;(x)) 
r i= 1 

(118) 

Then (112) can be used to update the multipliers vi at the beginning of each unconstrained 
minimization. 

An advantage of the foregoing forms of augmented functionals over the one in (15) is that they 
have better differentiability properties (e.g. see the point g; = - 0; in Figure 1 corresponding to 
the functional in (13)). In addition they are defined on feasible as well as infeasible domains unlike 
some usual penalty functions such as the interior penalty function. One drawback is that they are 
defined for inequality constraints only. They need to be generalized for equalities as well, which is 
discussed in the sequel. 

For the general Problem P, a new functional is proposed as follows: 
l 

<J>(x, r) = f(x) + 2: (tr;g;(x)2 + uigi(x)) 
i = 1 

{3 m 
+ _b_ln 2: vi exp(rigi(x)) 

r norm i=l+ 1 

(119) 

where r norm may be selected as 

( 

m )1/2 
'norm= 2: rr 

i=l+ 1 

(120) 

and pb is a parameter chosen to balance the penalties due to the terms corresponding to equality 
and inequality constraints. fib can be chosen such that at the initial design point x<O> 

l . . {3 m 

2: Hrigi(x<0 >)2 + u;g;(x<0 >)) ...:..-b In 2: viexp(r;gi(x<0>)) 
i= 1 'norm i=l+ 1 

The multipliers can be updated by the following procedure: 

u~k+ 1> = u~k) + r·g·(x<k>)· i = 1 1 
I l I l ' ' 

i = l + 1, m 

(121) 

(122) 

(123) 

Initially take u; = 0; i = 1, 1, v; = 1j(m - /); i = 1 + 1, m and some suitable positive values for the 
penalty parameters. 

It can be observed that the term corresponding to the equality constraints in the functional 
(119) is the same as in the functional (15). The term corresponding to the inequality constraints is 
similar to the penalty term of the functional (118). The multiplier update procedure in (122) for the 
equality constraints is the same as suggested by Hestenes.48 The update procedure in (123) for the 
inequality constraints is similar to (112). Using this functional and the multiplier update proced­
ures, an algorithm similar to the multiplier methods or continuous multiplier update methods can 
be developed. Motivation for suggesting the functional in (123) is as follows. 
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1. For engineering problems, evaluation of gradients of individual constraints is avoided, as in 
Powell's algorithm of Section 3.8. 

2. The term corresponding to inequality constraints has a better differentiability property, as 
noted earlier. Therefore, the algorithm is expected to perform better with this functional 
than with the one in (15). 

3. The functional is defined in the feasible as well as infeasible region. 
4. We expect convergence of an algorithm with this functional and multiplier update proced­

ure with bounded penalty parameters, therefore avoiding ill-conditioning. This can be 
proved by considering equality constraints and inequality constraints separately. 

7. DISCUSSION AND CONCLUSIONS 

In this paper, multiplier methods for solving general equality-inequality constrained engineering 
optimization problems are investigated. In these methods, the cost and constraint functions, and 
certain multipliers, are used to define an unconstrained functional. This functional is then 
minimized keeping the multipliers fixed. At the end of unconstrained minimization, the multi­
pliers are updated and the procedure repeated. Several important features of these methods are 
described and discussed. Local convergence based on duality theory is described that gives 
additional insight into the multiplier update procedures. Global convergence from the penalty 
functions point of view is discussed. 

The sequential unconstrained minimization technique (SUMT) with interior penalty functions 
forms a simple mathematical programming technique. However, it has some drawbacks, one 
being that it needs a feasible starting point. Some of these drawbacks can be overcome by using 
the extended interior penalty functions.42 Exterior penalty functions can also be used. For all 
these penalty functions, penalty parameters need to go to infinity for convergence. They cannot 
handle equality constraints very well. 

The multiplier methods were proposed in 1969 to alleviate the theoretical and numerical 
difficulties of the SUMT. They can also result in substantial computational savings in optimal 
design of structural and mechanical systems, especially under dynamic loads, since they collapse 
all constraints into one equivalent functional. The dynamic response and control optimization 
problems have continuum constraints that are difficult to treat. Substantial computational effort 
is expended in the treatment of such constraints.49

-
52

•
97 Thus, it is desirable to reduce their 

number, and that is precisely what the augmented Lagrangian methods do. By summing up all 
the dynamic inequality constraints and by integrating them over the time interval the augmented 
functional is defined as68

• 
69 

1 rtr m 

~(x, 9, r) = f(x) + 2 Jto i~l ri[(gi(x, t) + Oi(t))~ - Ot(t)] dt 

Equality constraints can also be treated similarly. With this approach, one needs to treat only one 
transformed functional during the optimization process. Sensitivity of the functional~ does not 
need sensitivity of the individual constraints. 

All the multiplier update procedures, except for the formulas given in (9) and (11), use gradients 
of individual constraints. Therefore these formulas are most suitable for engineering applications. 
However, they require an accurate unconstrained minimum at each step for proper convergence. 
For engineering applications, the search for an accurate minimum can be inefficient. Therefore, 
the question of inaccurate unconstrained minimization with the use of formulas (9)and (11) for 
updating multipliers is investigated. It is shown that, for convergence of the method, accurate 
minimizations must be used in some iterations. 
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In engineering optimization we want to avoid calculation of gradients of individual constraints 
for the following two reasons. 

1. The number of constraints is very large. One way of reducing the number of constraints is to 
use some kind of a potential constraint strategy; the other is to use the multiplier methods. 

2. Constraints are generally implicit functions of the design variables. In dynamic response 
optimization, constraints are also functions of time. There is no efficient and simple way to 
treat these continuum constraints. One possibility is to approximate them by constraints at 
several discrete time points. However, the problem of computing gradients of the constraint 
at each of these points still remains. In the multiplier methods, we need to calculate gradient 
of one implicit functional only. 

Using the adjoint variable method of design sensitivity analysis,8 V<I> can be computed without 
computing V gi assuming that V gi are not used in construction of the <I> itself. It is important to 
note that for updating the design variable vector x with gradient or quasi-Newton methods we 
need V<I> but not V gi separately. In the Newton method, we need V2 <1> that can also be calculated 
without calculating Vgi. If we use a multiplier update formula that does not use Vgi, we can 
completely avoid calculation of V gi. Only the formula given in (55) has this feature, but that gives 
only a linear rate of convergence. It is a challenge to develop multiplier update procedures that 
use only g, V<I> and V2 <1> (i.e. never use V gd and result in superlinear convergence. 

Now the question is how to get a better rate of convergence with all these desirable features. To 
investigate this, recent methods that are similar to the multiplier methods are also discussed. 
These are continuous multiplier update methods, exact penalty methods and exponential penalty 
methods. The continuous multiplier update methods are similar to the multiplier methods, but they 
update the multipliers more often. With proper update procedures, these methods can be more 
stable and reliable. 11 

The exact penalty methods have one desirable feature; the solution is reached in one uncon­
strained minimization. However, one needs gradients of individual constraints to construct 
a continuously differentiable exact augmented Lagrangian. Therefore, even with the use of the 
adjoint variable method of sensitivity analysis, we cannot avoid computation of gradients of 
individual constraints. Since the construction of a differentiable exact augmented Lagrangian 
without the use of gradients of individual constraints seems impossible, these methods cannot be 
recommended for engineering applications. 

The exponential penalty functionals have been developed for problems with inequality con­
straints. They have been used for multicriteria and multilevel engineering optimization problems, 
and a few other applications. However, they can also be extended to solve the general Problem P. 
For this, a new functional incorporating the exponential penalty term for inequality constraints 
and regular penalty term for equality constraints is proposed in (119). This can result in an 
algorithm similar to the multiplier methods. It has an advantage similar to the other multiplier 
method: gradients of individual constraints are not needed, as seen in the update procedures given 
in (122) and (123). 

There are several decomposition methods in the literature based on some augmented 
Lagrangians. 40

• 
8 7 

• 
92 These methods are applicable to separable problems. They are similar to the 

methods discussed in this paper in the sense that they also use multiplier update procedures and 
are based on some augmented Lagrangian as in (12). In the literature these methods are used to 
solve some important optimal control problems in other fields, such as in economics22

• 
23 and 

large water management systems.92 These optimal control problems have been formulated as 
separable problems by discretizing the time. In our view, the problems can be solved more 
efficiently by the approach proposed in this paper without discretizing the time. 
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In conclusion, this comprehensive review of the multiplier methods has revealed the following 
basic concepts and ideas that are useful in further development of the methods. 

1. The multiplier methods are globally convergent; i.e. they can be implemented in such a way 
that, starting from any initial estimate, they converge to a local minimum point. 

2. The study of duality has revealed that the multiplier update procedures can be viewed as 
ascent steps in the dual space that maximize the augmented Lagrangian with respect to the 
Lagrange multipliers. This interpretation has led to the development of several multiplier 
update procedures. 

3. The multiplier update procedures that require gradients of individual constraints defeat the 
basic idea of the multiplier methods for engineering applications. The study of the continu­
ous multiplier update method reveals that, if gradients of individual constraints are cal­
culated, it is better to use the sequential quadratic programming method. In that case, the 
two methods are essentially the same. The sequential quadratic programming directly treats 
equality as well as inequality constraints without using any potential constraint strategy 
(although it can be also incorporated). 

4. The study of continuous multiplier update methods also reveals that it is possible to update 
multipliers after only an approximate minimum of the augmented Lagrangian has been 
obtained. It is useful to update the multipliers even more often, i.e. every unconstrained 
minimization step. These methods need to be further investigated for practical applications. 

5. The study of exact penalty methods reveals that they are difficult to implement and use for 
practical applications. However, it is of interest to note that some nondifferentiable exact 
penalty functions are used as descent functions in some primal methods (to determine a step 
size). 

6. The exponential penalty methods have been developed recently. They have been successfully 
applied to a few applications. They appear to have promise for exploitation for engineering 
applications. 

7. Numerical implementation of the multiplier methods (in general all transformation 
methods) is easier compared to other methods. All that one needs is a good unconstrained 
minimization subroutine which can be used to develop a special purpose software for an 
application. This is especially true for transient dynamic response and control problems 
where time-dependent constraints must be treated. In these methods, there is no need to 
keep track of the extreme response points for each constraint, as is needed in the primal 
methods. Also, there is no need to implement computational procedures to compute the 
gradient of individual constraints. Such procedures can be very complicated for many 
engineering applications. 
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List of symbols 

(h)+ max(O, h) 
A mxm matrix 
a a large scalar 
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a parameter used in Powell's multiplier algorithm 
ae Lagrange multiplier corresponding to the first equality in (88) 
et

5 
step length in the direction d<k-l) 

B approximation to the Hessian matrix (with respect to. x) of the augmented 
Lagrangian functional or Lagrangian function 

P parameter used in Powell's multiplier algorithm 
Pb parameter chosen to balance the penalties due to terms corresponding to equality 

and inequality constraints in (119) 
Pc parameter related to a conjugate gradient method 
Pe Lagrange multiplier corresponding to the constraint in (92) 
ci defined in (116) 
D n x n matrix 

d(k) search direction at the kth step 
.L\u(k) change in u at the (k + 1)th step 
.L\x(k) change in x at the (k + l)th step 

E index set for equality constraints 
e; perturbation of the constraint g;(x) = 0 

exp(.) exponential function 
<f>(u) dual function of the augmented Lagrangian functional <l>{x, u) or Lagrangian 

functional L{x, u) 
f(x) cost function 

<l>(x, u, r) augmented Lagrangian functional (augmented Lagrangian) 
<l>{x, u, r) alternate form of augmented Lagrangian functional defined in (13) 

j(.) approximation functional defined in (lll) 
y(.) a functional defined using (m - l) inequality constraints 
g(x) constraint vector of dimension m x 1 
y(.) approximation functional defined in (113) 

gi(x) ith constraint 
gmax maximum of (m- l) inequality constraints 

I index set for active inequality constraints 
IE index set defined in (64) 
I 1 index set defined in (65) 
I P potential constraint set 
J index set used in ( 40) 

K parameter used in Powell's multiplier algorithm 
k multiplier method step number 

K non-negative parameter defined in (43) representing the maxtmum constraint 
violation 

Ke positive constant 
KS(x) Kreisselmeier Steinhauser functional 

l number of equality constraints 
L(x, u) Lagrangian functional (Lagrangian) 

A.e Lagrange multiplier corresponding to the constraint in (90) 
In(.) natural logarithm 

M non-negative constant in (41) and (42) 
m total number of constraints 

m- l number of inequality constraints 
me number of constraints based on available information on a random process 
N number of probable values of the discrete variable z 
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n 
p(e) 

P(g(x), u, r) 
Pi 

()(k) 
l 

number of design variables 
solution of perturbed problem given in (47) 
generalized penalty function 
probability of a discrete variable z to have the value zi 

kth approximation to the ith parameter, that is equal to u~k> !dk> 
R diagonal matrix with the penalty parameter ri as its ith diagonal element 
p arbitrary positive constant 

penalty parameter vector of dimension m x 1 
kth penalty parameter vector 

r a penalty parameter (scalar) 
r c penalty parameter (scalar) 

Ynorm parameter defined in ( 120) 
S subset of the domain for L(x, u) in the neighbourhood of the point (x*, u*) in the 

s 
(k ·- 1) s 

x-space 
scalar parameter 
change in x, i.e. x<kl - x<k- 1> 

S* small neighbourhood of the point (x*, u*) and subset of S 
Se Shannon entropy 
T subset of the domain for L(x, u) in the neighbourhood of the point (x*, u*) in the 

u-space 
t parameter used in (24) 

T* small neighbourhood of the point (x*, u*) and subset ofT 
t0 initial value of the parameter t 
tc final value of the parameter t 
u Lagrange multiplier vector of dimension m x 1 

U(.) multiplier update procedure 
u<k> kth approximation to Lagrange multiplier vector 
u* Lagrange multiplier vector at the solution point 

U8 Buys multiplier update procedure 
UF projection formula or Fletcher multiplier update procedure 
U0 general multiplier update procedure 

UHP Hestenes-Powell multiplier update procedure 
UT Tapia multiplier update procedure 

ui ith Lagrange multiplier 
ui(x) ith multiplier approximation function 
UM Miele multiplier update procedure 

v surrogate multiplier vector of dimension m x 1 
w additional variable vector of dimension m x 1 
x design variable vector of dimension n x 1 

x<k> kth approximation to the solution 
x* solution point 

y<kl vector defined in (84) 
II . II Euclidean norm 

V gradient operator with respect to the design variable vector x 
V2 Hessian operator with respect to the design variable vector x 
v;u Hessian operator with respect to the multiplier vector u 

Vg(x) n x l matrix whose ith column is the gradient of ith equality constraint (the matrix is 
of dimension n x m if all the constraints are considered) 

V u gradient operator with respect to the multiplier vector u 
38



REFERENCES 

1. V. Adimurthy, 'Launch vehicle trajectory optimization', Acta Astronaut., 15, 845-850 (1987). 
2. J. S. Arora, Introduction to Optimum Design, McGraw-Hill, New York, 1989. 
3. J. S. Arora, 'Computational design optimization: A review and future directions', Struct. Safety, 7, 131-148 (1990). 
4. J. S. Arora and E. J. Haug, 'Methods of design sensitivity analysis in structural optimization', AIAA J., 17, 970-973 

(1979). 
5. J. S. Arora and P. B. Thanedar, 'Computational methods for optimum design oflarge complex systems', Comp. Mech., 

1, 221-242 (1986). 
6. Y. Bard and J. Greenstadt, 'A modified Newton method for optimization with equality constraints', in R. Fletcher 

(ed.), Optimization, Academic Press, London, 1969, pp. 299-306. 
7. J.-M. Barthelemy and M. F. Riley, 'An improved multilevel optimization approach for the design of complex 

engineering systems', Proc. AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and Materials Conference 
San Antonio, TX, Paper 86-0950, 1986. 

8. A. D. Belegundu and J. S. Arora, 'Potential of transformation methods in optimal design', AIAA J., 19, 1372-1374 
(1981). 

9. A. D. Belegundu and J. S. Arora, 'A computational study of transformation methods for optimal design', AIAA J., 22, 
535-542 (1984). 

10. A. D. Belegundu and J. S. Arora, 'A study of mathematical programming methods for structural optimization, Part I: 
Theory, Part II: Numerical aspects', Int. j. numer. methods eng., 21, 1583-1624 (1985). 

11. M. Bertocchi, E. Cavalli and E. Spedicato, 'Computational performance of diagonalized multiplier quasi-Newton 
methods for nonlinear optimization with equality constraints', in L. C. W. Dixon and G. P. Szego (eds.), Numerical 
Optimization of Dynamic Systems, North-Holland, Amsterdam, 1980, pp. 247-268. 

12. D. P. Bertsekas, 'Combined primal-dual and penalty methods for constrained minimization', SIAM J. Control 
Optimization, 13, 521-544 (1975). 

13. D.P. Bertsekas, 'Minmax methods based on approximation', Proc. 1976 Johns Hopkins Conf. on Information Science 
Systems, Baltimore, Md., 1976, pp. 363-365. 

14. D. P. Bertsekas, 'A new algorithm for solution of resistive networks involving diodes', IEEE Trans. Circuits Syst., 23, 
599-608 (1976). 

15. D.P. Bertsekas, 'On penalty and multiplier methods for constrained minimization', SIAM J. Control Optimization, 
14, 216-235 (1976). 

16. D. P. Bertsekas, 'Multiplier methods: A survey', Automatica, 12, 133-145 (1976). 
17. D. P. Bertsekas, 'Approximation procedures based on the methods of multipliers', J. Optimization Theory Applic., 23, 

487-510 (1977). 
18. D. P. Bertsekas, 'Enlarging the region of convergence of Newton's method for constrained optimization', 

J. Optimization Theory Applic., 36, 221-252 (1982). 
19. D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, 1982. 
20. J. D. Buys, 'Dual algorithms for constrained optimization problems', Doctorate Dissertation, University of Leiden, 

Netherland, 1972. 
21. R. H. Byrd, 'Local convergence of the diagonalized method of multipliers', J. Optimization Theory Applic., 26, 

485-500 (1978). 
22. K. Cichocki, 'Application of augmented Lagrangians in dynamic planning models', in L. C. W. Dixon and G. P. Szego 

(eds.), Numerical Optimization of Dynamic Systems, North-Holland, Amsterdam, 1980, pp. 247-268. 
23. K. Cichocki and J. S. Sosnowski, 'Solutions of dynamic nonlinear planning model via augmented Lagrangian', in 

K. Cichocki and A. Strauszak (eds.), Systems Analysis Applications to Complex Programs, Pergamon Press, Oxford, 
1978, pp. 57-61. 

24. I. D. Coope and R. Fletcher, 'Some numerical experience with a globally convergent algorithm for nonlinearly 
constrained optimization', J. Optimization Theory Applic., 32, 1-16 (1980). 

25. G. Di Pillo and L. Grippo, 'A new class of augmented Lagrangians in nonlinear programming', SIAM J. Control 
Optimization, 17, 618-628 (1979). 

26. G. Di Pillo and L. Grippo, 'A new augmented Lagrangian function for inequality constraints in nonlinear program­
ming problems', J. Optimization Theory Applic., 32, 495-519 (1982). 

27. G. Di Pillo and L. Grippo, 'A continuously differentiable exact penalty function for nonlinear programming problems 
with inequality constraints', SIAM J. Control Optimization, 23, 72-84 (1985). 

28. G. Di Pillo and L. Grippo, 'An exact penalty method with global convergence properties for nonlinear programming 
problems', Math. Programming, 36, 1-18 (1986). 

29. G. Di Pillo, L. Grippo and S. Lucidi, 'Globally convergent exact penalty algorithms for constrained optimization', in 
A. Prekopa et al. (eds.), 12th IFIP Conference on System Modelling and Optimization, Springer-Verlag, Berlin, 1986. 

30. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, 
Wiley, New York, 1968. 

31. R. Fletcher, 'A class of methods for nonlinear programming with termination and convergence properties', in 
J. Abadie (ed.), Integer and Nonlinear Programming, North-Holland, Amsterdam, 1970, pp. 157-175. 

32. R. Fletcher, 'A class of methods for nonlinear programming III: Rate of convergence', in F. A. Lootsma (ed.), 
Numerical Methods for Nonlinear Optimization, Academic Press, New York, 1972, pp. 371-382. 

33. R. Fletcher, 'Methods related to Lagrangian functions', in P. E. Gill and W. Murray (eds.), Numerical Methods for 
39



Constrained Optimization, Academic Press, London, 1974, pp. 219-239. 
34. R. Fletcher, 'An ideal penalty function for constrained optimization', J. Inst. Math. Optimization, 15, 319-342 (1975). 
35. R. Fletcher and S. Lill, 'A class of methods for nonlinear programming II: Computational experience', in J. B. Rosen 

et al. (eds.), Nonlinear Programming, Academic Press, London, 1971, pp. 67-92. 
36. R. Fontecilla, T. Steihaug and R. A. Tapia, 'A convergence theory for a class of quasi-Newton methods for constrained 

optimization', SIAM J. Numer. Anal., 24, 1133-1151 (1987). 
37. S. Fujii and H. Fujimoto, 'A transformation method with two parameters for constrained optimal control problems', 

J. Dyn. Syst. Meas. Control ASME, 100, 124-131 (1978). 
38. S. T. Glad, 'Properties of updating methods for the multipliers in augmented Lagrangians', J. Optimization Theory 

Applic., 28, 135-156 (1979). 
39. T. Glad and E. Polak, 'A multiplier method with automatic limitation of penalty growth', Math. Programming, 17, 

140-155 (1979). 
40. E. A. Gunn, M. Thorburn and A. Rai, 'A decomposition method based on the augmented Lagrangian', IN FOR, 26, 

91-113 (1988). 
41. P. C. Haarhoff and J. D. Buys, 'A new method for the optimization of nonlinear function subject to nonlinear 

constraints', Comp. J., 13,178- 184 (1970). 
42. R. T. Haftka and M.P. Kamat, Elements of Structural Optimization, Martinus Nijhoff, Dordrecht, Netherland, 1985. 
43. P. Hajela, 'Further developments in the controlled growth approach for optimal structural synthesis', ASM E Paper 

82-DET-62, 1982. 
44. P. Hajela, 'Techniques in optimum structural synthesis with static and dynamic constraints', Ph.D. Thesis, Stanford 

University, 1982. 
45. P. Hajela, 'A look at two underutilized methods for optimum structural design', Eng. Optimization, 11, 21-30 (1987). 
46. S. P. Han, 'Dual variable metric algorithms for constrained optimization', Sf AM J. Control Optimization, 15, 546-565 

(1977). 
47. E. J. Haug and J. S. Arora, Applied Optimal Design, Wiley-Interscience, New York, 1979. 
48. M. R. Hestenes, 'Multiplier and gradient methods', J. Optimization Theory Applic., 4, 303-320 (1969). 
49. C. C. Hsieh and J. S. Arora, 'Treatment of general boundary conditions and point-wise state variable constraints in 

optimum design for static and dynamic response', Technical Report CAD-SS-84.1, College of Engineering, The 
University of Iowa, 1984. 

50. C. C. Hsieh and J. S. Arora, 'Design sensitivity analysis and optimization of dynamic response', Comp. Methods Appl. 
Mech. Eng., 43, 195-219 (1984). 

51. C. C. Hsieh and J. S. Arora, 'Structural design sensitivity with general boundary conditions: Dynamic problem', Int.j. 
numer. methods eng., 21, 267- 283 (1985). 

52. C. C. Hsieh and J. S. Arora, 'A hybrid formulation for treatment of point-wise state variable constraints in dynamic 
response optimization', Comp. Methods Appl. Mech. Eng., 48, 171-189 (1985). 

53. E. T. Jaynes, 'Information theory and statistical mechanics', Phys. Rev., 106, 620-630 (1957): 108, 171-190 (1957). 
54. B. W. Kort and D.P. Bertsekas, 'A new penalty function algorithm for constrained minimization', Proc. 1972 IEEE 

Conf on Decision and Control, New Orleans, Louisiana, 1972, pp. 162-166. 
55. G . Kreisselmeier and R. Steinhauser, 'Systematic control design by optimizing a vector performance index', Proc. 

IF AC Symp. on Computer Aided Design of Control Systems, Zurich, Switzerland, Aug. 1979. 
56. X. S. Li, 'Entropy and optimization', Ph.D. Thesis, University of Liverpool, 1987. 
57. X. S. Li and A. B. Templeman, 'Entropy-based optimum sizing of trusses', Civil Eng. Syst., 5, 121-128 (1988). 
58. S. Lucidi, 'New results on a class of exact augmented Lagrangians', J. Optimization Theory Applic., 58, 259--282 (1988). 
59. D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusetts, 1984. 
60. 0. L. Mangasarian, 'Unconstrained Lagrangians in nonlinear programming', SIAM J. Control Optimization, 13, 

772-791 (1975). 
61. A. Miele, E. E. Cragg, R. R. Iyer and A. V. Levy, 'Use of the augmented penalty function in mathematical 

programming problems, Part 1', J. Optimization Theory Applic., 8, 115-130 (1971). 
62. A. Miele, E. E. Cragg and A. V. Levy, 'Use of the augmented penalty function in mathematical programming 

problems, Part 2', J. Optimization Theory Applic., 8, 131-153 (1971). 
63. A. Miele and A. V. Levy, 'Modified quasilinearization and optimal initial choice of the multipliers, Part 1, 

Mathematical programming problems', J. Optimization Theory Applic., 6, 364-380 (1970). 
64. A. Miele, A. V. Levy and E. E. Cragg, 'Modifications and extensions of the conjugate gradient-restoration algorithm 

for mathematical programming problems', J. Optimization Theory Applic., 6, 450-472 (1971). 
65. A. Miele, P. E. Moseley, A. V. Levy and G. M. Coggins, 'On the method of multipliers for mathematical programming 

problems', J. Optimization Theory Applic., 10, 1-32 (1972). 
66. H. Mukai and E. Polak, 'A quadratically convergent primal-dual algorithm with global convergence properties for 

solving optimization problems with equality constraints', Math. Programming, 9, 336-349 (1975). 
67. V. H. Nguyen and J. J. Strodiot, 'On the convergence rate of penalty function method of exponential type', 

J. Optimization Theory Applic., 27, 495-508 (1979). 
68. J. K. Paeng and J. S. Arora, 'Dynamic response optimization of mechanical and structural systems with state space 

multiplier methods', Technical Report No. ODL-85.18, Optimal Design Laboratory, College of Engineering, The 
University of Iowa, 1985. 

69. J. K. Paeng and J. S. Arora, 'Dynamic response optimization of mechanical systems with multiplier methods', 

40



J. Mechanisms, Transmission Automation Design, 111, 73-80 (1989). 
70. D. A. Pierre and M. J. Lowe, Mathematical Programming via Augmented Lagrangians: An Introduction with Computer 

Programs, Addison-Wesley, Massachusetts, 1975. 
71. E. Polak and A. Sangiovanni-Vincentelli, 'Theoretical and computational aspects of the optimal design centering, 

tolerancing and tuning problem', IEEE Trans. Circuits Syst., 26, 795-813 (1979). 
72. E. Polak and A. Tits, 'A globally convergent, implementable, multiplier method with automatic penalty limitation', 

Appl. Math. Optimization, 6, 335-360 (1980). 
73. B. T. Poljak and N. V. Tret'yakov, 'The method of penalty estimates for conditional extremum problems', USSR 

Compt. Math. Mathematical Phys.~ 13, 42-58 (1974). 
74. M. J. D. Powell, 'A method for nonlinear constraints in minimization problems', in R. Fletcher (ed.), Optimization 

Academic Press, New York, 1969. 
75. M. J. D. Powell, 'Algorithms for nonlinear constraints that use Lagrangian functions', Math. Programming, 14, 

224-248 (1978). 
76. R. T. Rockafellar, 'A dual approach to solving nonlinear programming problems by unconstrained optimization', 

Math. Programming, S, 354-373 (1973). 
77. R. T. Rockafellar, 'The multiplier method of Hestenes and Powell applied to convex programming', J. Optimization 

Theory Applic., 12, 555-562 (1973). 
78. R. T. Rockafellar, 'Augmented Lagrange multiplier functions and duality in nonconvex programming', SIAM J. 

Control Optimization, 12, 268-285 (1974). 
79. R. R. Root and K. M. Ragsdell, 'Computational enhancement to the method of multipliers', J. Mech. Design ASME, 

102, 517-522 (1980). 
80. J. B. Rosen, 'The gradient projection method for nonlinear programming, I. Linear constraints', J. Soc. Indust. Appl. 

Math., 8, 181-217 (1960). 
81. R. B. Schnabel, 'Determining feasibility of a set of nonlinear inequality constraints', Math. Programming Study, 16, 

137-148 (1980). 
82. S. B. Schuldt, 'A method of multipliers for mathematical programming problems with equality and inequality 

constraints', J. Optimization Theory Applic., 17, 155-161 (1975). 
83. C. E. Shannon, 'A mathematical theory of communication', Bell Syst. Tech. J., 27, 379-428 (1948). 
84. J. Sobieszczanski-Sobieski, C. L. Bloebaum and P. Hajela, 'Sensitivity of control-augmented structure obtained by 

a system decomposition method', Proc. AI AA/ ASM E/ ASCE/AHS 29th Structures, Structural Dynamics and Materials 
Conference, Williamsburg, Virginia, Paper No. 88-2205, Apr. 1988. 

85. J. Sobieszczanski-Sobieski, A. R. Dovi and G. A. Wrenn, 'A new algorithm for general multiobjective optimization', 
Proc. AIAA/ASMEjASCE/AHS 29th Structures, Structural Dynamics and Materials Conference, Williamsburg, 
Virginia, Paper 88-2434, Apr. 1988. 

86. J. Sobieszczanski-Sobieski, B. B. James and A. R. Dovi, 'Structural optimization by multilevel decomposition', AIAA 
J., 23, 1775-1782 (1985). 

87. A. Tanikawa and H. Mukai, 'New Lagrangian function for nonconvex primal-dual decomposition', Comp. Math. 
Applic., 13, 661-676 (1987). 

88. R. A. Tapia, 'Newton's method for optimization problems with equality constraints', SIAM J. Numer. Anal., 11, 
874-886 (1974). 

89. R. A. Tapia, 'Diagonalized multiplier methods and quasi-Newton methods for constrained optimization', J. Optimiza­
tion Theory Applic., 22, 135-·194 (1977). 

90. R. A. Tapia, 'Quasi-Newton methods for equality constrained optimization: Equivalence of existing methods and 
a new implementation', in 0. L. Mangasarian et al. (eds.), NonlinearProgramming 3, Academic Press, New York, 1978, 
pp. 125-164. 

91. R. A. Tapia, 'On the role of slack variables in quasi-Newton methods for constrained optimization', in L. C. W. Dixon 
and G. P. Szego (eds.), Numerical Optimization of Dynamic Systems, North-Holland, Amsterdam, 1980, pp. 235-246. 

92. P. Tatjewski, 'New dual-type decomposition algorithm for nonconvex separable optimization problems', Automatica, 
25, 233-242 (1989). 

93. A. B. Templeman, 'Entropy-based minimax applications in shape-optimal design', in H. A. Eschenauer and G. 
Thierauf (eds.), Discretization Methods and Siructural Optimization-Procedures and Applications, Proc. GAMM 
Seminar, Siegen, FRG, Oct. 1988, Springer-Verlag, Berlin, 1989, pp. 335-342. 

94. A. B. Templeman and X. S. Li, 'A maximum entropy approach to constrained non-linear programming', Eng. 
Optimization, 12, 191-· 205 ( 1987). 

95. M. Tribus, 'Information theory as the basis for thermostatics and thermodynamics', J. App/. Mech. ASME, 28, 1-8 
(1961). 

96. S. S. Tripathi and K. S. Narendra, 'Constrained optimization problem: Using multiplier methods', J. Optimization 
Theory Applic., 9, 59-70 (1972). 

97. C. H. Tseng and J. S. Arora, 'Optimum design of systems for dynamics and controls using sequential quadratic 
programming', AIAA J., 21, 1793-1800 (1989). 

98. K. S. Vastola, 'A numerical study of two measures of delay for network routing', M.S. Thesis, Department of Electrical 
Engineering, University of Illinois, Champaign-Urbana, 1979. 

99. G. A. Wrenn, 'An indirect method for numerical optimization using the Kreisselmier-Steinhauser function', Final 
Report, NASA-CR-4220, NAS 1.26:4220, NTIS HC A05/MF AOl, N89-16779, 1989. 

41




