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Abstract— In this paper, we introduce a mathematical ap-
proach for system-level analysis and optimization of densely
deployed multiple-antenna cellular networks, where low-energy
devices are capable of decoding information data and harvesting
power simultaneously. The base stations are assumed to be
deployed according to a Poisson point process and tools from
stochastic geometry are exploited to quantify the trade-off in
terms of information rate and harvested power. It is shown that
multiple-antenna transmission is capable of increasing informa-
tion rate and harvested power at the same time.

I. INTRODUCTION

The Internet of Things (IoT) is expected to connect billions

of Low-energy Devices (LeDs) by 2020 [1]. One of the main

challenges of the IoT is how to provide enough energy for the

electronics of the LeDs, in order to have them operational over

a reasonable amount of time without making their battery too

large or the device itself too bulky. For several applications,

it may not be even possible to (re-)charge some LeDs.

In this context, the emerging concept of Simultaneous Wire-

less Information and Power Transfer (SWIPT) may constitute

a suitable solution for prolonging the battery life of LeDs and,

in a foreseeable future, for making them energy-neutral, i.e.,
operational in a complete self-powered fashion. SWIPT, in

particular, is a technology where the same radio frequency

signal is used for information transmission and for replenish-

ing the batteries of the LeDs [2]. SWIPT may find application

in the emerging market of cellular-enabled IoT, where LeDs,

e.g., smart-watches [3], receive notifications from their own

cellular connection [4] and, simultaneously, re-charge their

battery. The recent decision to standardize NarrowBand IoT

(NB-IoT), a new narrow-band radio technology that addresses

the requirements of the IoT, confirms the wish of capitalizing

on the ubiquitous coverage offered by the cellular network

infrastructure for IoT applications [5].

In spite of these potential advantages, the design and opti-

mization of SWIPT-enabled cellular networks, which provide

data connectivity and power to LeDs, pose new challenges

and introduce never observed performance trade-offs. Cellular

networks are designed based on the assumption that the other-

cell interference has a negative impact on Wireless Information

Transfer (WIT), since it reduces the coverage probability and

average rate [6]. Interference, on the other hand, constitute

a natural source to be exploited for enabling Wireless Power

Transfer (WPT) [7]. In SWIPT-enabled cellular networks, as a

result, the development of interference management techniques

that exploit interference for WPT and counteract it for WIT

plays a fundamental role, especially if the LeDs operate in

scenarios with adverse networking conditions.

The application of smart antenna technologies, i.e.,
Multiple-Input-Multiple-Output (MIMO) transmission and re-

ception schemes, constitutes a promising solution for manag-

ing and exploiting the interference in SWIPT-enabled cellu-

lar networks [8]. More specifically, MIMO schemes can be

exploited to provide two distinct benefits. On the one hand,

multiple antennas at the receiver can be used for increasing

the amount of harvested power via spatial diversity. On the

other hand, multiple antennas at the transmitter can be used

for improving the efficiency of information and energy transfer

via spatial beamforming. A summary of recent results on the

application of smart antenna technologies to SWIPT-enabled

systems is available in [9]. Most of the existing works, how-

ever, are applicable to small-scale network topologies. Large-

scale networks are, on the other hand, much less investigated.

In [10] and [11], relay-aided networks are studied. In [12]

and [13] ad hoc networks are analyzed. These papers, however,

consider single-antenna transmission. In [14], ad hoc networks

with multiple-antenna transmitters are studied. The analysis,

however, is not directly applicable to cellular networks, since

the spatial constraints imposed by the cell association are not

taken into account. The only paper where the performance

of SWIPT-enabled cellular networks is investigated is [15],

which, however, does not consider MIMO either at the Base

Stations (BSs) or at the LeDs.

In this paper, motivated by these considerations, we intro-

duce a tractable mathematical approach for quantifying the

benefits, in terms of information rate and harvested power,

of using MIMO in SWIPT-enabled cellular networks. In par-

ticular, Maximum Ratio Transmission (MRT) and Maximum

Ratio Combining (MRC) at the BSs and at the LeDs are

considered, respectively. The proposed approach relies on



modeling the locations of the BSs are points of a Poisson Point

Process (PPP) and uses stochastic geometry for system-level

analysis. It accounts for the spatial correlation of the other-

cell interference that emerges from SWIPT operation and is

applicable to BSs and LeDs equipped with an arbitrary number

of transmit and receive antennas, respectively. With the use of

MIMO, it is proved that information rate and harvested power

can be improved simultaneously.

The rest of this paper is organized as follows. In Section II,

the system model is introduced. In Section III, MRT and MRC

transmission and reception schemes are described. In Section

IV, the trade-off between information rate and harvested

power is quantified in terms of their Joint Complementary

Cumulation Distribution Function (J-CCDF). In Section V,

analysis and findings are validated with the aid of numerical

simulations. Finally, Section VI concludes this paper.

Notation: X ∼ CN
(
μ, σ2

)
denotes that X is a complex

Gaussian random variable with zero mean and variance σ2.

X ∼ E (Ω) denotes that X is an exponential random variable

with mean Ω. j =
√
−1 is the imaginary unit. E {·} is the ex-

pectation operator. (·)! is the factorial operator. Im {·} denotes

the imaginary part. g(n) (·) denotes the nth derivative of g (·)
with respect to its argument. 1 (·) is the indicator function.

H (·) is the Heaviside function and H (x) = 1 − H (x).

pFq (a1, . . . , ap; b1, . . . , bq; ·) is the generalized hypergeomet-

ric function [16, Eq. 9.14.1]. Γ (·, ·) is the upper-incomplete

Gamma function [16, Eq. 8.350.2]. min {·, ·} and max {·, ·}
are the minimum and the maximum functions, respectively.

fX (·), FX (·) and ΦX (·) are the Probability Density Function

(PDF), the Cumulative Distribution Function (CDF) and the

Characteristic Function (CF) of the random variable X .

II. SYSTEM MODEL

A. Cellular Networks Modeling

A downlink MIMO cellular network is considered, where

the BSs and the LeDs are equipped with Nt and Nr antennas,

respectively. The BSs are modeled as points of a homogeneous

PPP, denoted by Ψ, of density λ. They have fixed transmit

power equal to P . Without loss of generality, the analysis is

performed for the typical LeD that is located at the origin

[6]. This typical LeD is served by the BS that provides the

smallest path-loss, while all the other BSs act as interferers.

Throughout this paper, the superscripts, subscripts and indexes

“0”, “i” and “n” are referred to the serving BS, to the generic

interfering BS, and to the generic BS, respectively.

B. SWIPT Based on Power Splitting (PS)

The typical LeD is equipped with an information and an

energy receivers that operate according to the PS scheme [2].

Let PRX be the received power at the LeD. It is split in two

parts: PEH = ρPRX is used for Energy Harvesting (EH) and

PID = PRX − PEH = (1− ρ) PRX is used for Information

Decoding (ID), where 0 ≤ ρ ≤ 1 is the power splitting ratio.

The proposed approach can be generalized for application to

the Time Switching (TS) scheme [2], as discussed in [15].

C. Channel Modeling

A realistic channel model is considered, which includes

Line-of-Sight (LOS) and Non-LOS (NLOS) links due to the

presence of spatial blockages, the distance-dependent path-

loss, and the fast-fading. Shadowing is implicitly taken into

account by the LOS/NLOS link model. The adopted model

is in agreement with [17], which has been experimentally

validated for application to dense urban environments.
1) LOS/NLOS Links: Let r be the distance from a generic

BS to the typical LeD. The probabilities of occurrence pLOS (·)
and pNLOS (·) of LOS and NLOS links, respectively, as a

function r, are formulated as follows:

ps (r) =

{
q
[0,D]
s if r ∈ [0, D)

q
[D,∞]
s if r ∈ [D,+∞)

(1)

where q
[a,b]
s for s ∈ {LOS,NLOS} denotes the probability that

a link of length r ∈ [a, b) is in state s. Since a link can only

be in LOS or in NLOS, the equality q
[a,b]
LOS+q

[a,b]
NLOS = 1 holds.

The parameter D is a breaking distance that takes into account

that the probability of LOS and NLOS is usually different for

short and long transmission distances.

By assuming no spatial correlation between the links, Ψ can

be partitioned in two independent and non-homogeneous PPPs,

denoted by ΨLOS and ΨNLOS, such that Ψ = ΨLOS∪ΨNLOS.

From (1), the densities of ΨLOS and ΨNLOS are λLOS (r) =
λpLOS (r) and λNLOS (r) = λpNLOS (r), respectively.

2) Path-Loss: The path-loss of LOS and NLOS links is

ls (r) = κsr
βs for s ∈ {LOS,NLOS}, where κs = (4π/ν)

2

is the pathloss constant, ν is the transmission wavelength, and

βs is the power path-loss exponent.
3) Fast-Fading: All channels are assumed to be inde-

pendent and identically distributed (i.i.d.) complex Gaussian

random variables with zero mean and unit variance.

D. Cell Association

The typical LeD is served by the BS that provides the

smallest path-loss. This smallest path-loss can be formu-

lated as L(0) = min
{
L
(0)
LOS, L

(0)
NLOS

}
, where L

(0)
s for s ∈

{LOS,NLOS} is the smallest path-loss of LOS/NLOS links:

L
(0)
s = min

n∈Ψs

{
ls

(
r(n)

)}
(2)

and r(n) is the distance between a generic BS and the LeD.

III. INFORMATION RATE AND HARVESTED POWER USING

MRT AND MRC

We assume that MRT and MRC are employed at the BSs

and at the LeDs [18], [19], respectively. Similar to [15],

the Shannon rate (in bits/sec), R, of the ID receiver and

the average harvested power (in Watt), Q, of the Energy

Harvesting (EH) receiver can be formulated as follows:

R = Bw log2

(
1 +

Pχ(0)
/
L(0)

PIID + σ2
N + σ2

ID

/
(1− ρ)

)

Q = ρζ
(
Pχ(0)

/
L(0) + PIEH

) (18)



Λs ([0, x)) = πλq[0,D]
s

(
x

κs

) 2
βs

H
(
x− κsD

βs
)
+ πλ

((
x

κs

) 2
βs

q[D,∞]
s +D2

(
q[0,D]
s − q[D,∞]

s

))
H

(
x− κsD

βs
)

(12)

Λ(1)
s ([0, x)) = (2πλ/βs)κ

−2/βs
s x(2/βs−1)

(
q[0,D]
s H

(
x− κsD

βs
)
+ q[D,∞]

s H
(
x− κsD

βs
))

(13)

ΦI
(
ω|L(0); s

)
= exp

(
λπq[D,∞]

s max

{
D2,

(
L(0)/κs

)2/βs
}(

1−Υs

(
ω,max

{
κsD

βs , L(0)
})))

× exp

(
πλq[0,D]

s

[(
L(0)/κs

)2/βs
(
1−Υs

(
ω,L(0)

))
−D2

(
1−Υs

(
ω, κsD

βs
))]

H
(
L(0) − κsD

βs

)) (15)

J (1)
v,u =

∫ +∞

0

∫ +∞

0

1

πω
Im

{
exp

(
−jω

q∗
P

)(
v − jω

y

)−(1+u)

Γ

(
1 + u,

T∗
P

(vy − jω)

)
ΦI (ω| y)

}
fL(0) (y) dωdy

J (2)
v,u =

∫ +∞

0

∫ +∞

0

1

πω
Im

{
exp

(
jω

σ2
∗
P

)(
v +

jωr∗
y

)−(1+u)

Γ

(
1 + u,

T∗
P

(vy + jωr∗)

)
ΦI (ω| y)

}
fL(0) (y) dωdy

(17)

where Bw is the transmission bandwidth, 0 ≤ ζ ≤ 1 is

the conversion efficiency of the EH receiver, and σ2
ID is

the variance of the additive white Gaussian noise of the ID

receiver, which is due to the conversion of the received signal

from radio frequency to baseband.

In addition, χ(0) is the power gain of the intended link that

results from using MRT at the serving BS and MRC at the

typical LeD, respectively. From [19, Eq. (9)], its PDF can be

formulated as follows:

fχ(0) (ξ) = Kp,q

q∑
v=1

(p+q−2v)v∑
u=p−q

cv,uξ
u exp (−vξ) (19)

where p = max {Nt, Nr}, q = min {Nt, Nr}, Kp,q =

(
∏q

a=1 (q − a)! (p− a)!)
−1

, and the coefficients cv,u are ob-

tained by using [19, Algorithm 1].

Finally, I = IID = IEH is the aggregate other-cell

interference, which for MRT/MRC transmission/reception can

be formulated as follows [18]:

I =
∑

i∈ΨLOS

(
1
/
lLOS

(
r(i)

))
γ(i)1

(
lLOS

(
r(i)

)
> L(0)

)

+
∑

i∈ΨNLOS

(
1
/
lNLOS

(
r(i)

))
γ(i)1

(
lNLOS

(
r(i)

)
> L(0)

)
(20)

where γ(i) ∼ E (1) is the gain of the ith interfering link. In

particular, γ(i) and χ(0) are independent of each other [18].

IV. SYSTEM-LEVEL ANALYSIS OF INFORMATION RATE

AND HARVESTED POWER

In this section, our main result is introduced. We develop, in

particular, a mathematical framework that quantifies the trade-

off between information rate and harvested power. This trade-

off is quantified with the aid of the J-CCDF of R and Q in

(18). In mathematical terms, the J-CCDF is as follows:

Fc (R∗,Q∗) = Pr {R ≥ R∗,Q ≥ Q∗} (9)

where R∗ and Q∗ represent the minimum information rate and

harvested power that need to be guaranteed for the LeD being

able to perform its tasks. The mathematical characterization

of Fc (·, ·) provides complete information on the achievable

performance of SWIPT-enabled cellular networks.

To facilitate the computation of the J-CCDF in (9), we

introduce two lemmas that provide the PDF and the CDF of

the smallest path-loss, L(0), and the CF of the aggregate other-

cell interference, I, conditioned on L(0). Their proofs can be

obtained by using similar mathematical steps as those reported

in [15]. Due to space limitations, the details are omitted.

Lemma 1: The CDF and PDF of the smallest path-loss,

L(0), defined in Section II-D are as follows:

FL(0) (x) = 1− exp (−Λ ([0, x)))

fL(0) (x) = Λ(1) ([0, x)) exp (−Λ ([0, x)))
(10)

where the following definitions hold:

Λ ([0, x)) = ΛLOS ([0, x)) + ΛNLOS ([0, x))

Λ(1) ([0, x)) = Λ
(1)
LOS ([0, x)) + Λ

(1)
NLOS ([0, x))

(11)

as well as Λs ([·, ·)) and Λ
(1)
s ([·, ·)) for s ∈ {LOS,NLOS}

are defined in (12) and (13) shown at the top of this page.

Proof : See [15]. �
Lemma 2: Given L(0), the CF of of the aggregate other-cell

interference, I, is as follows:

ΦI
(
ω|L(0)

)
= ΦI

(
ω|L(0); LOS

)
ΦI

(
ω|L(0); NLOS

)
(14)
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Fig. 1. Contour lines of the J-CCDF as a function of ρ that correspond to
the pairs (R∗,Q∗) such that Fc (R∗,Q∗) = 0.75. The solid lines show
the mathematical framework in (16) and the markers show Monte Carlo
simulations. The curve “envelope” corresponds to the setup of ρ that provides
the best J-CCDF. The curve “ideal” represents the setup where EH and ID
can be performed simultaneously. Setup: Nt = 4 and Nr = 2.

where ΦI
(
·|L(0); s

)
for s ∈ {LOS,NLOS} is defined in

(15) shown at the top of the previous page and Υs (ω,Z) =

2F1 (1,−2/βs, 1− 2/βs, jω/Z).
Proof : See [15]. �
From Lemma 1 and Lemma 2, an exact and tractable

expression of the J-CCDF in (9) is given in Proposition 1.

Proposition 1: The J-CCDF in (9) can be formulated as:

Fc (R∗,Q∗) = Kp,q

q∑
v=1

(p+q−2v)v∑
u=p−q

cv,u

(
J (1)
v,u − J (2)

v,u

)
(16)

where J (1)
v,u and J (2)

v,u are provided in (17) shown at the top

of the previous page, as well as r∗ =
(
2R∗/Bw − 1

)−1
,

σ2
∗ = σ2

N + σ2
ID (1− ρ)

−1
, q∗ = Q∗ (ρζ)

−1
and

T∗ =
(
q∗ + σ2

∗
)/

(r∗ + 1).
Proof : See Appendix I. �
The J-CCDF in (16) is formulated in terms of a two-

fold integral that can be efficiently computed with the aid of

state-of-the-art computational software programs and has the

advantage of avoiding lengthly Monte Carlo simulations.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we validate the mathematical framework in

(16) against Monte Carlo simulations and study the impact

of having multiple antennas at the BSs and at the LeDs.

Further information on how Monte Carlo simulation results

are obtained can be found in [17]. Unless otherwise stated,

the following setup is considered: ν = c0/fc, where c0 is

the speed of light in m/sec and fc = 2.1 GHz is the carrier

frequency; σ2
ID = −70 dBm; σ2

N = −174 + 10 log10 (Bw) +
FN dBm, where Bw = 200 KHz and FN = 10 dB is the noise

figure; P = 30 dBm; ζ = 0.8. The channel model and λ are

in agreement with [17]: D = 109.8517 m, q
[0,D]
LOS = 0.7195,
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Fig. 2. Contour lines of the J-CCDF as a function of Nt that correspond to
the pairs (R∗,Q∗) such that Fc (R∗,Q∗) = 0.75. The solid lines show
the mathematical framework in (16) and the markers show Monte Carlo
simulations. Setup: Nr = 2 and ρ = 0.5.
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Fig. 3. Contour lines of the J-CCDF as a function of Nr that correspond to
the pairs (R∗,Q∗) such that Fc (R∗,Q∗) = 0.75. The solid lines show
the mathematical framework in (16) and the markers show Monte Carlo
simulations. Setup: Nt = 4 and ρ = 0.5.

q
[D,∞]
LOS = 0.0002, βLOS = 2.5, βNLOS = 3.5, λ = 1/(πR2

cell)
where Rcell = 83.4122 m is the average cell radius.

In Fig. 1, we illustrate the impact of ρ on the achievable

information rate and harvested power. The figure clearly

demonstrates that ρ needs to be optimized as a function of the

pair (R∗,Q∗) being considered. This system-level optimiza-

tion allows the LeDs to achieve a higher information rate and

to harvest more power. The gap with respect to the ideal setup

where information and power can be decoded and harvested

simultaneously, respectively, is, however, non-negligible. This

implies that practical receiver schemes, different from PS,

are needed for further improving the performance of SWIPT-

enabled cellular networks.



Fc (R∗,Q∗) = Pr {R ≥ R∗,Q ≥ Q∗} = Pr
{
I ≤ χ(0)r∗

/
L(0) − σ2

∗
/
P , I ≥ −χ(0)

/
L(0) + q∗/P

}
=

{
Pr

{
−χ(0)

/
L(0) + q∗/P ≤ I ≤ χ(0)r∗

/
L(0) − σ2

∗
/
P
}

if χ(0) ≥ (T∗/P )L(0)

0 otherwise

= EL(0)

{∫ +∞

(T∗/P )L(0)

FI
(
x
(
r∗
/
L(0)

)
− σ2

∗
/
P
∣∣∣L(0)

)
fχ(0) (x) dx

}

− EL(0)

{∫ +∞

(T∗/P )L(0)

FI
(
−x

/
L(0) + q∗/P

∣∣∣L(0)
)
fχ(0) (x) dx

}
(18)

In Figs. 2 and 3, we study the impact of the number of

antennas at the BSs and at the LeDs, respectively. Both figures

clearly demonstrate that multiple-antenna transmission is a

promising technique, not only for enhancing the information

rate but for increasing the harvested power as well.

VI. CONCLUSION

In this paper, we have proposed a mathematical framework

for the analysis of SWIPT-enabled MIMO cellular networks.

The accuracy of the proposed approach has been validated

against Monte Carlo simulations. The numerical results have

demonstrated that the use of multiple antennas at both the BSs

and at the LeDs is capable of enhancing the achievable rate

and increasing the harvested power simultaneously.
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APPENDIX I

PROOF OF PROPOSITION 1

From (20) and (9), the equalities in (18) shown at the top

of this page hold. The proof follows by using the Gil-Pelaez

inversion theorem [20] as follows:

FI
(
z|L(0)

)
= 1/2

−
∫ +∞

0

(πω)
−1

Im
{
exp (−jωz) ΦI

(
ω|L(0)

)}
dω

(19)

and the law of the unconscious statistician, i.e.,
EL(0)

{
g
(
L(0)

)}
=

∫ +∞
0

g (y) fL(0) (y) dy.

More precisely, the integral with respect to x is computed

by inserting (19) in (18) and by using the notable integral:∫ +∞

A
xu exp (−Zx) dx = Z−(1+u)Γ (1 + u,AZ) (20)
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