CONVERGENT ALGORITHM BASED ON CARLEMAN ESTIMATES FOR THE RECOVERY OF A POTENTIAL IN THE WAVE EQUATION

Abstract : This article develops the numerical and theoretical study of the reconstruction algorithm of a potential in a wave equation from boundary measurements, using a cost functional built on weighted energy terms coming from a Carleman estimate. More precisely, this inverse problem for the wave equation consists in the determination of an unknown time-independent potential from a single measurement of the Neumann derivative of the solution on a part of the boundary. While its uniqueness and stability properties are already well known and studied, a constructive and globally convergent algorithm based on Carleman estimates for the wave operator was recently proposed in [BdBE13]. However, the numerical implementation of this strategy still presents several challenges, that we propose to address here.
Type de document :
Pré-publication, Document de travail
Rapport LAAS n° 16229. 2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01352772
Contributeur : Maya De Buhan <>
Soumis le : mardi 9 août 2016 - 15:38:23
Dernière modification le : mardi 11 octobre 2016 - 14:59:19
Document(s) archivé(s) le : jeudi 10 novembre 2016 - 10:21:06

Fichier

LBMdBSE.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01352772, version 1

Citation

Lucie Baudouin, Maya De Buhan, Sylvain Ervedoza. CONVERGENT ALGORITHM BASED ON CARLEMAN ESTIMATES FOR THE RECOVERY OF A POTENTIAL IN THE WAVE EQUATION. Rapport LAAS n° 16229. 2016. <hal-01352772>

Partager

Métriques

Consultations de
la notice

187

Téléchargements du document

69