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A FORMULA FOR ζ(2n+ 1) AND SOME RELATED EXPRESSIONS

THOMAS SAUVAGET

Abstract. Using a polylogarithmic identity, we express the values of ζ at odd integers 2n + 1 as integrals
over unit n−dimensional hypercubes of simple functions involving products of logarithms. We also prove a

useful property of those functions as some of their variables are raised to a power. In the case n = 2, we prove
two closed-form expressions concerning related integrals. Finally, another family of related one-dimensional

integrals is studied.

1. Introduction

Are all values of the Riemann zeta function irrational numbers when the argument is a positive integer ?
This question goes back to the XVIIIth century when Euler published in 1755, n being a positive integer,

that ζ(2n) = (−1)n+1B2n(2π)
2n

2(2n)! (where B2n ∈ Q is an even Bernoulli number) and Lindemann proved in 1882

that π is transcendental (hence none of its powers is rational) [14]1.

On the other hand, only in 1978 did Apéry [3] famously proved that ζ(3) is irrational. This was later
reproved in a variety of ways by several authors, in particular Beukers [6] who devised a simple approach
involving certain intergrals over [0, 1]3 (which will be recalled in section 3). The reader should consult
Fischler’s very informative Bourbaki Seminar [10] for more details and references. In the early 2000s, an
important work of Rivoal [16] and Ball and Rivoal [4] determined that infinitely many values of ζ at odd
integers are irrational, and the work of Zudilin [19] proved that at least one among ζ(5), ζ(7), ζ(9) and ζ(11)
is irrational. Despite these advances, to this day no value of ζ(2n + 1) with 2n + 1 > 3 is known to be
irrational.

One dimensional integral formulas for ζ(2n + 1) have been known for a long time, for instance the 1965
monograph of Abramowitz and Stegun [1] gives:

ζ(2n+ 1) = (−1)n+1 (2π)2n+1

2(2n+ 1)!

∫ 1

0

B2n+1(x) cot(πx)dx

While it bears a striking structural analogy with Euler’s formula for ζ(2n), it is not obvious how one might
try to prove or disprove that these numbers are irrational.

On the other hand, multidimensional integral formulas for ζ(2n + 1) are more recent: as mentionned by
Baumard in his PhD Thesis [5], quoting Zagier [18], it is Kontsevich in the early 1990s who found such a
type of formula for Multiple Zeta Values, which in the case of simple zeta boils down, for any odd or even k,
to:

ζ(k) =

∫ 1

0

dx1
x1

∫ x1

0

dx2
x2
· · ·
∫ xk−2

0

dxk−1
xk−1

∫ xk−1

0

dxk
1− xk

An erroneous claim of a proof of irrationality of all ζ(2n+ 1) in the previous version of this manuscript (arXiv.org/03174v3)

has been withdrawn. The author apologizes for that claim and wishes to thank the editorial board of PMB for pointing out the
error and rejecting the paper. What remains of this work is not intented for publication anymore. The author is very grateful

to the anonymous referee of an earlier version of this work (arXiv.org/03174v2) for (a) many comments that improved greatly
the readability of the paper, (b) a technical suggestion which allowed the author to prove Theorem 2.5 (which had been stated
earlier as a conjecture based on numerical observations), (c) inviting the author to resubmit a revised version. The author also
would like to thank the numerous contributors to useful freely available online knowledge resources, in particular the arXiv,
Wikipedia, the SagemathCloud, WolframAlpha, and Stack Exchange sites.

1Lambert proved in 1761 that π is irrational [11], but this does not imply that all powers of π are so.
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This is easily proved by expanding the integrand in geometric series and integrating. This can be rewritten
more simply as a multidimensional integral over a unit hypercube:

ζ(k) =

∫
[0;1]k

dx1 · · · dxk
1− x1 · · ·xk

While this is much closer to the type of integrals that Beukers used, it is not clear how it might be adapted
directly to prove that zeta is irrational at odd integers.

One should mention that Brown [7] has in the past few years outlined a geometric approach to understand
the structures involved in Beukers’s proof of the irrationality ζ(3) and how this may generalize to other zeta
values, see also the recent work of Dupont [9] on that topic.

In this work, we go along another path and prove polylogarithmic identities which then allow to write
each ζ(2n+ 1) as an alternating sign (−1)n+1 times a multiple integral over a n−dimensional unit hypercube
of certain functions involving logarithms (rather than unsigned integrals over a (2n + 1)−dimensional unit
hypercube as in the previously mentioned formulas). These functions are shown to have an interesting
property: raising some of the variables to a power leads to a fractional multiple of ζ(2n+ 1) that belongs to
the interval ]0, ζ(2n+1)[. We also investigate two related families of integrals for n = 2, for which we establish
closed-form expressions, but show that when used in Beukers’s framework they fail to produce the irrationality
of ζ(5). Finally, we study another type of functions with better decay properties in a 1-dimensional integral
related to the previous formulas.

It is rather curious that these precise identities and integrals seem not to have been considered before,
despite their simplicity. A search through the literature did not return them (we have used the treatise of
Lewin [13] as well as the relevant page on functions.wolfram.com[15]). Identities involving polylogarithms of
different degrees are rather scarce, all the more so when all variables must be integers, and representations of
ζ(s) as multiple integrals over bounded domains, including some that have been worked out very recently by
Alzer and Sondow [2], only go as far as a double integral. The idea to consider the formulas presented below
came to the author in a fortunate way after studying and trying to generalize an integral representation

of ζ(3) = 1
2

∫ 1

0
log(x) log(1−x)

x(1−x) dx established by Janous [12] (and mentioned by Alzer and Sondow, where the

author first learned about it), while the idea of trying to prove the irrationality of ζ(5) was a reaction to
a footnote in a section of the fine undergraduate book of Colmez [8] devoted to Nesterenko’s proof of the
irrationality of ζ(3).

2. Values of ζ at odd integers as multidimentional integrals on unit hypercubes

Recall that the polylogarithm function of order s ≥ 1 is defined for z ∈ {z ∈ C, |z| < 1} by Lis(z) :=∑+∞
k=1

zk

ks (and is extented by analytic continuation to the whole complex plane).

The aim of this section is to establish the following results (which we could not locate in the literature).

Theorem 2.1. Let n be a positive integer. Then the value of the Riemann zeta function at odd integers is:

ζ(2n+ 1) = (−1)n+1

∫
[0;1]n

(
n∏
i=1

log(xi)

xi

)
log

(
1−

n∏
i=1

xi

)
dx1 · · · dxn

Proof. Let n be a positive integer, and for any integer 1 ≤ k ≤ n define Dk,n to be the set of all ordered
k-tuples j1 < · · · < jk of distinct integers taken in {1, . . . , n}. So #Dk,n =

(
n
k

)
.

Define for any (x1, . . . , xn) ∈]0, 1[n (the open unit hypercube of dimension n) the function Mn as

Mn(x1, . . . , xn) := (−1)n+1Li2n+1(

n∏
u=1

xu) +

n∑
i=1

(−1)i

 ∑
J∈Dn−i,n

∏
j∈J

log(xj)

Lin+i(

n∏
u=1

xu)
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For any positive integer n, the function Mn is at least Cn when xi 6= 0 for all i = 1, . . . , n. We are going
to show that:

∂n

∂x1∂x2 · · · ∂xn
Mn(x1, . . . , xn) =

(
n∏
i=1

log(xi)

xi

)
log

(
1−

n∏
i=1

xi

)

Differentiating Mn with respect to x1 one finds :

∂Mn

∂x1
(x1, . . . , xn) = (−1)n+1 Li2n(

∏n
k=1 xk)

x1
+

n∑
i=1

(−1)i

(( ∑
J∈D∗(1)

n−i,n

1

x1

∏
j∈J

log(xj)

)
Lin+i(

n∏
k=1

xk) +

( ∑
J∈Dn−i,n

∏
j∈J

log(xj)

)
Lin+i−1(

∏n
k=1 xk)

x1

)

where D
∗(1)
n−i,n denotes elements of the set Dn−i,n where 1 is not in the (n− i)-uplet, so this is also exactly the

set of ordered (n− i− 1)-uplets of distinct elements taken in the set {2, . . . , n}, and so we have the inclusion

D
∗(1)
n−i,n ⊂ Dn−i−1,n. Hence the telescopic cancellations witnessed in the case n = 4 occur between terms of

two consecutive values of i. The remaining differentiations with respect to the other variables ultimately lead

to the desired expression. Thus we have an explicit antiderivative of
(∏n

i=1
log(xi)
xi

)
log (1−

∏n
i=1 xi) and it

is clear from its expression that the generalized integral exists. Evaluating Mn at (x1, . . . , xn) = (1, . . . , 1)
finishes the proof. �

Remark 2.2. As remarked by the referee of a first version of this work:

(a) the formula in fact readily follows by using the entire series expansion− log (1−
∏n
i=1 xi) =

∑+∞
k=1

1
k (
∏n
i=1 xi)

k

(valid here as
∏n
i=1 xi ∈ (0, 1)) and a repeated use of Fubini’s theorem with the integral of monomials∫ 1

0
xk−1i log(xi)dxi = −1

k2 (though this would not provide the closed-form expression of the antiderivative) ;

(b) using the case n = 1 and the change of variable t = 1− x one obtains

ζ(3) =

∫ 1

0

log(x) log(1− x)

x
dx =

∫ 1

0

log(x) log(1− x)

1− x
dx

and the formula of Janous stated in the introduction follows by adding those two integrals.

Corollary 2.3. Let n and r be positive integers. Then we have:

ζ(2n+ 1)

r2n
= (−1)n+1

∫
[0;1]n

(
n∏
i=1

log(xi)

xi

)
log

(
1−

(
n∏
i=1

xi

)r)
dx1 · · · dxn

Proof. This follows from a change of variable x→ xr in the previous theorem 2. �

Remark 2.4. By summing over r ∈ N∗ this last formula we obtain:

ζ(2n)ζ(2n+ 1) =

∫
[0;1]n

(
n∏
i=1

log(xi)

xi

)
log

(
φ

(
n∏
i=1

xi

))
dx1 · · · dxn

where φ is Euler’s function defined for q ∈ [0, 1] by φ(q) :=
∏+∞
n=1(1− qn).

2This too was observed by the referee of the previous version of this work, the author had tediously proposed a proof along
the lines of the theorem.
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Theorem 2.5. Let n ≥ 2 and k ≥ 1 be integers. Then we have the following closed-form expressions:
(i) ∫

[0;1]2

log(x)

x

log(y)

y
log(1− (xy)1) log(x) log(y)(xy)2k+1dxdy =

4ζ(6)

(2k + 1)
+

4ζ(5)

(2k + 1)2
+

4ζ(4)

(2k + 1)3
+

4ζ(3)

(2k + 1)4
+

4ζ(2)

(2k + 1)5
− 4

(2k + 1)6

2k+1∑
n=1

1

n
− 4

6∑
j=1

(
1

(2k + 1)j

2k+1∑
i=1

1

i7−j

)
(ii) ∫

[0;1]2

log(x)

x

log(y)

y
log(1− (xy)2) log(x) log(y)(xy)2k+1dxdy =

63ζ(6)

8(2k + 1)
+

31ζ(5)

4(2k + 1)2
+

15ζ(4)

2(2k + 1)3
+

7ζ(3)

(2k + 1)4
+

6ζ(2)

(2k + 1)5

+
8 log(2)

(2k + 1)6
− 4

(2k + 1)6

k∑
i=1

1

2i+ 1
− 8

6∑
j=1

(
1

(2k + 1)j

k∑
i=0

1

(2i+ 1)7−j

)
Proof. (i) using the entire series expansion of log(1 − xy) and Fubini’s theorem we have, twice integrating
by parts:∫
[0;1]2

log(x)

x

log(y)

y
log(1−(xy)1) log(x) log(y)(xy)2k+1dxdy =

+∞∑
u=1

−1

u

(∫ 1

0

(log(x))2x2k+1+udx

)(∫ 1

0

(log(y))2y2k+1+udy

)

= −
+∞∑
u=1

4

u

1

(2k + 1 + u)6
= − 4

(2k + 1)6

+∞∑
u=1

(
1

u
− 1

2k + 1 + u

)
+

4

(2k + 1)5

+∞∑
u=1

1

(2k + 1 + u)2

+
4

(2k + 1)4

+∞∑
u=1

1

(2k + 1 + u)3
+

4

(2k + 1)3

+∞∑
u=1

1

(2k + 1 + u)4
+

4

(2k + 1)2

+∞∑
u=1

1

(2k + 1 + u)5
+

4

(2k + 1)

+∞∑
u=1

1

(2k + 1 + u)6

and the result follows by adding and substracting the first terms in each sum to make the zeta values
appear.

(ii) the begining proceeds in a similar fashion to give:∫
[0;1]2

log(x)

x

log(y)

y
log(1−(xy)2) log(x) log(y)(xy)2k+1dxdy =

+∞∑
u=1

−1

u

(∫ 1

0

(log(x))2x2k+1+2udx

)(∫ 1

0

(log(y))2y2k+1+2udy

)

= −
+∞∑
u=1

4

u

1

(2k + 1 + 2u)6
= − 4

(2k + 1)6

+∞∑
u=1

(
1

2u
− 2

2k + 1 + 2u

)
+

4

(2k + 1)5

+∞∑
u=1

2

(2k + 1 + 2u)2

+
4

(2k + 1)4

+∞∑
u=1

2

(2k + 1 + 2u)3
+

4

(2k + 1)3

+∞∑
u=1

2

(2k + 1 + 2u)4
+

4

(2k + 1)2

+∞∑
u=1

2

(2k + 1 + 2u)5
+

4

(2k + 1)

+∞∑
u=1

2

(2k + 1 + u)6

To conclude this time, we need a few more steps. First we use the well-known relation between sums on
even and odd indices in zeta values, i.e. for any positive integerm one has ζ(m) =

∑+∞
u=1

1
(2u)m +

∑+∞
u=0

1
(2u+1)m

so that
∑+∞
u=1

1
(2u+1)m =

(
1− 1

2m

)
ζ(m)− 1.

Second, the sum multiplied by −4
(2k+1)6 is no longer finite, and we use the opposite of the alternating

harmonic series: −
∑+∞
u=1

(−1)u+1

u = − log(2).
�
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Remark 2.6. In the previous version of this work, this had been stated as a conjecture (in a much less legible
manner since we had not yet recognized ζ(2), ζ(4) and ζ(6) in it, and had added a third statement which
we realized later is in fact completely erroneous). We are very grateful to the referee of a previous version
of this work for suggesting that these expressions might be established using the same strategy she/he had
mentioned about her/his alternative proof of theorem 2.1 (entire series expansion and Fubini’s theorem).

3. Proof of the irrationality of all ζ(2n+ 1) for n ∈ N∗

First let us recall the standard irrationality criteria of Dirichlet :

Lemma 3.1. (Dirichlet, 1848) α ∈ R\Q⇔ ∀ε > 0 ∃p ∈ N ∃q ∈ Q such that |pα− q| < ε.

In 1979, shortly after Apéry presented his proof of the irrationality of ζ(2) and ζ(3), Beukers [6] found
another proof using Dirichlet’s criteria applied to some particular integral representations of those two num-
bers. We quickly summarize the strategy as follows (the author also benefited from the extremely clear slides
of Brown [7]).

• step 1: we have
∫ 1

0

∫ 1

0
− log(xy)
1−xy dxdy = 2ζ(3) and for any integer r ≥ 1 we have

∫ 1

0

∫ 1

0
− log(xy)
1−xy (xy)rdxdy =

2
(
ζ(3)− 1

13 − · · · −
1
r3

)
≤ 2ζ(3)

• step 2: by denoting a Legendre-type polynomial Pk(x) := 1
k!

{
d
dx

}k
xk(1 − xk) ∈ Z[X] and using

the previous step we have Ik :=
∫ 1

0

∫ 1

0
− log(xy)
1−xy Pk(x)Pk(y)dxdy = Ak+Bkζ(3)

d3n
with Ak, Bk ∈ Z and

dk := lcm(1, . . . , k)

• step 3: by the Prime Number Theorem we have for any integer k ≥ 1 that dk < 3k

• step 4: we have
∫ 1

0
1

1−(1−xy)zdz = − log(xy)
1−xy

• step 5: by integration by parts one finds also that Ik =
∫ 1

0

∫ 1

0

∫ 1

0

(
x(1−x)y(1−y)z(1−z)

1−(1−xy)z

)k
dxdydz

1−(1−xy)z

• step 6: we can bound uniformly for 0 ≤ x, y, z ≤ 1 one part of the integrand x(1−x)y(1−y)z(1−z)
1−(1−xy)z ≤

(
√

2− 1)4 < 1
2 (this is the reason for introducing Pk rather than working with the integrand of step

1 where (xy)r can only be bounded by 1)

• step 7: by using most of the previous steps we find 0 <
∣∣∣Ak+Bkζ(3)

d3k

∣∣∣ ≤ 2ζ(3)(
√

2− 1)4k

• step 8: using now the information on the growth of dk, so of d3k too, we get 0 < |Ak +Bkζ(3)| ≤
(
4
5

)k
,

which concludes the proof by Dirichlet’s criteria.

Unfortunately in the ensuing years and decades no tweak to that strategy could be made to work for values
of ζ at other odd integers. Vasilyev [17] could show that a direct generalization of Beukers’s integral for ζ(5)
can only show that one of ζ(3) and ζ(5) is irrational. In what follows we shall show that the expressions from
the previous section do not seem to allow any progress on these matters.

Define for positive integers k the two following sequences of numbers:

Ik :=

∫
[0;1]2

log(x)

x

log(y)

y
log(1− (xy)) log(x) log(y)(xy)2k+1dxdy

−
(

4ζ(6)

(2k + 1)
+

4ζ(4)

(2k + 1)3
+

4ζ(3)

(2k + 1)4
+

4ζ(2)

(2k + 1)5

)
=

4ζ(5)

(2k + 1)2
− 4

(2k + 1)6

2k+1∑
n=1

1

n
− 4

6∑
j=1

(
1

(2k + 1)j

2k+1∑
i=1

1

i7−j

)
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and

Jk :=

∫
[0;1]2

log(x)

x

log(y)

y
log(1− (xy)2) log(x) log(y)(xy)2k+1dxdy

−
(

63ζ(6)

8(2k + 1)
+

15ζ(4)

2(2k + 1)3
+

7ζ(3)

(2k + 1)4
+

6ζ(2)

(2k + 1)5
+

8 log(2)

(2k + 1)6

)

=
31ζ(5)

4(2k + 1)2
− 4

(2k + 1)6

k∑
i=1

1

2i+ 1
− 8

6∑
j=1

(
1

(2k + 1)j

k∑
i=1

1

(2i+ 1)7−j

)

Using the triangle inequality on the definition of Ik, and determining by a routine study of critical points
that the supremum of the absolute value | log(x) log(y)(xy)2k+1| occurs at x∗ = y∗ = e−1/(2k+1), we get the
inequality:

|Ik| ≤ Sup{| log(x) log(y)(xy)2k+1| where 0 ≤ x, y ≤ 1}︸ ︷︷ ︸
= 1

e2(2k+1)2
< 1

(2k+1)2

×

∣∣∣∣∣∣∣
∫

[0;1]2

log(x)

x

log(y)

y
log(1− (xy))dxdy

∣∣∣∣∣∣∣︸ ︷︷ ︸
=ζ(5)

+
4ζ(6)

(2k + 1)
+

4ζ(4)

(2k + 1)3
+

4ζ(3)

(2k + 1)4
+

4ζ(2)

(2k + 1)5

which, multiplying both sides by (2k + 1)2, can be rewritten as:

0 <

∣∣∣∣4ζ(5)− ak
bk

∣∣∣∣ < ζ(5) + 4(2k + 1)ζ(6) +
4ζ(4)

2k + 1
+

4ζ(3)

(2k + 1)2
+

4ζ(2)

(2k + 1)3

where ak
bk

:= (2k + 1)2
(

4
(2k+1)6

∑2k+1
n=1

1
n + 4

∑6
j=1

(
1

(2k+1)j

∑2k+1
i=1

1
i7−j

))
> 0 is a certain irreducible

rational number.

Similarly with Jk we ultimately have:

0 <

∣∣∣∣31ζ(5)− ck
dk

∣∣∣∣ < 4ζ(5) +
63(2k + 1)ζ(6)

2
+

30ζ(4)

2k + 1
+

28ζ(3)

(2k + 1)2
+

24ζ(2)

(2k + 1)3
+

32 log(2)

(2k + 1)4

where ck
dk

:= (4(2k + 1)2)
(

4
(2k+1)6

∑k
i=1

1
2i+1 + 8

∑6
j=1

(
1

(2k+1)j

∑k
i=0

1
(2i+1)7−j

))
> 0 is a certain irre-

ducible rational number.

In those two inequalities, to obtain irrationality of ζ(5) one would need that after multiplying all sides by
bk (respectively dk) the resulting right-hand side expression be a function that goes to 0 as k goes to infinity,
which is not the case.

This led the author to think about finding a function whose supremum on [0, 1] has a faster decay than

O
(

1
(2k+1)2

)
. For any positive integer m, we can show in a similar fashion as before the closed-form expres-

sion of the following one-dimensional integral (where sk,m and tk,m are positive integers resulting from the
combined completions of the sums):
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∫
[0;1]

log(x)

x
log(1− x)(log(x))mx2k+1dx =

+∞∑
u=1

−(m+ 1)!

u(u+ 2k + 1)m+2
=

m∑
j=0

(m+ 1)!ζ(m+ 2− j)
(2k + 1)j+1

− sk,m
tk,m

Then defining the numbers:

Zk,m :=

∫
[0;1]

log(x)

x
log(1− x)(log(x))mx2k+1dx−

m∑
j=1

(m+ 1)!ζ(m+ 2− j)
(2k + 1)j+1

=
(m+ 1)!ζ(m+ 2)

2k + 1
− sk,m
tk,m

we obtain, after using the fact that the supremum of |(log(x))mx2k+1| occurs at x∗ = e−m/(2k+1), and
multiplying both sides by 2k + 1, that:

0 <

∣∣∣∣(m+ 1)!ζ(m+ 2)− (2k + 1)sk,m
tk,m

∣∣∣∣ ≤ mmζ(3)

(2k + 1)m−1em
+

m∑
j=1

(m+ 1)!ζ(m+ 2− j)
(2k + 1)j

While the right hand side does tend to 0 as k goes to infinity, contrarily to what was falsely claimed in a
previous version of this work, this does not prove the irrationality of ζ(m+ 2). For that, one would first need
to multiply all sides by tk,m and that the resulting right-hand side be a function that goes to 0 as k goes to
infinity. We have not computed tk,m explicitely, but it appears not to be the case.
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