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Combined Newton-Kurchatov method for solving nonlinear operator
equations
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We investigate local and semi-local convergence of the combined Newton-Kurchatov method under the classical and gen-
eralized Lipschitz conditions for solving nonlinear equations. The convergence order of the method is examined and the
uniqueness ball for the solution of the nonlinear equation is proved. Numerical experiments are conducted on test problems.
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1 Introduction

Let us consider the nonlinear equation

H(x) ≡ F (x) +G(x) = 0, (1)

where F andG are nonlinear operators defined on a convex subsetD of a Banach spaceX with their values in a Banach space
Y . F is a Fréchet-differentiable operator and G is a continuous operator; the differentiability of G is not required.

For solving the problem (1), we proposed in [2] the two-point iterative process

xn+1 = xn − [F ′(xn) +G(2xn − xn−1;xn−1)]−1H(xn), n = 0, 1, . . . , (2)

which is built on the Newton method and the Kurchatov method of linear interpolation [1]. We studied the semi-local con-
vergence of the method (2) and showed that its convergence order is (1 +

√
5)/2 ≈ 1.618 . . . , which is lower than the

convergence order of the underlying methods. In this work, we extend our studies to the local convergence of the method (2)
under the classical and generalized Lipschitz conditions for the first-order derivatives of the operator F and for the first- and
second-order divided differences of the operator G. Moreover, we investigate the semi-local convergence of the method (2)
under the classical Lipschitz conditions and determine its radius of the convergence ball and the quadratic convergence order.

2 Local convergence analysis under the generalized Lipschitz conditions

Let us denote B(x̃, R) = {x : ‖x− x̃‖ < R} an open ball of radius R with a center at the point x̃ ∈ D.
Theorem 2.1 Let F, G : D ⊆ X → Y be continuous nonlinear operators, where X and Y are Banach spaces. Suppose,

that: 1) H(x) = 0 has a solution x∗ ∈ D and there exists a Fréchet derivative H ′(x∗) that is invertible; 2) F has the
derivative of the first-order and G has divided differences of the first- and second-order on B(x∗, 3r) ⊂ D, satisfying the
generalized Lipschitz conditions on B(x∗, 3r)

‖H ′(x∗)−1(F ′(x)− F ′(xτ ))‖ ≤
∫ ρ(x)

τρ(x)

L1(u)du,

‖H ′(x∗)−1(G(x; y)−G(u; v))‖ ≤
∫ ‖x−u‖+‖y−v‖
0

L2(z)dz, ‖H ′(x∗)−1(G(u;x; y)−G(v;x; y))‖ ≤
∫ ‖u−v‖
0

N(z)dz,

where 0 ≤ τ ≤ 1; x, y, u, v ∈ B(x∗, 3r); xτ = x∗ + τ(x − x∗); %(x) = ‖x − x∗‖; L1, L2, N are positive nondecreasing
functions; 4) r > 0 satisfies the equation(1

r

∫ r

0

L1(u)udu+

∫ r

0

L2(u)du+2r

∫ 2r

0

N(u)du
)
/
(
1−
(∫ r

0

L1(u)du+

∫ 2r

0

L(u)du+2r

∫ 2r

0

N(u)du
))

= 1.

Then for all x−1, x0 ∈ B(x∗, r) the iterative process (2) is correctly defined and the generated sequence {xn}n≥0, which
belongs to B(x∗, r), converges to x∗ and satisfies the inequality

‖xn+1 − x∗‖ ≤
1

ρ(xn)

∫ ρ(xn)

0
L1(u)udu+

∫ ρ(xn)

0
L2(u)du+

∫ ‖xn−xn−1‖
0

N(u)du‖xn − xn−1‖

1−
( ∫ ρ(xn)

0
L1(u)du+

∫ 2ρ(xn)

0
L2(u)du+

∫ ‖xn−xn−1‖
0

N(u)du‖xn − xn−1‖
)‖xn − x∗‖.
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Corollary 2.2 The Newton-Kurchatov method (2) has the quadratic convergence order.

3 Semi-local convergence analysis under the classical Lipschitz conditions

Theorem 3.1 Let F, G : D ⊆ X → Y be continuous nonlinear operators, where X and Y are Banach spaces. Suppose
that: 1) A0 = F ′(x0) +G(2x0 − x−1;x−1), where x−1, x0 ∈ U0 = {x : ‖x− x0‖ ≤ r0} ⊂ D, is invertible operator; 2) F
has the derivative of the first-order and G has divided differences of the first- and second-order on V0 = {x : ‖x − x0‖ ≤
3r0} ⊂ D, satisfying the Lipschitz conditions on V0

‖A−10 (F ′(x)− F ′(y))‖ ≤ 2l0‖x− y‖,
‖A−10 (G(x; y)−G(u; v))‖ ≤ p0(‖x− u‖+ ‖y − v‖), ‖A−10 (G(x; y; z)−G(u; y; z))‖ ≤ q0‖x− u‖;

3) a, c, r0 are non-negative numbers such that ‖x0 − x−1‖ ≤ a, ‖A−10 H(x0)‖ ≤ c, c < a, r0 <
1− 2q0a

2 − (l0 + p0)c

2(l0 + p0)
,

r0 ≥
c

1− γ
, γ =

(l0 + p0)c+ q0a
2

1− q0a2 − 2(l0 + p0)r0
, 0 ≤ γ < 1.

Then the following inequalities hold for all n ≥ 0

‖xn − xn+1‖ ≤ tn − tn+1, ‖xn − x∗‖ ≤ tn − t∗,

where t−1 = r0 + a, t0 = r0, t1 = r0 − c, tn+1 − tn+2 =
(l0 + p0)(tn − tn+1) + q0(tn−1 − tn)2

1− q0a2 − 2(l0 + p0)(t0 − tn+1)
(tn − tn+1), n ≥ 0,

{tn}n≥0 is a non-negative, nonincreasing sequence that converges to a certain t∗ such that r0 − c/(1 − γ) ≤ t∗ < t0; the
sequence {xn}n≥0, generated by the iterative process (2), is well defined, remains in U0 and converges to the solution x∗.

Theorem 3.2 Let F (x∗) + G(x∗) = 0. Suppose that: 1) A0 = F ′(x0) + G(2x0 − x−1;x−1), where x−1, x0 ∈ U0, is
invertible operator; 2) F has the derivative of the first-order and G has divided differences of the first-order in D, satisfying
the Lipschitz conditions

‖A−10 (F ′(x)− F ′(y))‖ ≤ 2l0‖x− y‖, ‖A−10 (G(x; y)−G(u; v))‖ ≤ p0(‖x− u‖+ ‖y − v‖),

where x, y, u, v ∈ D; 3) r0 satisfies the inequality r0 < (1− 2p0a)/(2(l0 + p0)).
Then the problem (1) has the unique solution x∗ ∈ U0. If there exists r1 > r0, that U1 = {x : ‖x− x0‖ ≤ r1} ⊂ D and

2p0a+ (l0 + p0)(r0 + r1) < 1, then the problem (1) has the unique solution x∗ ∈ U1.

4 Numerical experiments

We carried out a set of experiments and present in Tab. 1 the results for the following system of nonlinear equations:{
3x2y − y2 − 1 + |x− 1| = 0,
x4 + xy3 − 1 + |y| = 0.

We used initial approximations x0 = (d, 0), x−1 = (5d, 5d) and stopping conditions ‖xn+1− xn‖∞ ≤ ε, ‖H(xn+1)‖∞ ≤ ε.

Table 1: The amount of iterations required to find the approximation to the solution of the problem (1) with the accuracy ε = 10−15.

d Newton-Kurchatov method (2) Kurchatov method [1] Newton-type method [3]
1 7 8 33
10 14 16 41
100 22 25 49

The obtained results confirm that the Newton-Kurchatov method (2) has the highest convergence speed.
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