Data Assimilation in Reduced Modeling - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2017

Data Assimilation in Reduced Modeling

Résumé

This paper considers the problem of optimal recovery of an element u of a Hilbert space H from measurements of the form j (u), j = 1,. .. , m, where the j are known linear functionals on H. Problems of this type are well studied [18] and usually are carried out under an assumption that u belongs to a prescribed model class, typically a known compact subset of H. Motivated by reduced modeling for solving parametric partial differential equations, this paper considers another setting, where the additional information about u is in the form of how well u can be approximated by a certain known subspace V n of H of dimension n, or more generally, in the form of how well u can be approximated by each subspace from a sequence of nested subspaces V 0 ⊂ V 1 · · · ⊂ V n , with each V k of dimension k. A recovery algorithm for the one-space formulation was proposed in [16]. Their algorithm is proven, in the present paper, to be optimal. It is also shown how the recovery problem for the one-space problem, has a simple formulation, if certain favorable bases are chosen to represent V n and the measurements. The major contribution of the present paper is to analyze the multi-space case by exploiting additional information derived from the whole hierarchy of spaces V j rather than only from the largest space V n. It is shown that in this multi-space case, the set of all u that satisfy the given information can be described as the intersection of a family of known ellipsoids in H. It follows that a near optimal recovery algorithm in the multi-space problem is provided by identifying any point in this intersection. It is easy to see that the accuracy of recovery of u in the multi-space setting can be much better than in the one-space problems. Two iterative algorithms based on alternating projections are proposed for recovery in the multi-space problem and one of them is analyzed in detail. This analysis includes an a posteriori estimate for the performance of the iterates. These a posteriori estimates can serve both as a stopping criteria in the algorithm and also as a method to derive convergence rates. Since the limit of the algorithm is a point in the intersection of the aforementioned ellipsoids, it provides a near optimal recovery for u.
Fichier principal
Vignette du fichier
BCDDPWdata_revised.pdf (354.42 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01352283 , version 1 (07-08-2016)

Identifiants

  • HAL Id : hal-01352283 , version 1

Citer

Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald Devore, Guergana Petrova, et al.. Data Assimilation in Reduced Modeling. SIAM/ASA Journal on Uncertainty Quantification, 2017, 5, pp.1-29. ⟨hal-01352283⟩
364 Consultations
102 Téléchargements

Partager

Gmail Facebook X LinkedIn More