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ABSTRACT

Overcomplete representations and dictionary learning algorithms are
attracting a growing interest in the machine learning community.
This paper addresses the emerging problem of comparing multivari-
ate overcomplete dictionaries. Despite a recurrent need to rely on a
distance for learning or assessing multivariate overcomplete dictio-
naries, no metrics in their underlying spaces have yet been proposed.
Henceforth we propose to study overcomplete representations from
the perspective of matrix manifolds. We consider distances between
multivariate dictionaries as distances between their spans which re-
veal to be elements of a Grassmannian manifold. We introduce set-
metrics defined on Grassmannian spaces and study their properties
both theoretically and numerically. Thanks to the introduced met-
rics, experimental convergences of dictionary learning algorithms
are assessed on synthetic datasets. Set-metrics are embedded in a
clustering algorithm for a qualitative analysis of real EEG signals for
Brain-Computer Interfaces (BCI). The obtained clusters of subjects
are associated with subject performances. This is a major method-
ological advance to understand the BCI-inefficiency phenomenon
and to predict the ability of a user to interact with a BCI.

Index Terms— Dictionary Learning, Metrics, Frames, Grass-
mannian Manifolds, Multivariate Dataset

1. INTRODUCTION

Dictionary learning approaches and sparse approximations attracted
a lot of attention in several application fields, achieving often state
of the art results. Within this context, the contribution of this paper
is of double nature. The first one is to be found on the theoretical
machine learning side. We introduce metrics in the space of mul-
tivariate dictionaries; a topic that has not been tackled yet despite
its importance. The second contribution is applicative. Indeed, the
introduced metrics are embedded in a clustering algorithm to tackle
the very challenging problem of Brain-Compute Interfaces.

Despite the profusion of research papers dealing with overcom-
plete representations, aside from some noticeable exceptions [1, 2],
few results have been reported on how the constructed represen-
tations should be compared. Thus, to qualitatively assess a spe-
cific dictionary learning algorithm, one has to indirectly evaluate it
through a benchmark based on a task performance [3, 4, 5]. Mean-
while, one can find in the literature some hints for dictionaries com-
parison with the aim of learning assessment [6, 7, 2, 8], but they
fall short to define a true metric. However, a related topic has been
studied in non-harmonic analysis. In [1], the question of compar-
ing frames is addressed by considering a mapping from the frame
space to a continuous functional space. The constructed functions
allow then for the definition of an equivalence class, a partial order
and a distance. Nonetheless this distance is not invariant to linear
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transforms, a desirable property in several application fields. Fur-
thermore, its extension to the multivariate case is not straightforward
since one should define a new mapping from the space of multivari-
ate frames to an unknown continuous functional space.

In this paper, we introduce metrics exhibiting strong properties,
among them the invariance to linear transforms. We propose to study
overcomplete representations from the perspective of matrix mani-
folds. The proposed metrics are built in two stages: first we con-
sider distance between two multivariate atoms as a distance between
their spans, which reveal to be elements of a Grassmannian mani-
fold. Then, the collection of spans are then compared by considering
transportation distances, e.g. Wasserstein distance.

From the BCI standpoint, one challenging problem is the inter-
individual variability. A large proportion of BCI users (≈ 15 to 30%)
leads to very poor results [9, 10] even with state of the art algo-
rithms. This phenomenon is known as “BCI-inefficiency” or “BCI-
illiteracy”. A major difficulty of EEG signal processing is that many
artifacts and noise sources (electrical, muscular, etc) corrupt the sig-
nal, lowering the SNR of brain signals, while several brain sources
are continuously active and mixed in the recording electrodes. The
linear transform invariance property of the proposed metric is highly
desirable: the metric is insensitive to changes in the electrode posi-
tions. We aim at tackling this problem by embedding the proposed
metrics in a hierarchical clustering algorithm. The obtained clusters
of subjects are then associated with the user’s ability to interact with
the BCI.

The paper is organized as follows. Section 2 introduces some
formal definitions. In Section 3 we define set-metrics on dictio-
naries. Section 4 provides experimental validations. On synthetic
datasets, the convergence of dictionary learning algorithm (DLA)
is shown with set-metrics. On BCI Competition datasets, set-
metrics are embedded in a clustering algorithm to characterize
BCI-inefficient subjects. Section 5 concludes this paper and points
out some future research directions.

2. PRELIMINARIES

We consider an n-dimensional real vector space V (Euclidean n-
space). The vectors of V will be denoted by u, w, the matrices by
U , W , and the transpose as (·)T . The inner product induces the
`2 norm ‖u‖22= 〈u, u〉. The pseudo-norm ‖u‖0 is defined as the
number of nonzero elements in the vector u. The Frobenius norm is
defined as ‖U‖2F= trace(UTU) and its associated inner product as
〈U,W 〉F = trace(WTU). Elements U,W have respective spans:
span(U) = U and span(W ) =W , with dim(U) = dim(W) = %.
The indexed families of matrices will be denoted as U = {Ui}i∈I
and W = {Wj}j∈J respectively. Indexed families of subspaces
will be denoted by U = {Ui}i∈I and W = {Wj}j∈J respectively.



2.1. Dictionary learning problem

In its classical formulation, the dictionary learning problem aims
at capturing most of the energy of a set of training signals Y =
[y1, . . . , yq] with yj ∈ Rn and representing it through a collection
U = [u1, . . . , um] in Rn×m thanks to a set of sparse coefficients
A = [a1, . . . , aq] in Rm×q . This collection U , which is redundant
(m � n), is called overcomplete dictionary. The admissible set of
dictionaries is convex and is defined as DU = {U ∈ Rn×m :‖ui‖2
6 1, i = 1, . . . ,m}. Formally, the dictionary learning problem
writes as:

min
U∈DU ,A∈Rm×q

‖Y − UA‖2F s.t. ‖aj‖0 6 K, j = 1, . . . , q . (1)

This problem is tackled by dictionary learning algorithms (DLAs),
in which energy representative patterns of the dataset are iteratively
selected by a sparse approximation step, and then updated by a dic-
tionary update step (see for instance [6, 3, 11, 12]).

2.2. Multivariate dictionary learning problem

Several DLA approaches have been proposed to handle multivari-
ate signals Y = [Y1, . . . , Yq], with Yi ∈ Rn×ρ, the additional di-
mension ρ being either supported by the coefficients (multichannel
approach, [13, 14, 15]) or by the dictionary atoms (multivariate ap-
proach, [16]).

The multivariate reformulation of the dictionary learning prob-
lem, called M-DLA hereafter, allows to preserve the input space ge-
ometry by considering a multivariate dictionary U as a collection
of m multivariate atoms Ui. The considered convex set of dictio-
naries is defined as DM =

{
{Ui}mi=1 ∈ Rn×ρ : ‖Ui‖F 6 1, i =

1, . . . ,m
}

. The dictionary learning problem thus writes:

min
U∈DM

q∑
j=1

min
aj∈Rm

∥∥∥∥∥Yj −
m∑
i=1

ai,j Ui

∥∥∥∥∥
2

F

s.t. ‖aj‖06K, j=1, . . . , q.

(2)

where ai,j ∈ R, aj ∈ Rm are the coding coefficients. The sparse de-
composition is achieved using a greedy approach [17, 16]. Remark
that after vectorization, this model is computationally equivalent to
the univariate model of Equation (1), under the hypothesis that the ρ
components are independent. The multivariate approach allows the
dictionary learning algorithm to take into account existing interac-
tions between components, such as rotations or unconstrained linear
transformations (case studied in this paper).

2.3. Grassmannian manifolds and their metrics

The Grassmannian Gr(%, n) is the set of all %-dimensional linear
subspaces of V . The notion of principal angles is central when char-
acterizing the distance between subspaces and hence for metrics on
the Grassmannians. Principal angles 0 6 θ1 6 . . . 6 θ% 6 π

2
between two subspaces U andW rely on the singular value decom-
position of the bases A = {ai}i∈I spanning U and B = {bi}i∈J
spanningW , with I and J two indexing sets:

ATB = Y ΣZ T = Y (cosθ)Z T , (3)

where Y = [y1, . . . , y%] and Z = [z1, . . . , z%] are orthonormal
bases. We denote by θ the %-vector formed by the principal angles
θk, k = 1, . . . , %. Here cosθ is the diagonal matrix formed by
cos θ1, . . . , cos θ% along the diagonal. It is also known as principal
correlations or canonical correlations [18].

LetU ,W be two elements of a Grassmannian manifold Gr(%, n)
and let {θ1, . . . , θ%} be their associated principal angles. The
chordal distance is probably the most known Grassmannian met-
ric [19, 20]. A detailed and complete study of other Grassmannian
metrics could be found in [21] or in [22]. The chordal distance is
defined as:

dc(U ,W) =‖sinθ‖2=

(
%∑
k=1

sin2 θk

)1
2

=
(
%− ‖U TW ‖2F

)1
2
, (4)

where U and W are the orthonormal bases for U and W , that is
U TU = I% and span (U ) = U .

3. METRICS FOR MULTIVARIATE DICTIONARIES

In this section, we will exploit the chordal metric described in the
previous paragraph to act on subsets of a Grassmannian manifold as
a ground distance. This ground distance has a key role for the defi-
nition of a metric between sets of points in a Grassmannian space.

The Grassmannian manifold Gr(%, n) together with a distance
d, such as the chordal distance, defines a metric space, or pseudo-
metric space depending on the properties of the underlying distance.
We will denote it in the sequel as (G, d), and when there is no con-
fusion as G. A result from [23] states that Gr(%, n) is a Hausdorff,
compact, connected smooth manifold of dimension %(n − %). This
result is of prime importance since one can define a Borel measure,
denoted π, on Grassmannian spaces and consequently a transporta-
tion metric.

3.1. Wasserstein distance

Let us denote by C(G) any collection on G and by GW = {(U , πU ) :
U ∈ G} where πU is a Borel measure. A measure π on the product
space U×W, with U,W ∈ GW , is a coupling of πU and πW if:

π(Ū×W) = πU(Ū), π(U× W̄) = πW(W̄) (5)

for all Borel sets Ū ⊂ U, W̄ ⊂ W. We denote byM(πU, πW) the
set of all couplings of πU and πW.

We could then define the Wasserstein distance, given p > 1,
U, W ∈ GW and a coupling π, as:

dpW (U,W) = inf
π∈M(πU,πW)

(∫
U×W

d(U ,W)pdπ(U ,W)

) 1
p

(6)

This distance is also called the Wasserstein-Kantorovich-Rubinstein [24,
Chap. 6].

3.2. Set-Metrics for dictionaries

Metric in Equation (6) is defined on Grassmannian spaces. Then
(G, d) is a separable metric space allowing to compute a distance
between the collection of subspaces spanned by a dictionary and the
collection of subspaces spanned by another. The distance between
two dictionaries in the dictionary space, that is V , is defined as fol-
lows.

Let U = {Ui}i∈I and W = {Wj}j∈J be two dictionaries of
the n × ρ vector space V . We define a distance between these two
dictionaries as:

dD(U,W) = dW,p(U,W) , (7)



Fig. 1. Left: Detection rates with a threshold of 0.99 and 0.97 as a function of the learning iteration. Right: Wasserstein set-metrics for
M-DLA using chordal (1− d c

W) and Frobenius-based distance (1− d f
W).

where U = {Ui : Ui = span(Ui), i ∈ I} and W = {Wj :
span(Wj), j ∈ J}. In the following, we will denote dW,p as dW to
simplify the notation.

From this definition, we can state the following: Let C(V) be
any collection on V . Then the following holds:

• dD is pseudo-metric and hence (C(V), dD) is pseudo-metric
space,

• dD is invariant by linear combinations.

The proof is a direct consequence of Equation (7) since dD is
defined as a distance between subspaces.

The dictionary distance dD is defined as the distance between
their subspaces, that is dD is acting in the dictionary space V
whereas the distance dW is acting in the Grassmannian space G.
As an element U of G is a subspace, there exists an infinite num-
ber of elements U in V spanning U . Thus two distinct dictionaries
U1 6= U2, that is two collections {U1

i }i∈I and {U2
i }i∈I of elements

in V , could span the same collection of subspaces U = {Ui}i∈I in
G. In other words, a distance dD(U1,U2) = dW (U,U) = 0 could
exist for two separate dictionaries U1 6= U2. As the separability
axiom does not hold, dD is a pseudo-metric and the separability
axiom is relaxed to the identity axiom: d(x, x) = 0, ∀x ∈ X .

4. EXPERIMENTS

This section demonstrates that set-metrics are able to capture the
convergence of DLA on synthetic dataset. On real EEG-based
dataset, from BCI Competition IV [25], set-metrics are embed-
ded in a hierarchical clustering algorithm to investigate the BCI-
inefficiency phenomenon.

4.1. Convergence evaluation in a dictionary recovering task

This section is devoted to demonstrate why relying on metrics allows
to improve the assessment of dictionary learning algorithms. More
precisely, a set of experiments is conducted to reproduce state-of-
the-art results on synthetic datasets and to show how the different
proposed metrics behave compared to the commonly used indicators.

Dictionaries criteria and metrics: A first measure to compare
dictionaries is the known as detection rate. Given two dictionaries
U and Û, corresponding respectively to a collection of m atoms
Ui and m atoms Ûi, a common methodology [26] is to match an

atom Ûi w.r.t. its corresponding atom Ui if their correlation value
νi is above a chosen threshold s. The correlation is expressed as
νi = |〈Ui, Ûi〉| > s. The detection rate is defined as the percentage
of the Ui atoms in U matched with atoms of Û.

The set-metric defined in Equation (7) provides a principled way
of comparing dictionaries. In the following experiments, the Wasser-
stein is parametrized with p = 1 and the measures are uniform on the
whole support, see Equation (6), it is also known as Earth Mover’s
distance or Mallows distance and many efficient implementations
are available [27, 28]. The Wasserstein distance is applied with two
different ground distances. The first one relies on the chordal dis-
tance, described in Equation (4), and is denoted d c

W. The second
one, denoted d f

W, relies on a Frobenius distance and is defined as
(d f(Ui, Ûj))

2 =‖ Ûj − Ui ‖2F= 2(1 − 〈Ui, Ûj〉), assuming that
‖Ui‖F = ‖Ûj‖F = 1. The distance d f is related to the detection rate
νi, but without the sign invariance: Ûj is not considered recovered if
it is close to −Ui. This distance is not invariant to linear transforms.

Experimental protocol: A dictionary U of m = 135 normal-
ized multivariate atoms with ρ = 10 is created from white uniform
noise. The atom length is n = 20 samples. A training dataset Ytrain

is generated by combining atoms of U. Ytrain contains q = 2000
training signals of length n. Each training signal is generated as the
sum of three atoms, the coefficients and the atom indices being ran-
domly drawn. A dictionary Û with at least m atoms is built from
Ytrain using M-DLA [16] described in (2). The quality of the DLA
is assessed by measuring the proportion of atoms in U recovered in
Û. Here, Û is initialized with random signals from Ytrain and 80
iterations of DLA are performed (sparse approximation and dictio-
nary update).

Results: The results are presented in Fig. 1: the set-metrics and
detection rates are computed at each iteration. It appears clearly that
the dictionary has almost converged after only 15 to 20 iterations. It
is thus interesting to investigate how the detection rates and the set-
metrics capture the evolution of the dictionary Û during these first
iterations. The detection rates completely fail to detect any modi-
fication ongoing in Û before 5 or 8 iterations. Then, they abruptly
increase between iterations 5 and 20. The detection rates are con-
verging toward 67% for s = 0.99 and 72% for s = 0.97 but display
important variations. These variations are a direct consequence of
the thresholding occurring in the detection rates.

All the set-metrics start with positive values because they detect



6 5 2 4 9 1 3 8 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Subject

C
la

ss
ifi

ca
ti

on
sc

or
e

(%
)

Classification scores and cluster ensembles of BCI subjects

2 3 9 8 5 4 1 7 6

0.8

0.85

0.9

0.95

1

Subject

D
is

ta
n
ce

Hierarchical clustering based on Hausdorff distance

Fig. 2. Left: Performance of the subjects from the BCI Competition
IV-2a with state of the art algorithm from [29], color indicates cluster
ensembles obtained with consensus clustering on learned dictionar-
ies. Right: Hierarchical clustering on the same dataset.

that Û is initialized with training signals. They provide a smoother
and more accurate evaluation of the convergence. The d f

W metric
provides the smoother results of all distances and the d c

W is sensible
enough to capture modification of Û after the 20th iteration.

Contrary to detection rates based indicators that provide oscil-
lating values, one can note the regularity of the values provided by
the set-metrics. This demonstrates their efficiency in the context of
dictionary learning.

4.2. Clustering on EEG-based BCI

Experimental protocol: The aim here is to rely on set-metrics em-
bedded in a clustering algorithm to investigate user-specific charac-
teristics in BCI tasks. The individual variability of BCI subjects is
still largely unharnessed: from 15 to 30% of BCI users obtain very
poor results [9, 10] with the state of the art algorithms. This phe-
nomenon is referred to as “BCI-illiteracy” or “BCI-inefficiency”. We
claim here that the comparison of subjects through computing the
distances between their associated learned dictionaries could help to
characterize the BCI-inefficiency.

Multivariate dictionaries are learned with M-DLA [16] using the
datasets from BCI Competition IV set 2a [25]. This is a motor im-
agery experiment, where 9 subjects have been instructed to imagine
four tasks (imagination of left hand, right hand, tongue or feet move-
ments) during two sessions. Each session consists of 288 trials (72
trials for each task) and a trial is 3 seconds recording of ρ = 22
electrodes sampled at 250 Hz. For a given subject, a dictionary is
learned for each task using the first session dataset, with a sparsity
parameterK = 1. Thus for all nine subjects, 9×4 = 36 dictionaries
are learned.

Relation between subject clusters and BCI-inefficiency: A
distance matrix Gt between subjects is computed for each task t
using the Wasserstein set-metric based on the chordal distance d c

W.
For a given task, the distances d c

W(Ui,Uj) between dictionaries
of subjects i and j are converted to Gaussian similarities: stij =

exp
(
−(d c

W(Ui,Uj))
2/2
)
. Subject’s clusters are gathered using

affinity propagation [30] onGt. The preference value of subjects for
affinity propagation is set to the median value of Gt.

The subject’s clusters obtained for each task are combined using
cluster ensembles techniques [31]. Hence, a partition of the subjects
in C clusters is obtained by maximizing the shared mutual informa-
tion of all tasks. The results show that the subjects are aggregated in
C = 3 or 4 stable cluster ensembles. This clustering is stable since
increasing the C value results in empty clusters. These clusters are
represented with different colors on the left-hand side of Fig. 2. The

histograms in Fig. 2 report the subject performances based on Fil-
ter Bank CSP [29], the state-of-the-art algorithm. The subjects are
sorted according to their performance, the best performing subject is
on the right-hand side. Using C = 3 cluster ensembles, the subject
with the highest performance is always alone in a cluster. The same
holds for the subject with the worst performance.

To highlight the relation between clusters of subjects, a hierar-
chical clustering is shown on the right-hand side of Fig. 2. This
hierarchy is built using the distance matrix Gt of only one task, the
one computed from feet imaginary motion1. The obtained dendro-
gram is shown on the right-hand side of Fig. 2. One can note that
subjects 2, 3, 9, 8, 5 and 4 belong to the same cluster and that each
one of the subjects 1, 7 and 6 constitute three separate clusters.

On this BCI dataset, most of the subjects share a common pro-
file except for the two extreme cases of the most BCI-inefficient
and BCI-efficient subjects. Set-metrics based on multivariate dictio-
naries offer new opportunities to qualitatively assess datasets used
in competitions and challenges. We hope that our approach could
help the community to propose more consistent and more complete
benchmarks or evaluations.

5. CONCLUSION

This contribution relies on advances from algebraic geometry and
matrix manifolds to define suited metrics for multivariate dictionar-
ies. It is the first attempt with respect to this emerging field. The
distance between dictionaries is computed as the distance between
their subspaces, yielding pseudo-metrics which are invariant to lin-
ear transformations, a very desirable property when dealing with
multivariate dictionaries.

The interest of the described metrics has been shown through
its direct application on two examples: a synthetic dataset and real
dataset of EEG-based BCI. The proposed metrics allow to estimate
empirically the convergence of a dictionary learning algorithm with
a precision outperforming the classical measurements based on de-
tection rates. On the BCI dataset, we have shown how these metrics
applied on multivariate dictionaries learned from EEG data can help
assessing the “BCI-inefficiency” of subjects. The chordal distance
endows the set metric with an invariance to linear transforms, a de-
sirable property for analyzing EEG brain signals as the set metric
is thus not affected by variations in electrods positions. Thus, the
proposed hierarchical clustering approach allows to gain new neuro-
physiological insight on the user’s ability to interact with BCI sys-
tems.

Future work will be devoted to the extensive analysis of BCI
datasets, using various clustering approaches based on the intro-
duced set-metrics. From a theoretical perspective, an ongoing work
concentrates on the embedding of these set-metrics in dictionary
learning algorithms.
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[16] Q. Barthélemy, C. Gouy-Pailler, Y. Isaac, A. Souloumiac,
A. Larue, and J.I. Mars, “Multivariate temporal dictionary
learning for EEG,” Journal of Neuroscience Methods, vol. 215,
pp. 19–28, 2013.
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