J. Sun, M. Ovsjanikov, and L. Guibas, A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion, Computer Graphics Forum, vol.21, issue.6, pp.1383-1392, 2009.
DOI : 10.1111/j.1467-8659.2009.01515.x

Y. Wang, M. Gupta, S. Zhang, S. Wang, X. Gu et al., High Resolution Tracking of Non-Rigid Motion of Densely Sampled 3D Data Using Harmonic Maps, International Journal of Computer Vision, vol.23, issue.3, pp.283-300, 2008.
DOI : 10.1007/s11263-007-0063-y

M. Jin, J. Kim, F. Luo, and X. Gu, Discrete Surface Ricci Flow, IEEE Transactions on Visualization and Computer Graphics, vol.14, issue.5, pp.1030-1043, 2008.
DOI : 10.1109/TVCG.2008.57

N. Amenta and M. Bern, Surface Reconstruction by Voronoi Filtering, Proc. 4th Annu. Sympos, pp.39-48, 1998.
DOI : 10.1007/pl00009475

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Amenta, S. Choi, T. K. Dey, and N. Leekha, A Simple Algorithm for Homeomorphic Surface Reconstruction, Proc. 6th Annu. Sympos, pp.213-222, 2000.

J. Boissonnat and S. Oudot, Provably good sampling and meshing of surfaces, Graphical Models, vol.67, issue.5, pp.405-451, 2005.
DOI : 10.1016/j.gmod.2005.01.004

URL : https://hal.archives-ouvertes.fr/hal-00488829

S. W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray, Sampling and Meshing a Surface with Guaranteed Topology and Geometry, Proc. 20th Annu. Sympos, pp.280-289, 2004.

T. K. Dey, G. Li, and T. Ray, Polygonal Surface Remeshing with Delaunay Refinement, Intl. Meshing Roundtable, pp.343-361, 2005.
DOI : 10.1007/s00366-009-0162-1

J. Dai, W. Luo, M. Jin, W. Zeng, Y. He et al., Geometric accuracy analysis for discrete surface approximation, Computer Aided Geometric Design, vol.24, issue.6, pp.323-338, 2007.
DOI : 10.1016/j.cagd.2007.04.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. and P. Chew, Guaranteed-quality mesh generation for curved surfaces, Proceedings of the ninth annual symposium on Computational geometry , SCG '93, pp.274-280, 1993.
DOI : 10.1145/160985.161150

P. Alliez, E. C. Verdì-ere, O. Devillers, and M. Isenburg, Isotropic surface remeshing, 2003 Shape Modeling International., pp.49-59, 2003.
DOI : 10.1109/SMI.2003.1199601

URL : https://hal.archives-ouvertes.fr/inria-00071991

J. Remacle, C. Geuzaine, G. Compre, and E. Marchandise, High-quality surface remeshing using harmonic maps, International Journal for Numerical Methods in Engineering, vol.3, issue.2, pp.403-425, 2010.
DOI : 10.1002/nme.2824

URL : http://orbi.ulg.ac.be/request-copy/2268/35706/90298/10.ijnme.remacle.reparam.pdf

E. Marchandise, C. C. De-wiart, W. G. Vos, C. Geuzaine, and J. Remacle, High-quality surface remeshing using harmonic maps-Part II: Surfaces with high genus and of large aspect ratio, International Journal for Numerical Methods in Engineering, vol.11, issue.8, pp.1303-1321, 2011.
DOI : 10.1002/nme.3099

E. Marchandise, J. Remacle, and C. Geuzaine, Quality Surface Meshing Using Discrete Parametrizations, Proc. 20th Int'l Meshing Roundtable, pp.21-39
DOI : 10.1007/978-3-642-24734-7_2

P. Alliez, G. Ucelli, C. Gotsman, and M. Attene, Recent Advances in Remeshing of Surfaces, Shape Analysis and Structuring, Mathematics and Visualization, pp.53-82, 2008.
DOI : 10.1007/978-3-540-33265-7_2

D. Cohen-steiner and J. M. Morvan, Restricted delaunay triangulations and normal cycle, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.312-321, 2003.
DOI : 10.1145/777792.777839

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Cohen-steiner and J. Morvan, Second fundamental measure of geometric sets and local approximation of curvatures, Journal of Differential Geometry, vol.74, issue.3, pp.363-394, 2006.
DOI : 10.4310/jdg/1175266231

J. M. Morvan and B. Thibert, Approximation of the Normal Vector Field and the Area of a Smooth Surface, Discrete & Computational Geometry, vol.32, issue.3, pp.383-400, 2004.
DOI : 10.1007/s00454-004-1096-4

URL : https://hal.archives-ouvertes.fr/hal-00381530

H. Federer, Geometric Measure Theory, 1983.
DOI : 10.1007/978-3-642-62010-2

S. Q. Xin, S. M. Chen, Y. He, G. J. Wang, X. Gu et al., Isotropic Mesh Simplification by Evolving the Geodesic Delaunay Triangulation, 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering, pp.39-47, 2011.
DOI : 10.1109/ISVD.2011.14

L. and P. Chew, Guaranteed-Quality Triangular Meshes, 1989.

J. Ruppert, A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation, Journal of Algorithms, vol.18, issue.3, pp.548-585, 1995.
DOI : 10.1006/jagm.1995.1021

J. R. Shewchuk, Delaunay Refinement Algorithms for Triangular Mesh Generation, Computational Geometry: Theory and Applications, vol.22, pp.1-3, 2001.

Q. Du, V. Faber, and G. Max, Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM Review, vol.41, issue.4, pp.637-676, 1999.
DOI : 10.1137/S0036144599352836

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Q. Du, G. Max, and L. Ju, Constrained Centroidal Voronoi Tessellations for Surfaces, SIAM Journal on Scientific Computing, vol.24, issue.5, pp.1488-1506, 2002.
DOI : 10.1137/S1064827501391576

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang, Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram, Computer Graphics Forum, vol.14, issue.2, pp.1445-1454, 2009.
DOI : 10.1111/j.1467-8659.2009.01521.x

URL : https://hal.archives-ouvertes.fr/inria-00547790

V. Surazhsky, P. Alliez, and C. Gotsman, Isotropic Remeshing of Surfaces: A Local Parameterization Approach, Proc. 12th Int'l Meshing Roundtable, pp.215-224, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00071612

B. Lévy and N. Bonneel, Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration, Proc. 21st Int'l Meshing Roundtable, pp.349-366, 2013.
DOI : 10.1007/978-3-642-33573-0_21

A. Sheffer, E. Praun, and K. Rose, Mesh Parameterization Methods and Their Applications, Foundations and Trends?? in Computer Graphics and Vision, vol.2, issue.2, pp.105-171, 2006.
DOI : 10.1561/0600000011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. S. Floater and K. Hormann, Surface Parameterization: a Tutorial and Survey, Advances in Multiresolution for Geometric Modelling, pp.157-186, 2005.
DOI : 10.1007/3-540-26808-1_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Desbrun, M. Meyer, and P. Alliez, Intrinsic Parameterizations of Surface Meshes, Computer Graphics Forum, vol.72, issue.1, pp.209-218, 2002.
DOI : 10.1111/1467-8659.00580

X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S. Yau, Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping, IEEE Transactions on Medical Imaging, vol.23, issue.8, pp.949-958, 2004.
DOI : 10.1109/TMI.2004.831226

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Wang, X. Gu, K. M. Hayashi, T. F. Chan, P. M. Thompson et al., Brain Surface Parameterization Using Riemann Surface Structure, Int'l Conf. on Computer Vision, pp.1061-1066, 2005.
DOI : 10.1007/11566489_81

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Lévy, S. Petitjean, N. Ray, and J. Maillot, Least Squares Conformal Maps for Automatic Texture Atlas Generation, Proc. 29th Ann. Conf. Computer Graph. and Interactive Techniques, pp.362-371, 2002.

S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro et al., Conformal surface parameterization for texture mapping, IEEE Transactions on Visualization and Computer Graphics, vol.6, issue.2, pp.181-189, 2000.
DOI : 10.1109/2945.856998

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Hurdal, K. Stephenson, P. Bowers, D. Sumners, and D. Rottenberg, Coordinate systems for conformal cerebellar flat maps, NeuroImage, vol.11, issue.5, pp.467-467, 2000.
DOI : 10.1016/S1053-8119(00)91398-3

A. Sheffer and E. De-sturler, Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening, Engineering With Computers, vol.17, issue.3, pp.326-337, 2001.
DOI : 10.1007/PL00013391

X. Gu and S. Yau, Global Conformal Surface Parameterization, Proc. of the Sympos. Geom. Processing, pp.127-137, 2003.

W. Zeng, D. Samaras, and X. D. Gu, Ricci Flow for 3D Shape Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.4, pp.662-677, 2010.
DOI : 10.1109/TPAMI.2009.201

L. M. Lui, T. W. Wong, W. Zeng, X. Gu, P. M. Thompson et al., Detection of Shape Deformities Using Yamabe Flow and Beltrami Coefficients, Inverse Problems and Imaging, vol.4, issue.2, pp.311-333, 2010.

B. Springborn, P. Schröder, and U. Pinkall, Conformal Equivalence of Triangle Meshes, ACM Trans. Graph, vol.27, issue.3, 2008.

K. Hormann, G. Greiner, and S. Campagna, Hierarchical Parametrization of Triangulated Surfaces, Pro. Vision, Modeling, and Visualization, pp.219-226, 1999.

S. Funke and E. A. Ramos, Smooth-Surface Reconstruction in Near Linear Time, 13th ACM-SIAM Symposium on Discrete Algorithms, pp.781-790, 2002.

J. Nash, C 1 Isometric Imbeddings, The Annals of Mathematics, vol.60, issue.3, pp.383-396, 1954.
DOI : 10.2307/1969840

J. Nash, The Imbedding Problem for Riemannian Manifolds, The Annals of Mathematics, vol.63, issue.1, pp.20-63, 1956.
DOI : 10.2307/1969989

K. Hildebrandt, K. Polthier, and M. Wardetzky, On the convergence of metric and geometric properties of polyhedral surfaces, Geometriae Dedicata, vol.23, issue.2, pp.89-112, 2005.
DOI : 10.1007/s10711-006-9109-5