Anopheles number prediction on environmental and climate variables using Lasso and stratified two levels cross validation

Abstract : This paper deals with prediction of anopheles number using environmental and climate variables. The variables selection is performed by an automatic machine learning method %don't get what you mean % %ok% based on Lasso and stratified two levels cross validation. Selected variables are debiased while the prediction is generated by simple GLM (Generalized linear model). Finally, the results reveal to be qualitatively better, at selection, the prediction, and the CPU time point of view than those obtained by B-GLM method.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01351527
Contributeur : Bienvenue Kouwaye <>
Soumis le : mercredi 3 août 2016 - 20:29:54
Dernière modification le : vendredi 5 août 2016 - 01:04:44
Document(s) archivé(s) le : mardi 8 novembre 2016 - 22:00:13

Fichiers

KOUWAYE_Lasso-DCV_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01351527, version 1
  • ARXIV : 1608.01440

Collections

Citation

Bienvenue Kouwaye. Anopheles number prediction on environmental and climate variables using Lasso and stratified two levels cross validation. 2016. <hal-01351527>

Partager

Métriques

Consultations de
la notice

50

Téléchargements du document

26