G. Bitran and J. M. Rivera, A combined approach to solve binary multicriteria problems, Naval Research Logistics Quarterly, vol.19, issue.2, pp.181-201, 1982.
DOI : 10.1002/nav.3800290202

H. W. Corley, Efficient spanning trees, Journal of Optimization Theory and Applications, vol.9, issue.3, pp.481-485, 1985.
DOI : 10.1007/BF00938448

M. Ehrgott and X. Gandibleux, A survey and annotated bibliography of multiobjective combinatorial optimization, OR Spectrum, vol.22, issue.4, pp.425-460, 2000.
DOI : 10.1007/s002910000046

URL : https://hal.archives-ouvertes.fr/hal-00462047

V. A. Emelichev and V. A. Perepelitsa, Multiobjective problems on the spanning trees of a graph, In: Soviet Mathematics Doklady, vol.37, issue.1, pp.114-117, 1988.

H. W. Hamacher and G. Ruhe, On spanning tree problems with multiple objectives, Annals of Operations Research, vol.36, issue.4, pp.209-230, 1994.
DOI : 10.1002/j.1538-7305.1957.tb01515.x

G. Kiziltan and E. Yucaoglu, An Algorithm for Multiobjective Zero-One Linear Programming, Management Science, vol.29, issue.12, pp.1444-1453, 1983.
DOI : 10.1287/mnsc.29.12.1444

J. D. Knowles and D. W. Corne, A comparison of encodings and algorithms for multiobjective minimum spanning tree problems, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), pp.544-551, 2001.
DOI : 10.1109/CEC.2001.934439

O. Marcotte and R. M. Soland, An Interactive Branch-and-Bound Algorithm for Multiple Criteria Optimization, Management Science, vol.32, issue.1, pp.61-75, 1986.
DOI : 10.1287/mnsc.32.1.61

G. Mavrotas and D. Diakoulaki, A branch and bound algorithm for mixed zero-one multiple objective linear programming, European Journal of Operational Research, vol.107, issue.3, pp.530-541, 1998.
DOI : 10.1016/S0377-2217(97)00077-5

R. M. Ramos, S. Alonso, J. Sicilia, and C. Gonzales, The problem of the optimal biobjective spanning tree, European Journal of Operational Research, vol.111, issue.3, pp.617-628, 1998.
DOI : 10.1016/S0377-2217(97)00391-3

S. Steiner and T. Radzik, Solving the biobjective minimum spanning tree problem using a k-best algorithm, 2003.

M. Visée, J. Teghem, M. Pirlot, and E. L. Ulungu, Two-phases method and branch and bound procedures to solve biobjective knapsack problem, Journal of Global Optimization, vol.12, issue.2, pp.139-155, 1998.
DOI : 10.1023/A:1008258310679

G. Zhou and M. Gen, Genetic algorithm approach on multi-criteria minimum spanning tree problem, European Journal of Operational Research, vol.114, issue.1, pp.141-152, 1999.
DOI : 10.1016/S0377-2217(98)00016-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=