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Abstract. We focus on quality control of mechanical parts in aeronautical context using a single pan-tilt-zoom
(PTZ) camera and a computer-aided design (CAD) model of the mechanical part. We use the CAD model to
create a theoretical image of the element to be checked, which is further matched with the sensed image of the
element to be inspected, using a graph theory—based approach. The matching is carried out in two stages. First,
the two images are used to create two attributed graphs representing the primitives (ellipses and line segments)
in the images. In the second stage, the graphs are matched using a similarity function built from the primitive
parameters. The similarity scores of the matching are injected in the edges of a bipartite graph. A best-match-
search procedure in the bipartite graph guarantees the uniqueness of the match solution. The method achieves
promising performance in tests with synthetic data including missing elements, displaced elements, size
changes, and combinations of these cases. The results open good prospects for using the method with realistic
data. © 2015 SPIE and IS&T [DOI: 10.1117/1.JE1.24.6.061118]
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1 Introduction

For a company, checking product conformity is a guarantee
to ensure good-quality delivery for its consumers, to poten-
tially save costs by avoiding product return, and, in crucial
applications, to prevent accidents. As a result, many efforts
are continuously made by security organizations, industries,
and research institutions in order to improve quality control
methodologies. Defect inspection using computer vision is a
widely studied topic.'™ It is suitable for contactless inspec-
tion and it ensures uniform, consistent, and quick defect
control. In the primary days of inspection using camera infor-
mation, a black-and-white image of a nondefective element
was used as a reference that was compared with the tested
and potentially defective element. Over the years, different
approaches have been used, such as correlation of defect-
free image with test image, contour comparison, and more
sophisticated approaches such as comparison of a model rep-
resenting the nondefective element with the potentially
defective element, as in Refs. 5 and 6.

In this paper, we address the computer-aided inspection
problem, trying to make sure the tested element is congruent
with its computer-aided design (CAD) model. In our
approach, the reference is an image derived from a CAD
model. This model contains primitives (including line seg-
ments and ellipses) representing the element to be controlled.
Our goal consists of comparing this theoretical image with
an image acquired with a pan-tilt-zoom (PTZ) camera.
This type of approach was used by Far’ to help in three-
dimensional (3-D) reconstruction and by Bourgeois® for
mechanical object alignment. Karabagli® used theoretical
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versus real image comparison to check machining setup
element placement in a high-speed-machining application.
This paper addresses the problem of mechanical assembly
in an aeronautical context under the constraint of robustness
and flexibility. In other words, the method has to be able to
detect defects in an evaluated element of the inspected part
while being especially careful of the false alarm rate. In fact,
it was reported that if the false alarm rate is very important,
users of the application are reluctant to use it. In all the
mentioned works, contours were the information used. In
some cases, like in Ref. 9, contours were associated with
other types of information (skeletons, geometric metrics,
and so on). In our work, we extract geometric features
from contours and characterize them mathematically. Our
work belongs then to the group of geometry-based matching
methods.

In Sec. 2, we describe how data used for inspection are
obtained. In Sec. 3, we describe the proposed matching
method based on the matching of line segments and ellipses
present in both reference and test images. In Sec. 4, we
explain how scores of line segment and ellipse matching
are combined to make a global score. Then, we present and
discuss the results in Sec. 5. The paper ends with the con-
clusion and future work in Sec. 6.

2 Setup: Pan-Tilt-Zoom Camera Associated with
Directed Light Device and Computer-Aided-
Design Model

This section describes our CAD-guided inspection method
setup and how both sensed images and data from the CAD
model are exploited in order to make acceptance/rejection
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decisions, presented later in this paper. Our goal is to check a
mechanical assembly made of several elements and whose
CAD model is known by processing only two-dimensional
(2-D) data generated from the CAD model on one hand and
the acquired image on the other. Our acquisition system is
composed of a high-definition PTZ dome and one-direc-
tional light device moving synchronously with the PTZ cam-
era (cf. Fig. 1).

In our method, we use a PTZ camera because the final
goal of the application is to be used in an hangar. For
that reason, a PTZ camera appears as a good choice in
order to cover a variable distance range. Using a robot
arm with 6 deg of freedom equipped with a camera in its
end effector could be another solution, but it is potentially
more expensive. This acquisition system is provided by
the company G?Metric, which has developed inspection soft-
ware named Lynx that carries out the inspection task by com-
paring an acquired image with a defect-free reference image
stored in a database. Our goal using the CAD model is to
work on a new version of Lynx in order to replace the current
reference image with an image derived from the CAD model.
Data used during the inspection process are obtained through
two different stages. First, the CAD-derived image is gener-
ated as a screenshot of our CAD model at one given position
previously decided by the user as a representative view of the
element to be controlled. From the CAD model, we coarsely
estimate a lookup table for the pan and tilt parameters of our
PTZ camera. Also, we estimate a congruent zoom factor for
the PTZ camera in order to have the same scale for both theo-
retical and real elements. Second, we use all these parameters
to direct our acquisition system toward the element to be
inspected. The inspection is guided by the CAD model.
After the selection of an element of the CAD model in a
given position, the PTZ camera is positioned and an image
of the element is taken in this position. At the end of this
procedure, we have a set of images made of theoretical and
real images (cf. Fig. 2).

The hypothesis here is to consider that the parameters
used to generate the theoretical image are sufficient to help
us position the real camera in order to have two comparable
images. In fact, our main goal during this work is to be able
to compare one theoretical image with one real image,
assuming that they are aligned. This means that the image
generated from the CAD model and the sensed image
share the same coordinate frame. If the test image is nonde-
fective, then the object of interest is located at nearly the
same position in both images. It is important to highlight that

Fig. 1 Acquisition system: PTZ camera and the directional light
device.
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the goal is to compare two images. The reference image,
which is a theoretical image, has to be compared with the
test image in which the object of interest can be incorrectly
mounted by the operator who can mount an object having a
wrong size, or an object that can be displaced/rotated rela-
tively to what is expected in the CAD-derived image.
Therefore, we will be considering that perspective distortions
can be neglected. However, a 2-D image registration in terms
of rotation and translation may be suited in order to be able to
compare the test image with its reference. Comparing a theo-
retical image with a real image is a challenging task because
the first is created using mathematical object descriptions
and the second captures the object description via optics.
In that sense, the first question to ask is: What kind of infor-
mation can be used to achieve a robust comparison of these
images? In the next section, we describe our CAD-based
matching method to compare an image generated from a
CAD model with an image acquired with the PTZ camera,
using primitives extracted from the contours.

3 Computer-Aided-Design-Based Matching of
Primitives from a Reference
and a Test Image

In this section, we describe our matching method, starting
with a short literature review in Sec. 3.1. In Sec. 3.2, we
describe which primitives are used in the matching process
and how they can be extracted from the images. Also in this
section, we explain how the primitive extraction problem is
related to the problem of image registration in the peculiar
context of image matching. The matching process is accom-
plished in two stages. First, in Sec. 3.3, two attributed graphs
representing the reference and the test objects are con-
structed. Then, we compute a similarity function that pro-
vides a matching score for each pair of graph nodes. Finally,
the similarity scores are used in Sec. 3.4 as edge weights of a
bipartite graph that is optimized in order to keep only the best
weighted edges. After bipartite graph optimization, we guar-
antee one-to-one matching at the primitive level, which
means that we find the correct line segments and ellipses in
the test image that best match their counterparts in the refer-
ence image.

3.1 Related Works

Matching is the task of finding correspondences between ele-
ments of data schema or data instances.'” Matching is applied in
numerous fields of science such as computer science (namely
in data warehousing and e-business), bioinformatics, and
image analysis. In image analysis and computer vision, the
matching task has been widely studied.''~"* It has applications
in 3-D reconstruction, object retrieval or object recognition,
automated inspection, disease diagnosis, and so on. The match-
ing task varies a lot and so do matching techniques. In image
analysis, matching techniques include descriptor-based meth-
ods [scale-invariant feature transform (SIFT)'? and speeded up
robust features (SURF)'#], cross-correlation (CC)-based meth-
ods (CC, normalized cross-correlation, zero mean normalized
cross-correlation bounded partial correlation'®), template
matching,'® shape-based matching, model-based matching,
geometry-based matching, and hybrid approaches. In our
method, the goal is to match a CAD-derived image with an
image acquired by a camera. In that sense, approaches relying
on image intensity such as descriptor-based matching
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Fig. 2 Set of images generated from CAD model (top) and real images acquired with PTZ camera
(bottom).

techniques (like SIFT and SURF), classic template matching, or
classic correlation-based matching techniques are not appli-
cable to our data. In our approach, we try to match geometric
information, as it is the only really relevant information in our
data. Thus, our method belongs to the group of geometry-based
matching methods. This group of methods has received a lot
of attention from the computer vision and image analysis com-
munities, and it includes works on topology matching'’'? as
well as works relying on similarity measurements of mod-
els.!*?%2! Our approach is inspired by the method suggested
by Fishkel,”” which is a 3-D application of graph match-
ing using a bipartite graph and tree search. In our 2-D method,
first, we compute similarity measurements between two attrib-
uted graphs. The similarity scores are later used as edge weights
in a bipartite graph in which a mutual best match search is car-
ried out. The final step of our work concerns the calculation of a
global score, which combines the result of ellipse matching
with the result of line matching in order to validate or refuse
the inspected element.

3.2 Feature Extraction and Contour Registration

Most of our mechanical elements (Fig. 2) contain several
elliptical elements. Segments are also one very common fea-
ture in our images. Therefore, these are the features used in
our approach. Extracting these features is a known problem
in computer vision. Before diving into the core of the line
and ellipse extraction problem, another point that needs to
be taken into consideration is contour registration. Given
two or more images representing the same scene (taken at
different times, points of view, or with different sensors),
image registration’>? is the process of bringing them into
the same coordinate frame so that they can be overlaid.”
In our case, we have an image generated from the CAD
model and a sensed image acquired with a PTZ camera, as
shown in Fig. 2. The raw information on these images cannot
be used directly for inspection purposes. Indeed, they re-
present the same object, but the only common information
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they share is the object geometry. Thus, we use contours
of objects in both the CAD-derived image and the sensed
image. The application is designed to work with real sensed
images in the end. However, in this study, the sensed image
will be simulated by an image also generated from the CAD
model, exhibiting some comparative differences to the refer-
ence image. Several examples of test images and their
respective contours are shown in Fig. 3. The ultimate goal is
to extend the study and compare the results obtained with
synthetic data with those of future tests that will be done
using experimental data. This will be the object of our
next work.

As explained in Sec. 2, objects of interest in a test image
can be mounted incorrectly by the operator compared to what
is defined in the CAD model. As a result, a 2-D image regis-
tration may be suited before image comparison. An example
of such a situation is shown in Fig. 4. The element in the test
image is translated compared to the reference image. We will
explain how this registration is done using contours. When
we look Fig. 4, it is obvious that it is necessary to register the
reference image in green with the test image in magenta
before comparing them. The registration stage will yield
the transformation matrix, from which we can compute the
parameters (rotation angle and translation vector) that allow
the overlaying of green and magenta contours from Fig. 4.
Image registration has received a lot of attention from
researchers from both the image analysis and computer
vision communities. In fact, several applications in different
fields of these domains, such as 3-D reconstruction, medical
image analysis, inspection, and others require images to be
aligned. Depending on the type of images to be aligned,
methods such as SIFT, phase correlation, optimization
using regular step gradient descent, and so on have been
successfully applied. In our application, most of the images
can be aligned using regular step gradient descent optimiza-
tion in a process that tries to minimize mean-square error
or to maximize mutual information.”* For other images,
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Fig. 3 First row: screenshot of CAD model of an element to be inspected. Second row: left, scalable
vector graphics (SVG) image generated from the CAD model (reference image) and its contour extracted
after bitmap conversion; right, SVG image generated from the altered CAD model (test images) and their
respective contours extracted after bitmap conversion.

registration is accomplished using a phase correlation algo-
rithm.?*?> For the example shown in Fig. 4, we obtained the
result presented in Fig. 5 after a registration using regular
step gradient descent minimizing the mean-square error
between the two input contours. For a 2-D rigid registration
of two images, the transformation matrix (TM) composed of
arotation matrix R(¢) and a translation vector T = (z,.t,)" is
written as follows:

cos(d) —sin(0) ¢,
TM = | sin(d) cos(d) 1, |. (1)
0 0 1

The visual result shown in Fig. 5 is obtained by applying
the transformation matrix [Eq. (2)] to the reference contour,
causing it to be aligned with the test contour. From Eq. (2),
we can obtain the registration parameters (rotation angle ; =
0.2 deg and translation vector T = [—127.804, —65.295]"):

Fig. 4 Two contours not registered: contour of test (left) and contour
of reference image (right).
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0.999 0.0004 —127.804
0.0004 0999 —-65.295 |. 2)
0 0 1

TM1:

Now, with the two contour images registered, we can
move a step ahead in our goal to compare them. As said pre-
viously, we are going to extract primitives (line segments and
ellipses) from the two images. Later, they will be described
and matched.

Mainly, two large families of methods are used to extract
primitives like ellipses or line segments from an image. The
first one may derive from the Hough transform?® and uses a
vote system or is based on curve fitting using an optimization
least square-like process. It has been proven that these
categories of methods can be used for both line and ellipse
detections. The standard Hough transform?® is a reference for
line detection, and it was generalized to deal with other para-
metric curves such as ellipses. Improved versions of the
Hough transform, e.g., the randomized Hough transform,
have also been successfully used in line and ellipse

Fig. 5 Test and reference images after the registration process.
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extractions.”” A new reference line segment algorithm is pre-
sented in Ref. 28. Prasad et al.” presented an ellipse-fitting
algorithm allowing good ellipse extraction. Patraucean
et al.’® presented a parameterless ellipse and line segment
extraction algorithm. The second category of methods for
parametrized curves is based on edge grouping.}'¥
Methods in this group have been successfully used for ellipse
and elliptical arc detection. It is worthy of mention that other
classifications may be different from this one. For instance,
Wang et al.’! divide ellipse extraction algorithms into three
groups, including in their classification genetic algorithm-
based methods.

In this work, we are not concerned about developing a
new feature extractor but rather with using one of the
known algorithms to extract our primitives that will be fur-
ther matched. The Prasad algorithm® performs well in our
images for ellipses detection as soon as the images are cor-
rectly segmented. Currently, our images are segmented using
some preprocessing strategies based on mathematical mor-
phology combined with connected component labeling tech-
niques. Another algorithm that has been proven to work well
for ellipse and line detection is the ellipse and line segment
detector (ELSD) by Patraucean et al.’® The advantage of
using ELSD is that we obtain both ellipses and line segments
using one single algorithm. However, even using well-seg-
mented images, the result of the ELSD algorithm may need
to be filtered, as it can yield short segments or concentric
ellipses. For that reason, we chose to use the Prasad algo-
rithm® to find ellipses in our images and the classic
Hough transform algorithm for finding line segments.
Figure 6 shows one example of primitives extracted from
the reference and the test images after contour registration.
These two sets of primitives are the input of our matching
method described in the next sections. Ellipses in the refer-
ence image are labeled from 1 to P; in this example P = 6.
Therefore, the labels for ellipses in the test image start
from P+ 1. Similarly, line segments in the reference
image are labeled from 1 to L (L =4 in this example).
Subsequently, line segments in the test image contain labels
starting from L + 1. The same labeling technique is adopted
in the next section when we present attributed graphs (cf.
Fig. 7). As stated previously, we consider two types of prim-
itives: ellipses and line segments. Each type of primitive can
be described by a set of attributes. For instance, one ellipse is
represented by five parameters: its center coordinates, the

O O

(@)

orientation angle, and the half-lengths of the two axis. A
line can be described by its endpoints.

3.3 Feature Matching Using a Match Function

Line segment matching has been a widely studied topic over
the last 40 years, as it can be used in several applications such
as 3-D reconstruction,’? object retrieval, and so on. This is
also the case for primitives like ellipses.** In this section, we
explain our primitive matching method. Figure 6 shows an
illustration of such primitives.

3.3.1 Preliminaries

Given two sets of primitives X and Y, with X representing
primitives in the theoretical image and Y representing prim-
itives in the real image, we will show how a match score
s(X,Y) denoting the similarity between these two sets of
primitives can be computed. For ellipses, from the initial
five parameters, we create an attribute vector with four var-
iables: the center coordinates, the orientation angle, and the
ellipse area (computed using the half-lengths of the two
axis). For line segments, from the endpoints, we construct
the attribute vector also composed of four variables, the mid-
point coordinate of the line, its length, and its orientation
angle. For each primitive set, we construct a graph (basic
concepts of graph theory are presented in the next section).
The graph representing theoretical primitives is composed of
N nodes (for N theoretical primitives) and the one for the real
dataset contains K nodes (representing the K primitives in
the real image). Each graph node is associated with the attrib-
ute vector describing the represented primitive. Each graph
also contains a set of edges linking two nodes. Two primi-
tives are linked by relative neighborhood relationship.*
However, any other proximity relationship could be conven-
ient, as we are not exploiting the information from graph
edges; all the relevant information (attributed vector) is
assigned to the nodes. The choice of using an attribute
graph was made because this graph is an effective way of
representing objects® and is standardized and easy to handle
(we can assign as many attributes as we wish to the nodes
and to the edges). Figure 7 shows four graphs corresponding
to the two sets of ellipses and line segments shown in Fig. 6.
The attribute graphs have their nodes associated with an
attribute vector. In Fig. 7, we illustrate this by adding an
arrow to one node of each graph.

@) ©
O
@)

O

(b)

Fig. 6 Two sets of primitives (line segments and ellipses) extracted from the reference image (a) and test

image (b) after contour registration.
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Fig. 7 Attributed graphs for the two sets of primi

tives shown in Fig. 6. First row: graph corresponding to

ellipses in reference image (left), and graph corresponding to ellipses in test image (right). Second row:
graph corresponding to line segments in reference image (left), and graph corresponding to line seg-

ments in test image (right).

3.3.2 Basic graph theory concepts

Given a graph G = (V,E), the set Ng(v)={ue
V(G)|uv € E} denotes the neighborhood of a vertex v.
The degree of a vertex v is |[Ng(v)| and is denoted by
dg(v). If dg(v) =0, then v is called an isolated vertex.
The in-degree of a vertex v is the number of edges having
the arrow pointing toward v. The out-degree of a vertex v is
the number of edges having the arrow going out from v. A
graph G = (V,E) is said to be bipartite if V(G) can be par-
titioned into two disjoint sets X and Y such that every edge
e € E joins a vertex in X to another vertex in Y. A partition
(X,Y) of V is called a bipartition. A bipartite graph with
bipartition (X,Y) of V is denoted by G = (X, Y, E). Most
of these definitions can be found in Ref. 37 and in the
Python igraph library documentation. Other standard con-
cepts in graph matching include graph or subgraph isomor-
phism and maximal common subgraph.*® In graph matching,
as often as possible, exact graph matching is carried out
through isomorphism and maximal common subgraph.
Other times, inexact graph matching is needed.'® As noted
in Refs. 21 and 38, in real-world applications, it is not always
possible to use concepts such as graph isomorphism or maxi-
mal common subgraph because of the imperfection of the
real-world data. In such cases, an error-tolerant graph match-
ing approach or a method that computes a measure of sim-
ilarity between two given graphs is suitable, which is the case
in the work described in this paper.

3.3.3 Match function

The match score is computed in the following manner. We
divide the attribute variables into two classes (¢ = [cy, ¢3]).

Attribute variables such as area or length belong to the class
¢y, as we can compute their ratio [cf. Eq. (3)]. Computing the
ratio for attribute variables such as center coordinate or ori-
entation is, however, not meaningful. Therefore, these attrib-
utes will be in class c¢,. For such attributes, the similarity
score is computed using the absolute difference between
the theoretical and the test primitives [cf. Eq. (4)]. In this
calculation, a maximal accepted disparity J; between the
theoretical and the test primitives is included in order to nor-
malize the score. For the i’th attribute, the maximal accepted
disparity 9, is a threshold that specifies the maximal expected
difference between the test attribute and its theoretical
counterpart. For instance, if we are considering a line orien-
tation, then the maximal accepted disparity stands for the
maximal difference between the angle value expected for
the theoretical line and the actual value of the angle measured
for the test line. This maximal accepted disparity J; is chosen
based on the user requirements, so it can vary from one appli-
cation to another one.

To summarize, for ellipses, the class ¢; contains ellipse
areas as attribute variables; for both reference and test prim-
itives, the ratio of the two areas is computed and normalized
to be in the range [0, 1]. The class ¢, contains ellipse ori-
entations and ellipse centers as attribute variables for the
two types of primitives (reference and test). The center coor-
dinates are used to compute the euclidean distance between
the two primitives. A score produced by attributes from the
class ¢, is in the range [—inf, 1]. In our method, only can-
didates having scores in the range [0, 1] for both ¢; and ¢,
are considered for matching purposes. For line segments, the
class c¢; contains the segment lengths as attribute variables
for the reference and the evaluated line segments. The class
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¢, contains the midpoints and the orientations of the seg-
ments as attribute values. The similarity between a theoreti-
cal and a test primitive is then the summation of the scores of
each individual attribute (length or area, orientation, and
euclidean distance). This match function was proposed by
Mclntosh and Mutch® for line matching. We extended the
concept in order to use it with ellipses as well:

B min(X, . Y,, )

= ML e, 3
S max(Xy,.Y,,) Hrea )

lf l (S Co, (4)

S(Xp Yn) = ME(X,, ¥,) = > sy, ©)

where X stands for a primitive in the theoretical image,
whereas Y, is a primitive in the test image and i denotes
the i’th attribute for a given primitive. §; is the maximal
accepted disparity for the i’th attribute in the class c¢,. The
scalar s; is the match score between one theoretical primitive
with one test primitive for the i’th attribute. As some attrib-
utes may be more relevant than others,'? a priority weighting
function may be suitable. In our case, we follow the weight-
ing technique proposed by McIntosh and Mutch.* It is rep-
resented in Eq. (5) by w,. For each attribute variable for
which a score is computed, a priority P; is defined between
1 and 10. A value Q; = 11 — P; is then created. Subse-
quently, T = > Q; is created; w; = Q;/T. The important
point in this weighting function is how to define P;.
Assigning a low priority to an attribute variable corresponds
to giving it a high weight value. If it is not possible to dis-
tinguish which attribute variables deserve which priority,
then it is better to give them the same priority. This technique
leads to a value w;, which is always in the range [0, 1].
Finally, s(X,Y,,) denotes the match score between X
with Y ,,.

The matching algorithm is accomplished by exploring all
the nodes in the theoretical graph and by searching for the
most similar nodes in the graph representing the test image.
The similarity criterion used during the search process is the
match function described previously. During this process, a
matching matrix is computed. The matching matrix links a
primitive in the set X with a primitive in Y (cf. Table 1). This
matching matrix is very important, as it is used later to con-
struct the bipartite graph.

For the matching matrices shown in Tables 1 and 2, the
maximal disparity for attributes corresponding to the center
coordinates is 40 pixels and 10 deg for the orientation. In this
example, both reference and test images have the same num-
ber of ellipses and line segments, and the two contour images
were correctly registered. Therefore, there is no need to do an
optimization process in order to find best matches, as we
have one-to-one correspondences already. Nonetheless, in
some situations, a one-to-several match is possible (see
Fig. 8). In this example, the reference image has 6 ellipses,
whereas the test image has 10. One green ellipse from the
reference image may match two magenta ellipses from the
test image (cf. Fig. 8, second row). This is highlighted in
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Table 1 Matching matrix between test and reference ellipses shown
in Fig. 6.

Ellipses from test image

1 2 3 4 5 6

Ellipses from 1 0.980 0.0 0.0 0.0 0.0 0.0

reference

iImage 2 0.0 0.971 0.0 0.0 0.0 0.0
3 0.0 0.0 0.980 0.0 0.0 0.0
4 0.0 0.0 0.0 0.983 0.0 0.0

5 00 0.0 0.0 0.0 0973 0.0

6 00 0.0 0.0 0.0 0.0 0.975

Table 2 Matching matrix between test and reference line segments
shown in Fig. 6.

Line segments from test image

1 2 3 4
Line segments 1 0.0 0.969 0.0 0.0
from reference
image 2 0.863 0.0 0.0 0.0
3 0.0 0.0 0.0 0.976
4 0.0 0.0 0.859 0.0

different colors in the matching matrix of ellipses shown
in Fig. 9.

In such a situation, we have to find the best matches in
order to satisfy the uniqueness constraint of the matching. In
the next section, we explain how the best match search is
performed, using a bipartite graph.

3.4 Search of Mutual Best Match in a Bipartite
Graph

Bipartite graph matching has been widely studied and has
applications in various fields of science, such as data
mining,*” mathematics,”” computer vision, and image analy-
sis.?%?14! By its definition, it is obvious that it is particularly
suitable for a two-class matching problem. In our method, it
is used as follows. First, we count the number M of occur-
rences of a score in the matching matrix meeting a predefined
threshold. A bipartite directional graph containing M edges
is then created. This graph holds in it two types of nodes
(X,Y), representing theoretical and real primitives, respec-
tively. An X-type node in the bipartite graph is connected
to a Y-type node when their similarity score satisfies the
threshold condition. The edge linking these two nodes is
weighted with their similarity score. The threshold is in
the range [0, 1], and it has to be set to a low value, depending
on the level of similarity desired in the application. The use
of a threshold is optional and aims at reducing the size of the
bipartite graph without discarding potential good candidates
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Fig. 8 (a) Contours of reference (left) and test (right) images. (b) Contours of reference and test images
aligned. (c) Extracted primitives from the contours.

for matching. If we choose not to use the threshold, the bipar-
tite graph will be larger, as each reference node will be con-
nected to all test nodes. In the bipartite graph, one X-type
node may be connected to more than one Y-type node and
vice versa. In that sense, an optimization process may be
required in order to filter out edges having low scores and
uniquely keep the mutual best matches. The mutual best

Ellipses from test image
g 1 2 3 4 5 6 7 8 9 10
E 1[{1.0] 0.0 0.0 0.0 00 00| 00 0.0 0.0 0.0
29(2]00[0864] 00 |0.830] 0.0 [00] 0.0 0.0 0.0 0.0
E £[3[00] 00 [0876] 0.0 [0.837]0.0] 0.0 0.0 0.0 0.0
2 [4[00] 00 | 00 | 00 | 00 |10] 00 | 00 | 0.0 | 0.0
é" 5(00] 00 0.0 0.0 00 000870 0.0 |0.821 | 0.0
= 6 (00| 0.0 0.0 0.0 00 (00| 00 0.889| 0.0 |0.837

Fig. 9 Matching matrix illustrating one-to-multiple correspondences
for the ellipses in Fig. 8, third row.
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match search algorithm in the bipartite graph is divided
into two stages. In the first stage, best matches are found
for edges linking a Y-type node with an X-type node as
follows.

Let k be a Y-type node; if the in-degree of k is 1, add the
edge linking k and one X-type node to the best match list.
Otherwise, if the in-degree of k is greater than 1, then search
the connected edge to k holding the maximal weight. Add
this edge to the best match list. Add the other edges to
the pruning list. As the edges in the bipartite graph are ori-
ented, this step can be considered a target-to-source best
search. In the second stage, the best matches in a source-
to-target sense are found using the out-degree of the
nodes. The mutual best match is kept and all nonmutual
best match edges are eliminated from the graph. The mutual
best match search guarantees respect of the uniqueness con-
straint of the matching. Figure 10 shows the bipartite graph
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@ ()

Fig. 10 Best match search illustration. Bipartite graph before mutual best match search, with nonbest
matches (annotated with a star) (left). Bipartite graph after best match search (right).

corresponding to the ellipses match presented in Fig. 8
before and after the mutual best match search.

Once the uniqueness constraint of matching is verified,
we can move to the final step of the method and combine
the results of ellipse matching with those of line segment
matching in order to achieve a global score that indicates
how close the test image is to the reference image.

4 Making the Conformity Decision

Before combining the results of ellipse and line segment
matching, it is worthwhile to remember that the input images
(contours) undergo a rigid registration stage before match-
ing. Therefore, registration parameters (rotation angle and
translation vector) have to be taken into account in the deci-
sion process. Thus, they will be provided in addition to the
final score. In fact, we cannot set limit values for these
parameters, as they are highly related to customers’ applica-
tion. For instance, a user “A” may decide that elements of his
inspected part are not defective for a certain translation value,
whereas another user “B” will say the opposite for the same
translation value. In order to keep the method as flexible as
possible, we imagine registration parameters to be provided
as gauge indicators that have to be set out by the user.

As said previously, if we have one-to-one matches for
both ellipse and line segment matching, we can combine
them to make a global score. This is done as follows:

11 1 &
Se,lzz(ﬁiz_l:ei+z;lj>' (6)

In Eq. (6), s, represents the global score taking into con-
sideration ellipses e and lines /. P represents the number of
expected ellipses in the reference image and L stands for the
number of line segments expected in the reference image. M
and M, are the number of ellipses and line segments from the
reference image that matches ellipses and line segments from
the test image; e; and /; are the match scores for i'th ellipse
and j'th line segment in the reference image. Having a global
score, it is easy to make the conformity decision. For in-
stance, taking into consideration the matching matrix for
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ellipses (Table 1) and for line segments (Table 2), the test
image from Fig. 4 yields the following global score:

score; =—
6

n 0.969 +0.863 +0.859 +0.976
4

1 <0.980 +0.97140.980+0.983 +0.973 +0.975

) =0.9469.

As said previously, the decision has to be made in a flex-
ible way that allows the application to be used by different
customers. Thus, the global score and rigid registration
parameters [cf. transformation matrix (Table 2)] should be
fixed according to the customer’s requirement. In that
sense, the decision parameters for this element will be

e gscore: 0.9469;

e translation: 7, = 127.804 px - 254 mm, ¢, =
65.295 px — 13.0 mm  [object size: (46 mm X
30 mm — 231 px x 150 px)]; and

* rotation angle: = 6; = 0.2 deg.

The decision elements are compared with the limit values
preset by the user. If they are in the range fixed by the user,
then the element is said to be nondefective.

5 Results and Discussion

The present method was tested with synthetic data and has
proved to work well. It is capable of finding correct matches
for ellipses and for line segments. Test cases include missing
elements, displaced elements, size changes, and combina-
tions of these cases. In all these cases, the method performs
well. In addition to the test image from Fig. 4, taken to illus-
trate the approach, the next paragraphs show the results for
some other cases.

Let us consider the test image from Fig. 8. This test image
has 10 ellipses, whereas the reference image has only 6 ellip-
ses. The method was capable of matching the correct ellip-
ses, as shown in the bipartite graphs in Fig. 10. For this
image, the final result at the end of the procedure is

Nov/Dec 2015 « Vol. 24(6)



Viana et al.: Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera. ..

¢ score: 0.958. For this element, the score is high in spite
of the fact that the test element has more ellipses than
the reference. As we know it as a prior information, we
can use an alert to let the user know that in addition to
what was expected to be in the CAD model, we found
four supplementary ellipses in the test image;

~0 mm, 7,

¢ rotation angle: 8, ~ 0 deg.

* translation: 7, ~ 0 mm; and

This result takes into consideration the matching matrix
(Fig. 9) for ellipses, which was combined with the matching
matrix for line segments (we have a perfect match for line
segments). It also includes the registration parameters
extracted from following transformation matrix [Eq. (7)],
which is obtained with a regular step gradient descent that
minimizes the mean-square error between the test and refer-
ence images:

1.0 0.0004 -0.0012
™, = <0.0004 1.0 -0.0059 ) . @)
0 0 1

Now, consider the input contours shown in Fig. 11. In this
example, the test image is translated and it has fewer ellipses
than what is expected in the reference image. Therefore, the
score is also lower than in the previous case.

For this element, the registration parameters come from
the following transformation matrix:

1.0 0.001 1.7
™; = <0.001 1.0 1721 ) ®)
0 0 1

After the registration and primitives matching, we obtain
the matches shown in Tables 3 and 4.
At the end of the procedure, the final result is

¢ score: 0.7945. This is the global score (gathering the
contribution of ellipses and line segments) given by
the application. Additionally, we report that there are
missing elements;

e translation: 7, ~ 1.7 px - 0.3 mm, 7, ~172 px —
34.4 mm; and

* rotation angle: 6, ~ 1 deg.

One important point that deserves to be highlighted con-
cerns rotated elements. Finding the transformation matrix to
register a rotated test image with the reference image is not a
problem. Indeed, we can find the transformation matrix
that allows the registration to be done, as long as the rotation
is not too important (up to 45 deg). This is illustrated by
Fig. 12, in which a case of a 45-deg rotation between the
test and the theoretical primitives is presented. If the CAD
model is correctly exploited to generate the theoretical
image, this case of an important rotation between the test
image and the reference image would never occur. How-
ever, as the application deals with the inspection of part
assembly, one element may be awkwardly assembled; this
is the reason why we would like to be capable of assessing
such cases as well. A transformation matrix for the rotated
test image in Fig. 12 is

0.707 -0.707 -113.4
™, = <0.707 0.707  708.6 ) 9)
0 0 1

In this section, we have shown some test cases, including
translation, rotation, and missing elements. Even if tests
exhibiting size changes were carried out, we did not show
examples with varying zoom factors. In fact, all the tests
were carried out using synthetic data. We plan to show
tests with experimental data in the future. Then the impact
of varying the zoom factor will be quantified. Currently, we
can assess cases in which the test element and its reference

5

7

fz
Q

\

— ] ¥ %

O

& &
5 &

(a)

(b)

(©

Fig. 11 lllustration of a test case with missing elements. (a) Input contours of reference (top) and test
(bottom) images before registration. (b) Input contours after registration. (c) Primitives extracted from the

input contours after registration.
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Table 3 Matching matrix between test and reference ellipses seg-
ments shown in Fig. 11.

Ellipses segments from test image

1 2 3 4
Ellipses segments 1 0.0 0.0 0.0 0.0
from reference image
2 0.964 0.0 0.0 0.0
3 0.0 0.962 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.969 0.0
6 0.0 0.0 0.0 0.969

Table 4 Matching matrix between test and reference line segments
shown in Fig. 11.

Line segments from test image

1 2 3 4
Line segments 1 0.99 0.0 0.0 0.0
from reference image
2 0.0 0.877 0.0 0.0
3 0.0 0.0 0.0 0.966
4 0.0 0.0 0.985 0.0

have different sizes, which is equivalent to changing the
zoom factor. In such cases, correspondences can still be
established and a global score can be given as easily as it
is done in cases of rotation or translation. Nevertheless,
an exhaustive benchmark to quantify the impact of the
zoom factor is to be realized later with realistic data.
Also, even if tests using synthetic data have shown good

— T testimage

VA

+ reference image

(a)

performance, namely in terms of establishing correspond-
ences between the test element and its theoretical counter-
part, it is fundamental to test the application with realistic
data, as it is intended to work in a real-world environment.
As said in Sec. 6, using realistic data is a work still in
progress, and it will be shown in a future paper.

6 Conclusion and Future Work

We present a CAD-based inspection of mechanical parts by
means of comparison between a reference and a test image.
First, we extract contours from both images and then we
register them before extracting primitives (line segments
and ellipses) that are described and used to construct two
attributed graphs. The graphs are matched using a similarity
measurement function. In order to guarantee one-to-one
matching, an optimization process is carried out using a
bipartite graph. Finally, we compute a global score combin-
ing the matching result for line segments and for ellipses.
Tests with synthetic data proved that the method works in
cases such as missing elements, displaced elements, size
changes, and combinations of these cases.

We have shown that as soon as the test image and the
reference image are registered, it is easy to make the com-
parison using our graph matching method based on a sim-
ilarity function. However, problems may appear after the
registration. In fact, during the registration stage, pixels
undergo an interpolation. As a result, the contour image
obtained from the registration process may be downsampled.
In such a condition, it is more difficult to extract primitives
from the contour image, as one ellipse can break into several
connected components. For this reason, a regular ellipse fit-
ting algorithm may not work. We are currently investigating
the best way to tackle this problem concerning element rota-
tion, either by using a more adapted primitive extractor or by
changing the registration position in the method flowchart.

Our method relies on the matching of two types of prim-
itives (ellipses and line segments); in the future, we want to
enlarge the approach to include other shapes, as ellipses
and line segments may not be sufficient to describe all the
images. In this paper, we present results of 2-D/2-D compari-
son using synthetic data. Tests with real experimental data
are in progress. Another approach that consists of not using

(b)

Fig. 12 Example of a rotated image before and after registration with the reference image. (a) Reference
image (+) and test image (++) before registration. (b) Reference and test images after registration.
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any synthetic images computed from the CAD model is
being investigated. In that approach, we will directly
match 3-D primitives extracted from the CAD model with
2-D primitives extracted from the real image to be checked.
After calibration of the real camera, its pose can be estimated
and used to project 3-D primitives from the CAD model onto
the image plane (augmented reality) then it will be possible
to perform a direct 3-D/2-D matching.
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