
HAL Id: hal-01350517
https://hal.science/hal-01350517

Submitted on 7 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural simplification of chemical reaction networks
in partial steady states

Guillaume Madelaine, Cédric Lhoussaine, Joachim Niehren, Elisa Tonello

To cite this version:
Guillaume Madelaine, Cédric Lhoussaine, Joachim Niehren, Elisa Tonello. Structural simplification of
chemical reaction networks in partial steady states. BioSystems, 2016, Special Issue of CMSB’2015,
149, pp.34–49. �10.1016/j.biosystems.2016.08.003�. �hal-01350517�

https://hal.science/hal-01350517
https://hal.archives-ouvertes.fr


Structural simplification of chemical reaction networks in partial steady statesI

Guillaume Madelainea,b,⇤, Cédric Lhoussainea,b, Joachim Niehrena,c, Elisa Tonellod

aCRIStAL, UMR 9189, 59650 Villeneuve d’Ascq, France
bUniversity of Lille, France

cINRIA Lille, France
dUniversity of Nottingham, United Kingdom

Abstract

We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that
the concentrations of some but not all species are constant. We present a simplification rule that can eliminate interme-
diate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule
can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also
simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied
to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network.
Michaelis-Menten’s simplification rule for enzymatic reactions falls out as a special case. We have implemented an
algorithm that applies our simplification rule repeatedly and applied it to reaction networks from systems biology.

Keywords: bioinformatics; systems biology; reaction network; contextual equivalence.

1. Introduction

Reaction networks [1] are systems of chemical reac-
tions, which are widely used in systems biology [2] in
order to model and analyze the dynamics of molecular
biological systems [3, 4, 5]. Reaction networks have a
formal semantics that describes the evolution of chemical
solutions over time (without fixing the initial solution).
This semantics lays the foundation for formal analysis
of biological systems. In the present paper, we focus on
the deterministic semantics which, in the thermodynamic
limit [6], describes the average concentrations of species
in chemical solutions, rather than considering the stochas-
tic semantics which models their probability distributions.

Formal analysis methods for biological systems are
based on their reaction networks. If all kinetic parame-
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ters are known, reaction networks can be used to simu-
late biological systems [7]. Otherwise, the missing pa-
rameters can be estimated so that they fit with experi-
mental data [8]. Reaction networks can also be used to
verify properties of biological systems [9], to control bi-
ological systems in real time [10], or to predict network
changes such as gene knockouts leading to desired behav-
ior [11, 12, 13]. The analysis techniques to solve these
tasks may be either numeric or symbolic. Numeric tech-
niques are usually based on the ordinary di↵erential equa-
tions (Odes) for the deterministic semantics only, while
assuming the knowledge of all parameters. Symbolic
analysis methods, in contrast, may be based on the struc-
ture of a reaction network and not only the Odes. Struc-
tural methods are sometimes advantageous as argued in
[14] for instance.

Given that biological systems are highly complex, their
models by reaction networks may become huge (see
e.g. [15]). Furthermore, a large number of kinetic param-
eters tend to be unknown, which limits the applicability of
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formal analysis techniques. Possible workarounds are to
analyze only smaller modules of reaction networks, or to
simplify bigger reaction networks in order to reduce their
size and the number of their unknown parameters. There-
fore, various simplification methods for reaction networks
were developed (see [16] for an overview), often moti-
vated by Michaelis-Menten’s seminal reduction of enzy-
matic reactions [17].

Structural simplification methods that rewrite reaction
networks rather than Odes are particularly relevant for bi-
ological modeling. Indeed, biologists are spending much
e↵ort in designing reaction networks in practice, as for
instance on the development of the metabolic and regula-
tion networks for B. Subtilis in the Subtil Wiki [15]. Even
though many of the reactions used there are motivated by
structural simplification of larger reaction networks with
more details, no such formal justification is given.

A purely structural simplification method for reaction
networks without kinetic rates was developed in [18]. It
consists of a set of rewrite rules that remove intermediate
species in reaction networks. For instance, we can sim-
plify the network with the following two reactions on the
left into the single reaction on the right, when considering
B as an intermediate species:

A1 + . . . + An A B
B A C1 + . . . +Cm

)
V A1+. . .+An A C1+. . .+Cm (1)

These two networks perform the same transformations
on chemical solutions that do not contain intermediate B
molecules, if one ignores intermediate results. Indeed,
this simplification rule is correct with respect to the at-
tractor equivalence (also proposed in [18]). There, a reac-
tion network is considered as non-deterministic program
(operating on multisets), so that notions of observational
program semantics from compiler construction [19] can
be applied. A main weakness of this approach is that it
can neither deal with kinetic rates nor with deterministic
Ode semantics. Furthermore, some other rules for inter-
mediate elimination, that one might want to have, turn out
to be incorrect, as for instance:

A A B
A0 + B A C

)
V A + A0 A C (2)

To see the di↵erent input-output behavior, consider the
multiset nA + 0A0 + 0B. With the reaction network on

the left, this chemical solution can be transformed to
0A + 0A0 + nB, while with the reaction on the right no
transformation is possible.

An approach for the structural simplification of reaction
networks with kinetic rates subject to Ode semantics was
presented by Radulescu [20, 16]. The basic idea is also
to remove intermediate species in reaction networks, but
now assuming that the intermediate species are in quasi
steady state. In a first phase, the graph structure of the
reaction network is simplified. But rather than eliminat-
ing the intermediate species step by step, elementary flux
modes [21] are computed in order to remove all interme-
diates simultaneously. The kinetic rates are then assigned
to the simplified network, under the condition that the in-
termediates were in quasi steady state. Interestingly, the
simplification rule in (2), which is wrong with respect to
the nondeterministic attractor equivalence, becomes cor-
rect for the deterministic Ode semantics, when assum-
ing that the concentrations of the intermediate species are
steady. The point is that the concentration of B is not
steady in the chemical solution nA + 0A0 + 0B on which
the reaction network on the left could act but not the one
on the right. Indeed a key idea of Radulescu’s approach
is to resolve the steady state equations for an intermediate
species B after its concentration variable xB. Since this is
not always possible in an exact manner, an approximate
method is proposed. The main weakness of the approach
is that its correctness is not formally stated. The two main
obstacles on the way to a correctness statement are the
use of approximations, and the fact that kinetic rates are
assigned only at the end to the reduced network.

The objective of the present article is to overcome the
shortcomings of the two previous approaches. We search
for a rewrite rule that can eliminate intermediate species
in reaction networks with kinetic rates while exactly pre-
serving the Ode semantics. Furthermore, our rewrite rule
should remain correct when applied to a module of a re-
action network, and should remain applicable when the
parameters of the kinetics laws are unknown. For this,
we are ready to assume that the concentration of inter-
mediate species are steady, i.e. that the concentration of
the intermediate B satisfies xB = c for some positive con-
stant function c. Such partial steady state assumptions are
more flexible than general steady state assumptions in that
the concentrations of some species may still change over
time. In contrast to quasi steady state assumptions no ap-
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proximation is made.
The present article extends a conference paper at

CMSB’2015 [22]. The contributions are as follows. We
first present a rewrite rule for the structural simplification
of reaction with kinetic rates, which removes one interme-
diate species at a time. In order to avoid approximations,
we assume that all kinetic rates of the network are either
linear in the concentration of the intermediate species, or
else constructed in a uniform manner by applying some
invertible function. More precisely, for any intermediate
species B, there must be an invertible function f , common
to all reactions consuming B, and such that their kinetic
laws are some product of the form f (xB)e, where e is an
expression not containing xB and possibly varying with
the reactions. We second prove that our rewrite rule does
preserve the Ode semantics of the reaction network, even
if the network is plugged into any possible context. Com-
pared to the conference version we permit networks with
conservation laws. For instance, such an expression may
impose that xA + xB = c for some positive constant func-
tion c, i.e., that the sum of the concentrations of A and B
is steady. Beside of being more general, the addition of
conservation laws also simplifies the presentation of the
rewrite rule and of the correctness proof.

An interesting question is whether repeated elimination
of intermediates with our rewrite rule does always pro-
duce the same set of results as Radulescu’s simplification
method. As we worked out in detail in a follow up paper
[23], this is not the case. The point is that by the compu-
tation of elementary modes one does also eliminate "de-
pendent reactions" – that is linear combinations of others
– that are generated by the elimination of intermediates.

rrrr Similar results as here were developed in parallel
and independently by Saez et al. [24]. They also propose
an exact method for the elimination of linear intermediate
species in partial steady state, and prove that it preserves
the deterministic Ode semantics. Their procedure elimi-
nates several intermediate species in one big step. Clearly,
the objective of simultaneous elimination subsumes that
of single intermediate elimination, as in the present paper.
Compared to Radulescu’s method, which also supports si-
multaneous elimination, it is based on the computation of
the spanning trees of the graph of intermediates, instead
of using elementary modes. The kinetic functions are sup-
posed to be linear in the intermediates, which is one of the
two possible restrictions considered in the present paper.

This restriction combined with the spanning tree method
enables them to prove a formal correctness result for their
simultaneous intermediate elimination. A major di↵er-
ence of Saez reduction method to the present article and
Radulescu’s approach is that it always produces a unique
reduced network as a result. We believe that the same net-
work can always be obtained by repeated elimination of
intermediate species and dependent reactions, but many
di↵erent results are possible thereby too. We refer to the
confluence study in [23] for further discussions of this
topic.

Outline. In Section 2, we illustrate our simplification
method with two examples. First we revisit Michaelis-
Menten’s reduction rule, and then we illustrate how one
can simplify a small gene expression network with inhibi-
tion. We recall the formal definitions of reaction networks
in Section 3, and of conservation laws in Section 4. In
Section 5, we contribute a contextual equivalence relation
for reaction networks, and in Section 6 a set of simplifica-
tion rules, that we prove correct with respect to this equiv-
alence relation. In Section 7, we illustrate, with biological
examples, how much reaction networks can be simplified
in practice. We then discuss further related work in Sec-
tion 8, and the relevance of our results in Section 9. We
conclude and discuss future work in Section 10.

2. Motivating Examples

We first revisit Michaelis-Menten simplification rule
for an enzymatic reaction network, and illustrate how the
notions of modules and contexts of reaction networks in-
tervene there. We then illustrate how the same ideas can
be lifted to more general reaction networks by looking at
the example of an inhibited gene expression.

Let R+ be the set of nonnegative real numbers t � 0.
Kinetic expressions will denote positive real functions
that map time points in R+ to concentrations in R+. We
denote by C the set of all positive constant functions
C = { f : R+ ! R+ | f (0) = f (t) � 0 for all t 2 R+}.

2.1. Michaelis-Menten revisited

The Michaelis-Menten simplification rule applies to the
following enzymatic reaction network with three reac-
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tions that we name r1, r2, and r�1 here:

r1 : S + E ! C ; k1xS xE

r2 : C ! P + E ; k2xC

r�1 : C ! S + E ; k�1xC .

Substrate S and enzyme E must first build a complex C
via r1, before C can produce product P and free enzyme E
by r2. Alternatively, complex C can also be redecomposed
into S and E by r�1. All three reactions must satisfy the
mass action law with di↵erent rate constants k1, k2, and
k�1 respectively as as specified by the kinetic expressions.
The variables xS , xE , and xC in the kinetic expressions de-
note some positive real functions, which specify the evo-
lution of the concentrations of the respective species over
time.

See Figure 1 for an illustration of this reaction network
as a Petri-net. The dotted arrows on S and P mean that
these species can be produced or consumed by admissible
contexts, while the other species C and E cannot. The
Odes system of this network can be derived as usual and
are presented in Fig. 2.

The idea of Michaelis-Menten simplification rule is to
eliminate the intermediate C from the system, under the
assumption that the concentration of C is steady, or in
other words, when considering only those solutions of the
Odes of the reaction network in which xC = cC for some
positive constant function cC 2 C. Clearly, the value of
the constant function cC must then be equal to xC(0), i.e.,
to the initial concentration of C at time t = 0. For other
initial concentrations, where this assumption is not satis-
fied, there is still hope for approximate correctness with
some kind of quasi steady state assumptions, but this kind
of arguments is out of the scope of the present paper.

Lemma 1. When considering this reaction network in
isolation and not as a module of a larger network, any
solution of its Odes where C is in partial steady state must
satisfy:

• dxC

dt
= 0, and

• xS , xE , and xP are constant, and

• if xE , 0 then xS = 0.

Proof. This can be seen as follows. If C is in partial
steady state then xC = cC for some positive constant func-

tion cC 2 C. Hence
dxC

dt
= 0. By observing that the two

dxS

dt
= k�1xC � k1xS xE

dxE

dt
= (k2 + k�1)xC � k1xS xE

dxC

dt
= �(k2 + k�1)xC + k1xS xE

dxP

dt
= k2xC

Figure 2: Odes system for Michaelis-Menten module with 3 enzymatic
reactions without any context.

Odes for derivations of E and C are equal up to the sign,

it follows that
dxE

dt
= �dxC

dt
= 0 and so that xE = cE for

some positive constant function cE 2 C. From the Ode for
the derivation of C we obtain the linear equation:

(k2 + k�1)cC = k1xS cE (3)

If cE = 0 then the proposition follows straightforwardly.
Otherwise, cE , 0 so that xS =

(k2+k�1)cC
k1cE

is constant. The
di↵erential equation for S can now be reduced to follow-
ing linear equation:

k-1cC = k1xS cE (4)

In combination, equations (3) and (4) yield cC = 0. From
this, equation (4) again implies xS = 0 since cE , 0.
Furthermore, cC = 0 implies dxP

dt = 0 so that xP is con-
stant.

The situation becomes more interesting when the net-
work is considered as a module of a larger network. For
instance, we can consider the admissible context that adds
one reaction for an inflow of substrate S with constant
speed ki and another reaction that models an outflow of
product P with linear speed koxP:

substrate inflow: ; ! S ; ki

product outflow: P ! ; ; koxP.

Any partial steady state for C of the extended network,
unifying the module with the three enzymatic reactions
and the context with the two reactions modeling inflows
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S

E

C

P

r1
k1xSxE

r�1
k�1xC

r2
k2xC

. 9cC 2 C. xC = cC

S Pr
k2cC

. 9cC 2 C. cC =
k1xS xE

k2 + k�1

Figure 1: Basic step of Michaelis-Mentens simplification rule under the assumption that C is in partial steady state.

and outflows, must verify xC = cC for some positive con-
stant function cC 2 C satisfying:

cC =
k1xS xE

k2 + k�1
. (5)

Therefore, the Ode of the extended network can be sim-
plified to:

dxP

dt
= k2cC � koxP

while keeping (5) as a conservation law. In analogy, but
independently of any context, we can simplify the mod-
ule with the three enzymatic reactions into the following
reaction r:

r : S ! P ; k2cC

As we will see, this simplification of the module is correct
for all its admissible contexts, when assuming that C is in
partial steady state.

So far, the kinetics of the reduced network still look
quite di↵erent from usual Michaelis-Menten kinetics. But
if we assume in addition the conservation law xE + xC =
ctotal

E for some constant function ctotal
E 2 C designing the

total enzyme concentration, then it follows by elementary
calculations, that:

cC = ctotal
E

xS

xS +
k�1+k2

k1

.

Hence, we do indeed obtain the classical Michaelis-
Menten law by our simplification procedure.

It should be noticed that our assumption that cC is con-
stant is equivalent to that xS

xS+
k�1+k2

k1

is constant, and thus

to the assumption that xS is constant. The latter might
look problematic with respect to the usual of Michaelis-
Menten law. Since if xS is not constant for some initial
conditions, then this initial concentration of S may be at
best close to a value for which C will be in partial steady
state. Therefore, the dynamics of the simplified network
may be at best an approximation of the original dynam-
ics. Further arguments would be in order to establish such
an approximation, but these are out of the scope of the
present article.

2.2. Inhibited Gene Expression
In order to illustrate the main ideas of our proposal, we

next consider the reaction network Gene of inhibited gene
expression in Fig. 3.

This reaction network has four species: gene G, in-
hibitor Inh, messenger RNA mRNA, and protein P. It also
has four reactions: reaction r1 describes a transcription,
the production of mRNA in presence of gene G. This re-
action has also an inhibitor, Inh, that slows down the reac-
tion. G and Inh are modifiers in r1, indicated by a dashed
arrow in the figure, meaning that they influence the speed
rate of a reaction, but that the reaction does not modify
their amounts. Reaction r2 is the translation of mRNA into
protein P, while reaction r3 (resp. r4) describes the degra-
dation of mRNA (resp. P). Except for reaction r1 with the
inhibitor, all other reactions have mass-action kinetics.

Before attempting to simplify the network, we need to
specify how the context may interact with it: this is in-
dicated by pending dotted arrows in Fig. 3. We consider
here that G and mRNA are internal species, that is, which
can not be modified by the context. Then, the context can
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G

Inh

mRNA

P

r1
k1xG

k0+xInh

r2
k2xmRNA

r3

k�1xmRNA

r4
k�2xP

. 9cmRNA, cG 2 C.
xmRNA = cmRNA ^ xG = cG

Inh

mRNA

P

r1
k1cG

k0+xInh

r2
k2xmRNA

r3

k�1xmRNA

r4
k�2xP

. 9cmRNA, cG 2 C.
xmRNA = cmRNA

Inh

P

r123 k2cmRNA

r4
k�2xP

. 9cmRNA, cG 2 C.

cmRNA =
k1cG

k�1(k0 + xInh)

Figure 3: Graph of the reaction network Gene on the left, and its two simplifications. Molecular species are represented by circles, and reactions
by squares. In the kinetic expressions near the reactions, the ki are parameters while xA is a variable representing the concentration of a species A.
The variable cG denotes the initial concentration of G which is assumed to remain constant, by imposing the conservation law xG = cG for some
positive constant function cG 2 C. A dashed arrow means that the molecule acts as a modifier in the reaction, while a dot arrow means that the
molecule can be modified by the context.

be any set of reactions that does not involve G and mRNA.
It can for instance transform P into another protein, or
produce something else in presence of Inh, etc.

In this network, we are especially interested in the dy-
namics of protein P. Therefore, we will say that P is an
observable species, that we should not remove. On the
other hand, we will assume that the intermediate mRNA is
at steady state, i.e. that xmRNA = cmRNA for some constant
function cmRNA 2 C. Hence, we want to eliminate mRNA
in particular.

In order to simplify the network, we first notice that
gene G is not modified by any reaction, and that it can not
be modified by any context, since it is assumed internal.
Therefore its concentration is constant over time, as de-
scribed in the conservation law xG = cG. Hence, we can
remove G from the network by replacing xG by cG, and
removing the conservation law. This results in the simpli-
fied network in the middle of Fig. 3.

Now, consider the intermediate mRNA. It is an internal
species, satisfying the following Ode independently of the
context:

dxmRNA

dt
=

k1cG

k0 + xInh
� k�1xmRNA.

Since we assumed that mRNA is at steady state with

xmRNA = cmRNA, we have
dxmRNA

dt
= 0, so that we can

deduce the conservation law:

cmRNA =
k1cG

k�1(k0 + xInh)
.

Therefore we can remove mRNA from the network, and
replace the variable xmRNA by a constant cmRNA in the ki-
netics of reaction r2, while adding the above conservation
law. We obtain the simplified network on the right of Fig.
3. The three reactions r1, r2 and r3 that produce or con-
sume the intermediate mRNA or use it as a modifier are
merged into the new reaction r123.

Note that sometimes, the steady state assumptions en-
tail some other implicit conditions. For the Michaelis-
Menten simplification rule, the simplification implied that
xS was constant, as discussed above. In this example, the
fact that mRNA is at steady state entails that the concentra-
tion of the inhibitor Inh needs to be constant too. This im-
plicit condition is still present in the simplified network,

with the conservation law cmRNA =
k1cG

k�1(k0 + xInh)
.

Therefore, the concentrations of mRNA, G and Inh need
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to be constant to perform the simplification. However, we
do not impose a total steady state. For instance, the con-
centration of the protein of interest P could still change
over time. Its dynamics will be the same in both the ini-
tial and simplified network.

As we will see in this paper, the simplification rules
used above preserve the deterministic semantics of reac-
tion networks, in every context. Hence the simplified net-
work is contextually equivalent to the first one. Note that
we can not simplify the network anymore, since P is an
observable species, and that both Inh and P can be modi-
fied by the context.

3. Syntax and semantics of reaction networks

Let Spec be a finite set of molecular species ranged over
by A. For instance, we used Spec = {Inh,mRNA,G, P} for
the gene expression network.

We define a (chemical) solution s 2 Sol : Spec ! N0
as a multiset of molecular species, i.e. a function from
molecular species to natural numbers, with a finite sup-
port. Given natural numbers n1, . . . , nk, we denote by
n1A1 + . . . + nkAk the solution that contains ni molecules
of species Ai for all 1  i  k and 0 molecules of all other
species. ni is called the stoichiometric coe�cient of Ai

in the solution. We define the intersection and di↵erence
of two solutions by (s1 \ s2)(A) = min(s1(A), s2(A)) and
(s1 � s2)(A) = s1(A) � s2(A).

A reaction r = (s1 A s2; e) 2 Reactions is a pair com-
posed of two solutions s1 and s2, and a kinetic expression
e. The reaction transforms the solution s1, of so called
reactants, into the solution s2, of so called products. We
denote by scr(A) = s2(A) � s1(A) 2 Z the stoichiometric
coe�cient of A in the reaction r, and by kin(r) = e the
kinetic expression of r. We consider a countable set of
variables Vars that contains, for any A 2 Spec, a variable
xA for a concentration, and a variable cA, that we will use
later to define the steady state assumption. We also have a
set of kinetic parameters Param = {k0, k1, . . .}. Kinetic ex-
pressions are terms describing kinetic functions, that have
the following abstract syntax:

e, f ::= x | k | � | e + f | e � f | e ⇤ f | e/ f | �e

where x 2 Vars, k 2 Param and � 2 R. As usual, we
also simply denote e f for e ⇤ f , and use parenthesis (e)

whenever the priority of the operators might not be clear.
We denote by Vars(e) the set of variables of e.

A normalized reaction is a reaction in which the
reactants and the products do not have shared molecules,
i.e. s1 \ s2 = ;. Given a reaction r = (s1 A s2; e) and
s = s1 \ s2, we denote the corresponding normalized
reaction by er = (s1 � s A s2 � s; e). Trivially, for any
species A, we have scr(A) = scr̃(A). In the following, all
reactions are assumed to be normalized.

Given a set of reactions R, we also want to merge the
reactions with the same reactants and the same products.
We denote by eR the set of reactions obtained by normal-
izing and then merging the reactions in R, that is:

eR = {(s1 A s2;
X

r 2 R,
er = (s1 A s2; e)

e) | where s1, s2 2 Sol}.

For now, a (normalized) reaction network R is a normal-
ized set of reactions. We will later extend this definition
with conservation laws.

Now, we define, as usual, the dynamics of reaction net-
works in terms of ordinary di↵erential equations. Their
solutions are the concentrations (depending on time) of
the molecular species.

Let � : Param ! R+ be the interpretation of the pa-
rameters. We assume here that � is fixed to simplify the
notations, but notice that our simplification is correct for
any interpretation �.

The (chemical) concentration of a chemical species is
a function from time to non negative numbers R+ ! R+.
Kinetic expressions are interpreted as actual kinetic func-
tions. For any V ✓ Vars, a V-assignment ↵ : V ! (R+ !
R+) maps concentration variables to concentrations.

Given this assignment, the interpretation JeK↵ : R+ !
R+ of a kinetic expression e is defined by induction on
the structure of e as follows, where t 2 R+ and op 2
{+,�, ⇤, /}:

JxK↵(t) = ↵(x)(t) JkK↵(t) = �(k)
J�K↵(t) = � J�eK↵ = �JeK↵
Je op f K↵(t) = JeK↵(t) op J f K↵(t)

Given a multiset of reactions, we only consider assign-
ments ↵ such that for any kinetic expression e occurring in
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this network, its interpretation JeK↵ : R+ ! R+ is a con-
tinuously di↵erentiable function from time to non nega-
tive real numbers, standing for the actual reaction rate.

Reactions (s1 A s2; e) also have to respect the follow-
ing coherence property: if the concentration of some reac-
tants is zero at some time point then the kinetic rate must
be zero too, i.e., for any species A occuring in s1, any time
point t � 0, and variable assignment ↵, if JxAK↵(t) = 0,
then JeK↵(t) = 0. Note that a kinetic expression may con-
tain variables xA that are not reactants (neither in the prod-
uct) of the reaction; such species, called modifiers, change
the rate of the reaction, but the reaction does not modify
their amounts.

An ordinary di↵erential equation is an equation of the
form dx/dt = e, with x 2 Vars a variable and e a kinetic
expression. A system of ordinary di↵erential equations is
a conjunction of ordinary di↵erential equations.

For any reaction network R, we can assign it the sys-
tem of ordinary di↵erential equations, denoted Ode(R),
defined as follows:

Ode(R) =
^

A2Spec

dxA

dt
=
X

r2R
scr(A)kin(r).

As expected, a reaction network and its normalized form
have the same deterministic interpretation.

Lemma 2. For any R, Ode(R) = Ode(eR).

Proof.

Ode(eR) =
^

A2Spec

dxA

dt
=

X

(s1 A s2; e)2eR
scr(A)e

=
^

A2Spec

dxA

dt
=
X

(s1 A s2; e)2eR
scr(A)

X

r0 2 R,
er0 = (s1 A s2; e0)

e0

=
^

A2Spec

dxA

dt
=
X

r02R
scr0 (A)kin(r0)

= Ode(R)

A solution of an equation dx/dt = e is a V-assignment
↵ such that Jdx/dtK↵ = JeK↵, where V is the set of vari-
ables of the equation, and Jdx/dtK↵ is the first derivative
of JxK↵ with respect to the time t. More generally, for any

formula ', we denote by sol(') the set of V-assignments
that satisfy ', with V the set of free variables of ' (in the
following, some variable for non observable species will
be existentially quantified).

4. Conservation law

A partial steady state assumption for a species A is a
formula of the form 9cA 2 C. xA = cA, meaning that xA is
constant, and thus equivalent to the membership formula
xA 2 C. We consider consider more general formulas to
express conservation laws.

Definition. A conservation law, denoted by L, is a for-
mula of the form:

9x̄ 2 C. e1 = e01 ^ . . . ^ em = e0m,

where x̄ = {x1, . . . , xn} and the notation 9x̄ 2 C. ' is a
shortcut for 9x1 2 C. . . .9xn 2 C. '.

For instance, the formula 9ctotal
E 2 C. xE + xC = ctotal

E
in the initial Michaelis-Menten network in Figure 1 states
that the total concentration of the enzyme, free or bound,
is constant over time.

As we saw in the preliminary examples, conservation
laws need to be rewritten during the simplification. There-
fore we add them to our notion of reaction networks.

Definition (Reaction network with conservation law). A
reaction network with conservation law N = R.L is a pair
of a multiset R of chemical reactions and a conservation
law L.

5. Contextual equivalence

We now introduce two other fundamental notions for
our equivalence, the notion of observable species, and the
notion of contexts and internal species. We then define
the contextual equivalence relation of reaction networks
with conservation law.

An observable species is a particularly interesting
molecule, that should not be removed by the simplifica-
tion, in contrast to some other molecular species that may
only be relevant for some models with “low-level” details.
The equivalence will then only preserve the dynamics of
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these observable species. For instance, in the Gene reac-
tion network depicted in Figure 3, we are especially inter-
ested in the dynamics of the protein P, that will therefore
be the only observable species. We denote by O ✓ Vars
the set of observable species.

We can then define a first non-contextual equivalence.
Two reaction networks with conservation law are equiva-
lent if they have the same deterministic deterministic dy-
namics for the observable species.

Definition (Non-Contextual Equivalence). Let O be a set
of observable species, and {x̃} = {xA | A < O} the set of
variables of unobserved species. Then the reaction net-
works N = R . L and N0 = R0 . L0 are non-contextually
equivalent if they have the same solutions restricted to the
observable species, that is:

N ⇠O N0 i↵ sol(9x̃. Ode(R) ^ L) = sol(9x̃. Ode(R0) ^ L0).

In the gene expression network, the equivalence only
needs to preserve the dynamics of P, and can neglect the
others.

We now extend the definition to a contextual equiva-
lence. The notion of context allows us to establish equiv-
alences from the equivalence of smaller and isolated sub-
networks. This makes proofs of equivalences consider-
ably easier. Indeed, take two networks N1 and N2 that
di↵er only by sub-networks, that is N1 = N01 [ M and
N1 = N02 [ M for some N01,N

0
2 and M. With an equiva-

lence that is preserved by contexts, to prove that N1 and
N2 are equivalent it is su�cient to prove the equivalence
of N01 and N02. To obtain such a desired property, one usu-
ally extends an equivalence as a congruence by closing
it over all contexts. However, here, this approach would
result in a too strong equivalence. In order to make signifi-
cant simplifications, we will instead close our equivalence
⇠O over some contexts said to be compatible. Those are
defined from a set I ✓ Vars of molecular species called in-
ternal species. A context, actually a reaction network N,
is compatible with I, if 8A 2 I, A has no occurrence in N.
In other words, a context compatible with I is a reaction
network that does not depend and does not act on species
in I. We denote by Context(I) the set of compatible con-
texts with I. In the gene expression network, the internal
species are I = {G,mRNA}. Then the context can interact
only with the inhibitor Inh and the protein P.

Definition (Equivalence). Let O be a set of observable
species and I a set of internal species, the reaction net-
works with conservation law N1 and N2 are (contextu-
ally) equivalent for O and I, denoted N1 'O,I N2, i↵
8M 2 Context(I). N1 [ M ⇠O N2 [ M.

Note that the sets of observable species, internal species
and species at steady state are generally not the same and
are independent. In the gene network, O = {P}, while
I = {mRNA,G}. The species mRNA and G are also the
species at steady state. In the following, we will see that
we want to remove intermediate species, that are species
that are non observable, internal and at steady state, like
mRNA in the gene network.

6. Simplification

In this section, we present the simplification method. It
is composed of a set of simplification axioms that trans-
forms a reaction network into another one, smaller and
equivalent.

We first present how the simplification rules work, and
how to compare the size of two networks. Then we intro-
duce some simple simplification rules and their proper-
ties, followed by a more complex axiom, that removes an
intermediate species. Finally, we show how, under some
specific conditions, we can use this axiom and the conser-
vation laws to remove a set of linear intermediate species.

6.1. Simplification
A simplification rule transforms a network into another

one, under some conditions. The general schema for a
rule is depicted in Fig. 4 (left), where a network N is sim-
plified into the network M, under some particular condi-
tions, and when O (resp. I) is the set of observable (resp.
internal) species. Note that, after applying a simplification
rule, we always directly normalize the simplified network.

If we can simplify a network into another one, then we
can do it in any compatible context, as depicted in the
axiom (Context) in Fig. 4 (right).

For any reaction network N, we denote Spec(N) the set
of species A such that either A or xA occurs in N (i.e. in a
reaction, a kinetics or the conservation law).

We say that a network N = R . L is smaller than a
network M = R0 . L0 if fewer molecules occur in N than
in M, or N has fewer reactions than N, i.e. N < M i↵:

9



Conditions (Name)
N

4'O,I M
N0 2 Context(I) N

4'O,I M
(Context)

N0 [ N
4'O,I N0 [ M

Figure 4: On the left, simplification rule sketch. The network N, under the Conditions, and with the observable species O and the internal species
I, can be simplified into M. On the right, the context simplification rule. If a network N can be simplified into a network M, then it is also possible
in any context N0 compatible with the internal species I.

• either |Spec(N)| < |Spec(M)|

• or |Spec(N)| = |Spec(M)| and |R| < |R0|.

As we will see later, the simplification rules reduce the
size of networks.

We define the simplification relation
4'O,I for the inter-

nal species I and the observable species O as the small-
est equivalence relation between networks that contains
the simplifications described in Fig. 4 (right), Fig. 5 and
Fig. 6. We will show that

4'O,I✓'O,I , i.e. a simplified net-
work is contextually equivalent to the initial network.

6.2. Simple simplification rules
The first three simplification rules are given in Fig. 5.

The first one, (Useless), deletes a reaction (; A ;; e) that
does not impact the network dynamics. The rule (Modi-
fier) removes an internal species A only used as a modifier
in the reactions (i.e. it appears in the kinetics, but not in
any reactants or products). It uses a (simple) conservation
law on A to compute and remove its concentration from
the kinetic expression. In the simplified network, the no-
tation e[xA/eA] stands for the substitution of xA by eA in
the expression e, i.e. any occurrence of xA is replaced by
eA. This axiom is for instance used on the gene G in the
gene expression network of Section 2.2.

These rules are sound for the equivalence, and reduce
the size of the network.

Proposition 1. The rules (Useless) and (Modifier) re-
duce the size of the network.

Proof. Trivially, (Useless) reduces the number of reac-
tions while (Modifier) reduces the number of involved
species.

Theorem 1. The rules (Useless) and (Modifier) are
sound for the contextual equivalence, i.e. if we can sim-
plify a network N into M by applying one of these rules,
then N 'O,I M.

Proof. The axiom (Useless) removes a reaction that can
not modify the concentrations of the molecules. So the
Odes systems of both networks are the same, their solu-
tions are equal, and the networks are equivalent.

For (Modifier), A is an internal species, and is never
used as reactant or product of any reaction. Therefore
its concentration is constant, and can be computed by
the conservation law xA = eA in the initial network.
Consequently, if we have a solution ↵ of the initial net-
work (in some context N0), that satisfies the conserva-
tion laws, then the Odes systems for both networks (in
the context N0) are the same, and ↵ is also a solution for
the simplified network (the additional conservation law
9cA 2 C. cA = eA is directly satisfied, since in the initial
network we have eA = xA). Reciprocally, if ↵ is solution
for the simplified network, we build the solution ↵0 that
is equal to ↵, except for the species A, where ↵0c(A) = eA.
Since eA is constant (by the conservation law) and xA is
too (since it is internal and not involved in any reaction),
↵0 will still be a solution of the simplified network that
satisfies the conservation laws. Then once again the Odes
are the same, and ↵0 is a solution for the initial network
too. And since ↵ and ↵0 are equal modulo the intermediate
species, then the networks are contextually equivalent.

6.3. Intermediate

We now present the (Intermediate) axiom, depicted in
Fig. 6, that aims at eliminating an internal, non-observable
species at steady state, by merging two-by-two the reac-
tions that produce and consume it.

Let A be the intermediate (i.e. internal, non-observable
and at steady state) species that we want to remove. In or-
der to be able to compute systematically the kinetic rates
of the simplified networks, all reactions that consume A
need to have the same kind of dependency on xA. So there
needs to be an expression f (with xA 2 Vars( f )), such

10



(Useless)
{(; A ;; e)} . L

4'O,I ; . L

8r 2 R, scr(A) = 0 A 2 I xA < Vars(eA)
(Modifier)

R . (9x̄ 2 C. ' ^ xA = eA)
4'O,I R[xA/eA] . (9x̄, cA 2 C. '[xA/eA] ^ cA = eA)

Figure 5: Simple simplification axioms. (Useless) removes a useless reaction, while (Modifier) removes an internal species, only used as modifier
and present in a simple conservation law.

N = RN . 9x̄ 2 C. ' ^ xA = cA

A 2 I A < O cA 2 x̄
split(RN ,', A, f ) = (R,R0,Rmod1,Rmod2,'1,'2)

f is a term with xA 2 Vars( f )
f �1 is an inverse term of f for xA or (Rmod2 = ; and '2 = >)
T =

X

(s1 A s2+nA; e)2R
ne T 0 =

X

(s01+n0A A s2; f e0)2R0
n0e0 F = T/T 0

(Intermediate)

N
4'O,I

{(n0s1 + ns01 A n0s2 + ns02;
ee0

T 0
) |

(s1 A s2 + nA; e) 2 R, (s01 + n0A A s02; f e0) 2 R0}[
{(s1 A s2; e[x/F]) | (s1 A s2; e[x/ f ]) 2 Rmod1}[
{(s1 A s2; e[xA/ f �1[xA/F]]) | (s1 A s2; e) 2 Rmod2}
.9x̄ 2 C. '1[ f /F] ^ '2[xA/ f �1[xA/F]] ^ f [xA/cA] = F

Figure 6: General intermediate rule that removes the intermediate species A from reaction network N.

that the kinetic expression of any reaction with A in the
reactants is of the form f e0, with xA < Vars(e0).

Given an expression f with x 2 Vars( f ), we say that f
is invertible in x if there exists an expression, called the
inverse of f for x and denoted f �1, such that:

8↵. J f [x/ f �1]K↵ = JxK↵.

Then, we will partition the reactions involving A into
the ones that produce it, the ones that consume it and
the ones that use A as modifier, that are themselves di-
vided into the ones with a kinetic expression that depends
on f , and the others. The same kind of partition is also
made for the conservation laws. Formally, given a net-
work of the form N = RN . 9x̄ 2 C. ' ^ xA = cA,
with cA 2 x̄, an intermediate species A and an expres-
sion f such that xA 2 Vars( f ), we define the partition
split(RN ,', A, f ) = (R,R0,Rmod1,Rmod2,'1,'2) such that
RN = R[R0 [Rmod1 [Rmod2, ' = '1 ^'2, and the follow-
ing conditions are satisfied:

• The (non-empty) set R contains the reactions that

produce A. The kinetics of these reactions should
not depend on the concentration of A. Formally, a
production reaction is a reaction of the form r =
(s1 A s2 + nA; e), with A < s1, s2, any stoichiometric
coe�cient n > 0, and xA < Vars(e).

• R0 is the (non-empty) set of reactions that consume
A. The kinetics of these reactions depend on the
concentration of A, but always according to the ex-
pression f . They do not have to be necessarily lin-
ear in xA. Therefore these reactions are of the form
r0 = (s01 + n0A A s02; f e0), with A < s01, s

0
2, some co-

e�cient n0 > 0, and such that xA < Vars(e0).

• We divide the reactions with A as modifier into two
(potentially empty) sets. The first set, Rmod1, re-
groups the reactions with kinetic expressions de-
pendent on f . I.e. any reaction r 2 Rmod1 has
some expression e with a variable x such that r =
(s1 A s2; e[x/ f ]). We have xA < Vars(e), and A <
s1, s2 since it is a modifier.

• The second set Rmod2 contains all the other reactions,

11



without any condition. However, in order to do the
simplification, we need an additional condition: ei-
ther f is invertible in xA, or the set Rmod2 is empty.

• Similarly to the reactions with A as modifier, we par-
tition the conservation laws into '1, the ones that
depend on f , and '2, the others. Formally, '1 =V

i(ei[x/ f ] = e0i[x/ f ]) with xA < Vars(ei),Vars(e0i).
As before, if f is not invertible in xA, then there is no
'2.

Now that we have defined the partitions, we can de-
scribe the simplification of the network. This consists in
combining two-by-two the production reactions from R
with the consumption reactions from R0. First, we define
two expressions, representing the sums of the weighted
kinetics of the production (resp. consumption) reactions
by:

T =
X

(s1 A s2+nA; e)2R
ne,

T 0 =
X

(s01+n0A A s2; f e0)2R0
n0e0

F =
T
T 0
.

The conditions on the kinetic expressions of the con-
sumption reactions, and the fact that A is an intermediate
species, and at steady state, imply that we can easily com-
pute the value: J f K↵ = JFK↵.

Then, the combination of a production and a consump-
tion reaction will be the normalization of the (general) re-
action:

(n0s1 + ns01 A n0s2 + ns02;
ee0

T 0
).

For the reactions with A as modifier, and for the con-
servation laws, we just replace f by F, and, when f is
invertible, xA by f �1[xA/F], where f �1 is the inverse of f
for xA.

We also replace the conservation law 9cA 2 C. xA = cA

by 9cA 2 C. f [xA/cA] = F. This is necessary to keep
track of the fact that xA is constant, and its consequences.

Consequently, we obtain a new simplified network, not
involving the species A, and composed of the combining
reactions, the modified reactions with A as modifier, the
modified conservation laws, and the new additional con-
servation law.

This axiom can simplified an intermediate species with
a non-linear kinetic rate, and stoichiometric coe�cients
grater than one. Note that if the kinetic rates are linear in
the concentration of the intermediates, then the function
f is the identity, and so if trivially invertible. The two
following examples present networks with non-linearity,
where we can still do the simplification.

Example 1 (Quadratic kinetic rate). Consider the follow-
ing reaction network, with two reactions:

r1 = (A A X; k1xA) r2 = (2X A B; k2x2
X).

We want to simplify the intermediate species X. The re-
action r2 has a non-linear kinetic rates k2x2

X . It is not in-
vertible, but since X is not used as modifier, we can still
do the simplification, and obtain the following reaction:

r01 = (2A A B;
k1xA

2
).

Example 2 (Michaelis-Menten kinetic rate). Consider
now the following reaction network, with three reactions:

r1 = (A A X; k1xA) r2 = (B A C; k2xBxX)

r3 = (X A D; V
xX

K + xX
).

The only reaction using the intermediate X as reactant is
r3, and has a non-linear kinetic expression f = V

xX

K + xX
.

We assume here that K > 0 and V > 0. The function
f is invertible, with f �1 =

KxX

V � xX
, so we can apply the

simplification and obtain the reduced network:

r01 = (A A D; k1xA) r02 = (B A C; k1k2K
xAxB

V � k1xA
).

Note that in the simplified network, we always have V �
k1xA , 0. Otherwise, we would have V = k1xA. But the
steady state assumption on X implies k1xA�V

xX

K + xX
= 0,

and therefore V = V
xX

K + xX
. Since V , 0, this would

mean that K + xX = xX , i.e. K = 0, that contradicts our
hypothesis.

Proposition 2. The axiom (Intermediate) reduces the
size of the network.

Proof. It removes a molecular species.
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Theorem 2. The axiom (Intermediate) is sound for the
contextual partially steady state equivalence, i.e. if we can
simplify a network N into M by applying the axiom, then
N 'O,I M.

Proof. Let N1 be the initial network, and N2 be the sim-
plified network obtained by applying the axiom (Interme-
diate) on the intermediate species A. We have to prove
that N1 'O,I N2.

Let M be a context compatible with I, i.e. for any
species B 2 I, B has no occurrence in M. As in the axiom,
we partition N1 into (R,R0,Rmod1,Rmod2,'1,'2). We will
only consider here the case where the function f is invert-
ible in xA, with f �1 as inverse. The other case, without
Rmod2 and '2, is similar.

The proof follows the following steps. First, we will
show that, if we assume that xA = f �1[xA/F], then both
networks N1 [ M and N2 [ M generate the same Odes
system. Then we will prove that any solution for the net-
work N1 [ M also satisfies the above hypothesis, as well
as the conservation law of N2 [ M. Reciprocally, for any
solution ↵ of N2 [ M, we will find an equivalent solution
(modulo O) that satisfies both the above hypothesis and
that is solution of N1 [ M.

We start by assuming the following hypothesis, with
f �1, T , T 0 and F as defined in the axiom:

xA = f �1[xA/F]. (6)

Consider the Odes system of N1 [ M. Since A is at

steady state, any solution will verify
dxA

dt
= 0. For any

other species X , A, we denote by FX(M) the part of the
di↵erential equation on X corresponding to the reactions
of the context M. Therefore, the di↵erential equations are:

dxX

dt
=
X

(s1 A s2+nA; e)2R
(s2(X) � s1(X))e

+
X

(s01+n0A A s02; f e0)2R0
(s02(X) � s01(X)) f e0

+
X

(s1 A s2; e[x/ f ])2Rmod1

(s2(X) � s1(X))e[x/ f ]

+
X

(s1 A s2; e)2Rmod2

(s2(X) � s1(X))e

+FX(M).

We can replace f and xA by their values, according to the
hypothesis (6), and obtain the equation:

dxX

dt
=
X

(s1 A s2+nA; e)2R
(s2(X) � s1(X))e

+
X

(s01+n0A A s02; f e0)2R0
(s02(X) � s01(X))Fe0

+
X

(s1 A s2; e[x/ f ])2Rmod1

(s2(X) � s1(X))e[x/F]

+
X

(s1 A s2; e)2Rmod2

(s2(X) � s1(X))e[xA/ f �1[xA/F]]

+FX(M). (7)

Let us consider now the Odes system for N2[M. Since

we totally remove the species A, we have
dxA

dt
= 0. The

context M is the same in both networks, so we have the
same function FX(M). Then, according to the description
of the axiom, the di↵erential equation for X , A is the
following:

dxX

dt
=
X

(s1 A s2 + nA; e) 2 R,

(s01 + n0A A s02; f e0) 2 R0

(n0s2(X) + ns02(X) � n0s1(X) � ns01(X))
ee0

T 0

+
X

(s1 A s2; e[x/ f ])2Rmod1

(s2(X) � s1(X))e[x/F] (8)

+
X

(s1 A s2; e)2Rmod2

(s2(X) � s1(X))e[xA/ f �1[xA/F]]

+FX(M).

We notice that the three last lines of equations (7) and
(8) are the same. Moreover, we can divide the first sum of
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(8) into two parts, and obtain the remaining sums in (7):
X

(s1 A s2 + nA; e) 2 R,

(s01 + n0A A s02; f e0) 2 R0

(n0s2(X) + ns02(X) � n0s1(X) � ns01(X))
ee0

T 0

=
X

(s1 A s2+nA; e)2R

X

(s01+n0A A s02; f e0)2R0
(n0s2(X) � n0s1(X))

ee0

T 0

+
X

(s01+n0A A s02; f e0)2R0

X

(s1 A s2+nA; e)2R
(ns02(X) � ns01(X))

ee0

T 0

=
X

(s1 A s2+nA; e)2R
(s2(X) � s1(X))

eT 0

T 0

+
X

(s01+n0A A s02; f e0)2R0
(s02(X) � s01(X))

Te0

T 0

=
X

(s1 A s2+nA; e)2R
(s2(X) � s1(X))e

+
X

(s01+n0A A s02; f e0)2R0
(s02(X) � s01(X))Fe0.

Therefore, if the hypothesis is satisfied, the two net-
works have the same Odes systems, and the same solu-
tions.

Let ↵ be a solution of for the network N1 [ M, that
satisfies its conservation laws. Since A 2 I, we know that
it does not appear in M. Then we can fully express the
di↵erential equation for its concentration in N1 [ M by:

dxA

dt
=
X

(s1 A s2+nA; e)2R
ne �

X

(s01+n0A A s02; f e0)2R0
n0 f e0.

The conservation law 9cA 2 C. xA = cA implies
dxA

dt
= 0.

We can therefore rewrite the equation above, using the
value T and T 0 defined in the axiom, as:

f =

X

(s1 A s2+nA; e)2R
ne

X

(s01+n0A A s02; f e0)2R0
n0e0

=
T
T 0
= F.

Since f is invertible, we can compute the value of the con-
centration of A, that is:

xA = f �1[xA/F]

Consequently, if ↵ is a solution for N1 [ M, then the hy-
pothesis is satisfied, and the Odes systems are the same.
We need to verify that ↵ also satisfies the conservation
laws of the network N2 [M. This can be found simply by
substituting xA with f �1[xA/F] in the initial conservation
laws. So ↵ is also a solution of N1 [ M that satisfies its
conservation laws.

Now let ↵ be a solution for N2 [ M. We define ↵0 such
that ↵00(cA) = ↵0c(xA) = f �1[xA/F], and ↵0(X) = ↵(X) oth-
erwise. Since A is a non-observable species, ↵0 =O ↵.
We will show that ↵0 is a solution of both N2 [ M and
N1 [ M and satisfies their conservation laws. ↵ satisfies
9cA 2 C. f [xA/cA] = F, therefore f �1[xA/F] is constant
over time. Since xA does not appear in F, it is also con-
stant with ↵0. So the hypothesis (6) is satisfied by ↵0.
Consequently, the Odes systems for both networks are the
same. Since ↵ and ↵0 are equal except for the value of xA,

and since in N2 [ M we have
dxA

dt
= 0 and xA does not

appear in the other equations for N2 [ M, the fact that ↵
is solution of N2 [ M implies that ↵0 is too. Then it is
also solution for N1 [ M. And the conservation laws are
directly satisfied.

Hence the two networks have the same solutions, mod-
ulo the intermediate species. Therefore they are contextu-
ally equivalent.

6.4. Intermediate with conservation law

In this section, we study in more details the scenario
with a set of intermediate molecules that only appear with
stoichiometry one, with linear kinetics, and satisfy a par-
ticular conservation law. We will see that we can itera-
tively apply the axiom (Intermediate) on those species,
until there is only one, and then apply the axiom (Modi-
fier) on this last species.

We first define the conditions on these species. Let
U be a set of intermediate species. A reaction r =
(s1 A s2; e) isU-linear if:

• either r does not involve the species of U (except
potentially in the kinetic expression), i.e. 8A 2 U,
A < s1 and A < s2;

• or it transforms exactly one species ofU into another
one, with a linear kinetic expression, i.e. 9A1 , A2 2
U. r = (A1+ s01 A A2+ s02; xA1 e0), with for any B 2 U
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(including A1 and A2), B < s01, B < s02 and xB <
Vars(e0).

Then,U is a linear intermediate set for a network N =
R . L, for the internal species I and for the observable
species O if:

• these species are internal and non-observable, i.e.
U ✓ I andU \ O = ;;

• they are at steady state, and there is a conservation
law linear inU:

L = 9x̄ 2 C. ' ^
0
BBBBBB@
X

A2U
xAeA = e

1
CCCCCCA

^

A2U
9cA 2 C. xA = cA

with for any A 2 U, xA < Vars(eA), xA < Vars(e),
eA , 0, and for any other species B 2 U, xB <
Vars(eA);

• any reaction r 2 R isU-linear.

Note that a linear conservation law of the form de-
scribed in the second condition of the definition is always
satisfied, as a consequence of the structure of the reactions
described in the third condition. In the Michaelis-Menten
simplification in Section 2.1, the set {C, E} is a linear in-
termediate set.

We will first show that we can apply the axiom (Inter-
mediate) on a linear set, and obtain another linear set.

Lemma 3. If U is a linear intermediate set for N, with
|U| > 1, then we can use the axiom (Intermediate) on any
A 2 U.

Proof. A is an intermediate species. The reactions that
consume A are all linear in xA, i.e. have the same function
f (xA) = xA = f �1(xA). So we can apply the axiom and
remove A.

Lemma 4. If U is a linear intermediate set for N, with
|U| > 1 and A 2 l, and if we use the axiom (Intermediate)
on A and obtain the simplified network M, thenU\A is a
linear intermediate set for M.

Proof. First, we trivially have that (U\A) ✓ I andU\A\
O = ;.

Let us consider the structure of the reactions. Since
the stoichiometric coe�cient is always 1, and the species
of U never appear in the same reactants or products
of a reaction, the production (resp. consumption) reac-
tions will be of form (s1 + Ai A s2 + A; xAi e) (resp.
(s01 + A A s02 + A0i ; xAe0)). Therefore, the combined reac-

tions will be of form r = (s1 + Ai A s02 + A0i ;
xAi ee0

T 0
), with

T 0 =
X

(s01+A A s02+A0i ; xAe0)2R0
e0. So this reaction transforms a species

of U\A into another one. And since e and e0 (and so T 0

too) do not depend on the concentrations of the species of
U, r has a linear kinetics.

For the other reactions, with A as modifier, only their
kinetic expressions are modified. Since xA appears in the
kinetics of these reactions, then no species of U can ap-
pear as reactant or product, and therefore the simplified
reactions still verify the conditions of the linear interme-
diate set.

Consider the linear conservation law
X

A2U
xAeA = e

from the initial network. It will be rewritten into
T
T 0

eA +X

Ai2U\A
xAi eAi = e, with T =

X

(s1+Ai A s2+A; xAi e)2R
xAi e, and T 0 as de-

fined above. The expressions e, eA and eAi above do not
depend on any concentrations ofU. As a consequence T ,
and consequently the new conservation law, are linear in
the species ofU\A.

In conclusion, U\A is a linear intermediate set for the
simplified network.

So we can apply iteratively the axiom (Intermediate)
on the species of the linear intermediate set, until we have
only one species. Then we have a simple linear conserva-
tion law on the last remaining species, and we can apply
the rule (Modifier).

Lemma 5. If U is a linear intermediate set for N, with
U = {A}, then we can use the axiom (Modifier) on A.

Proof. A is an intermediate species, and its concentration
appears in a linear conservation law of the form xAe = k,
equivalent to xA =

e
k

. By definition of linear intermediate
set, A cannot appear in the reactants or the products of
any reaction (since a reaction needs to transform A into
another species of the set, and there is no other species).
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So we can apply the axiom, using the linear conservation
law.

Theorem 3. If U is a linear intermediate set for N, then
we can remove all the species ofU from the network, by
iteratively applying (Intermediate), followed by (Modi-
fier) on the last species.

7. Examples

In this section, we present three examples of network
simplification. First, we use the axiom (Intermediate) to
reduce a network with non-linear kinetics. Then we show
a bigger example of simplification, on the reaction net-
work of the Tet-On system [25, 26, 27]. We finally con-
sider the simplification of a NF-B network [20].

7.1. Non linear intermediate species
We start by considering the reaction network depicted

in Fig. 7 (left), that can represent for instance the double
enzymatic-phosphorilation of a protein P. The species P
can bind to a first enzyme E and form the complex C.
Then C can either dissociate back, or produce P0 while
releasing E. The protein P0 can now bind to another en-
zyme E0, to create the complex C0. Once again, C0 can
dissociate back to P0 and E0, or can release E0 and pro-
duce the final species P00.

The protein P is an input, modifiable by the context,
while P00 is the output. The other species are all internal,
non-observable, and we assume them at steady state. So
we have I = O = {E,C, P0, E0,C0}. In addition to the
partial steady state, there are two conservation laws, one
for each enzyme: xE + xC = ctotal

E and xE0 + xC0 = ctotal
E0 .

The network is formally described in Fig. 8.
We can first apply (Intermediate) on the complexes C

and C0, followed by (Modifier), using the conservation
laws on E and E0, as in the Michaelis-Menten example
described in Section 2. We obtain the network depicted in
the middle of Fig. 7. Note that by convenience, we also
simplify the conservation laws, by removing redundant
and useless ones. The network is formally described in
Fig. 9

We then want to remove the intermediate P0. It is in-
volved in the reaction (12), with a non-linear kinetic ex-
pression. However, since this is the only reaction with P0

as reactant, we can still apply the axiom (Intermediate).

We obtain the equivalent network on the right of Fig. 7,
with the only reaction:

P A P00 ;
VxP

xP + K

and the conservation law 9cP 2 C. cP = xP.

7.2. The Tet-On system

We present here the simplification of the Tet-On system
[25, 26, 27] using our axioms. The initial Tet-On reaction
network, depicted in Fig. 10 (left), has 10 reactions and 11
parameters. We simplify it into the equivalent Tet-Onsimple

network, depicted on Fig. 10 (right), with only 2 reactions
and 3 parameters.

The Tet-On system [25, 26, 27] describes how the pro-
duction of activated green fluorescent proteins (GFPa)
in a cell can be stimulated by the presence of doxycy-
cline (Dox) outside the cell. The detailed network is
Tet-On = R.L where R is the set of reactions from Fig. 11,
inspired by the Tet-On model from [27], and with the fol-
lowing unique conservation laws, that preserves the total
amount of rtTA (bound or free), as well as the concentra-
tion of the gene PTRE3G, and where ' represents the partial
steady state described below:

L = 9ctotal
rtTA , c

total
PTRE3G

2 C. xrtTA + xrtTADox = ctotal
rtTA

^xPTRE3G = ctotal
PTRE3G

^ '.

In the network, the doxycycline Dox moves into the cell
and becomes Doxi by reaction (13). We assume here that
the amount of Dox is controlled by the environment (for
instance by a microfluidics device [28]), and therefore the
network can not modify its concentration. Then Doxi is
either degraded by reaction (14), or binds to the artificial
transcription factor rtTA by reaction (15). The complex
rtTADox either dissociates (16), or activates the transcrip-
tion of the gene PTRE3G, producing mRNA (17). mRNA ei-
ther degrades (19) or is translated into GFP (20). Finally,
GFP needs to be activated into GFPa (22) in order to be-
come fluorescent and thus observable by a microscope.
Both GFP and GFPa can also be degraded (21, 23).

We are particularly interested in GFPa, since it is the
only experimentally observable species. Therefore we
assume that all other species are at steady state, and
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P

E

C

P0

E0

C0

P00

r1
k1xPxE

r2
k�1xC

r3
k2xC

r10
k01xP0 xE0

r20
k0�1xC0

r30
k02xC0

. 9ctotal
E , ctotal

E0 2 C. xE + xC = ctotal
E ^ xE0 + xC0 = ctotal

E0 ^ '

P P0 P00r
V

xP
xP+K

r
V0 xP0

xP0 +K0

. 9cP, cP0 2 C.cP = xP ^ cP = xP0

P P00r
V

xP
xP+K

. 9cP 2 C.cP = xP

Figure 7: Reaction graphs of the detailed (left), intermediate (middle) and simplified (right) non-linear networks. P and P00 can be modified by the
context. In the left network, ' is the conservation law representing the partial steady state. In the middle and right networks, the parameters are

V = k2ctotal
E , V0 = k02ctotal

E0 , K =
k�1 + k2

k1
and K0 =

k0�1 + k02
k01

.

P + E A C ; k1xPxE

C A P + E ; k�1xC

C A P0 + E ; k2xC

P0 + E0 A C0 ; k01xP0xE0

C0 A P0 + E0 ; k0�1xC0

C0 A P00 + E0 ; k02xC0

. 9cE , cC , cP0 , cE0 , cC0 2 C. xE = cE ^ xC = cC ^ xP0 = cP0 ^ xE0 = cE0 ^ xC0 = cC0

^ 9ctotal
E , ctotal

E0 2 C. xE + xC = ctotal
E ^ xE0 + xC0 = ctotal

E0

Figure 8: The detailed non-linear network.

non-observable. Therefore, O = {GFPa} and ' =^

A2Spec\GFPa

9cA 2 C. xA = cA. Since we assume that Dox

is controlled by the environment, while any other species
is inside the cell, it will be the only species modifiable
by the context. Therefore all species except Dox are in-
ternal: I = Spec\Dox. The simplification follows the ax-
ioms from Fig. 5, and Fig. 6, and as a consequence the
two networks are equivalent. Note that in the following
simplification, for the sake of readability, some kinetic
expressions and conservation laws are sometimes slightly
rewritten into equivalent expressions.

One can start by observing that the gene PTRE3G is only
used as a modifier, in reaction (17). We apply the axiom
(Modifier), removing PTRE3G from this reaction, while re-
placing xPTRE3G by ctotal

PTRE3G
in its kinetic function. The con-

servation law on xPTRE3G becomes 9cPTRE3G 2 C. cPTRE3G =
ctotal

PTRE3G
, and can directly be removed.

Then consider the internal, non-observable species
rtTADox. It is at steady state, and involved in three re-
actions: one that produces it (15), one that consumes it

(16), and one that uses it as a modifier (17). Then we use
the axiom (Intermediate) on it, and compute its value at

steady state: xrtTADox =
k2

k�2
xrtTAxDoxi . The three reactions

are merged into:

; A ; ; k2xrtTAxDoxi (24)

; A mRNA ; ctotal
PTRE3G

V1
xrtTAxDoxi

xrtTAxDoxi + k�2K1/k2
(25)

and the conservation law becomes:

9crtTADox 2 C. crtTADox =
k2

k�2
xrtTAxDoxi (26)

^9ctotal
rtTA 2 C. xrtTA +

k2

k�2
xrtTAxDoxi = ctotal

rtTA (27)
^

A2{Dox,Doxi,rtTA,mRNA,GFP}
9cA. xA = cA. (28)

We can delete the reaction (24) with the axiom (Use-
less). rtTA is now only used as modifier. The conser-
vation law (27) can be rewritten into 9ctotal

rtTA 2 C. xrtTA =
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P A P0 ;
VxP

xP + K
(10) P0 A P00 ;

V 0xP0

xP0 + K0
(12)

. 9cP, cP0 2 C. cP = xP ^ xP0 = cP0

Figure 9: Intermediate non-linear network, with V = k2ctotal
E , V0 = k02ctotal

E0 , K =
k�1 + k2

k1
and K0 =

k0�1 + k02
k01

.

Dox Doxi rtTA rtTADox PTRE3G

mRNAGFPGFPa

r1

kinxDox

r2
k1xDoxi

r3

k2xrtTAxDoxi

r4
k�2xrtTADox r5 V1xPTRE3G

xrtTADox

xrtTADox + K1r6

k3xmRNA

r7
k4xmRNA

r8

k5xGFP

r9
k6xGFP

r10

kxGFPa

.9ctotal
rtTA , c

total
PTRE3G

2 C. xrtTA + xrtTADox = ctotal
rtTA ^ xPTRE3G = ctotal

PTRE3G

^

A2Spec\GFPa

9cA 2 C. xA = cA

Dox

GFPa

r1�9

V
xDox

xDox+K

r10

kxGFPa

. 9c 2 C.c = xDox

Figure 10: Reaction graphs of the detailed (left) and simplified (right) Tet-On networks. Species are represented by circles, and reactions by squares.
A dash arrow means that the species acts as a modifier in the reaction, while a dot arrow means that the species can be modified by the context. In
the right network, the parameters are V = cPTRE3G V1k4k6/k3(k5 + k6) and K = k1k�2K1/crtTAkink2.

k�2ctotal
rtTA

k�2 + k2xDoxi

. At this point we can use the axiom (Modi-

fier) and replace xrtTA in (25):

; A mRNA ;
V2xDoxi

K2 + xDoxi

(29)

with V2 =
ctotal

PTRE3G
V1ctotal

rtTA

K1 + ctotal
rtTA

and K2 =
k�2K1

k2(K1 + ctotal
rtTA)

.

We then apply axiom (Intermediate) on GFP, replacing
the reactions (20), (21) and (22) by:

; A GFPa ;
k4k6

k5 + k6
xmRNA. (30)

Also, we can apply (Intermediate) on Doxi, and replace
reactions (13), (14), and (29) with:

; A mRNA ;
V2xDox

k1K2

kin
+ xDox

. (31)

Finally, we use the axiom (Intermediate) followed by
(Useless) on mRNA, and merge the reactions (19), (30)
and (31) into:

; A GFPa ; V
xDox

K + xDox
(32)

with

V =
ctotal

PTRE3G
V1ctotal

rtT Ak4k6

k3(k5 + k6)(K1 + ctotal
rtT A)

K =
k1k�2K1

kink2(K1 + ctotal
rtT A)
.

The conservation law becomes, after simplification of re-
dundant equations and useless parameters:

9c 2 C. c = xDox

So we obtain the reaction network Tet-Onsimple = R0 .
(9c. c = xDox), with R0 given by

; A GFPa ; V
xDox

xDox + K
GFPa A ; ; kxGFPa .
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; A Doxi ; kinxDox (13)
Doxi A ; ; k1xDoxi (14)
rtTA + Doxi A rtTADox ; k2xrtTAxDoxi (15)
rtTADox A rtTA + Doxi ; k�2xrtTADox (16)

; A mRNA ; V1xPTRE3G

xrtTADox

xrtTADox + K1
(17)

mRNA A ; ; k3xmRNA (19)
; A GFP ; k4xmRNA (20)
GFP A ; ; k5xGFP (21)
GFP A GFPa ; k6xGFP (22)
GFPa A ; ; kxGFPa (23)

Figure 11: Reactions of the detailed Tet-On network.

Tet-Onsimple is equivalent to the initial network:

Proposition 3. The initial and simplified networks are
contextually equivalent:

Tet-On 'O,I Tet-Onsimple.

Notice that, aside from the kinetics and the conserva-
tion law, the simplified network is equal to the one we
obtained with our qualitative simplification in [18].

7.3. NF-B signaling

Finally, we present the simplification of a sub-module
of a NF-B signaling model from [20]. The nuclear factor
B (NF-B) is involved in the regulation of several im-
portant genes for immune and stress response, cytokine
production, and cell survival.

The initial NF-B network, a sub-module of the model
from [20], is depicted in Fig. 12 (left) and has 10 species
and 13 reactions1. We simplify it into an equivalent net-
work, depicted in Fig. 12 (right), with only 4 species and
2 reactions. It models the cytoplasmic part of the NF-
B signaling.

The initial network NF-B = R . L, as in [20], con-
tains six intermediates and internal species I = {Ikk,
Ikk|act, Ikk|inac, Ikk|act:IkBa, Ikk|act:IkBa:p50:p65,
p50:p65@csl}. The conservation law is:

L =
^

X2I
9cX . xX = cX .

1Note that in the original model from [20], reactions r09 and r013 are
reversible. We choose to not put the reverse reactions here, since they
are ignored in their simplification.

We only observe the non-intermediate molecules, i.e:

O = {A20, IkBa@csl, IkBa:p50:p65@csl, p50:p65@nsl}.
The reaction r01 represents the production of the tran-

scription factor Ikk. This can go into an activated state
Ikk|act with the reaction r03. The activated transcription
factor can go into an inactivate state Ikk|inac, with re-
action r05. Note that this reaction is the normalization
of two reactions of the initial model. It merges reac-
tion (Ikk|act A Ikk|inac; k05xIkk|act) and reaction (Ikk|act+
A20 A Ikk|inac + A20; k005 xA20xIkk|act), with the modi-
fier A20. The transcription factor can be degraded, in
any of its three states, with reactions r02, r04, r06. In
its activated form, it can bind to the protein IkBa@csl
and form the complex Ikk|act:IkBa (r07). IkBa@csl can
also bind first to p50:p65@csl, forming the complex
IkBa:p50:p65@csl (r09), and then bind to the transcription
factor, forming the complex Ikk|act:IkBa:p50:p65 (r011).
These three complexes can dissociate, while consuming
the protein IkBa@csl, in reactions r08, r010 and r012. Finally,
the protein p50:p65@csl can go into the nucleus, forming
p50:p65@nsl, via reaction r013.

For the simplification, we can first remark that A20 is
only used as a modifier, and therefore can be removed
with the rule (Modifier), that replaces xA20 with cA20.
Then the intermediate Ikk|inac is only produced by re-
action r05, and consumed by r06. We can remove it with the
axiom (Intermediate). The resulting reaction is automat-
ically merged with r04 by the normalization, forming the
reaction:

r014 = (Ikk|act A ;; (k04 + k05 + k05cA20)xIkk|act).

The intermediate Ikk is produced by reaction r01, and con-
sumed by r02 and r03. We can use (Intermediate) to remove
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Ikk Ikk|act

Ikk|inacA20

Ikk|act:IkBa:p50:p65 p50:p65@csl

Ikk|act:IkBa IkBa@csl

IkBa:p50:p65@csl

p50:p65@nsl
r01

k01

r02
k02xIkk

r03

k03xIkk

r04

k04xIkk|act

r05 (k05+k005 xA20)xIkk|act

r06

k06xIkk|inac

r07k07xIkk|actxIkBa@cslr08k08xIkk|act:IkBa

r09
k09xIkBa@cslxp50:p65@csl

r011

k011xIkk|actxIkBa:p50:p65@csl

r012

k012xIkk|act:IkBa:p50:p65

r010k010xIkBa:p50:p65@csl

r013k013xp50:p65@csl

IkBa@csl

IkBa:p50:p65@csl

p50:p65@nsl

r001

r002

r001 = IkBa@csl A ; ;

"
k01k03k07

(k02 + k03)k005 k10
(

k013

k09
+ xIkBa@csl) + [K + xA20]xIkBa:p50:p65@csl

#
k010xIkBa@csl

(
k013

k09
+ xIkBa@csl)(

k04 + k05
k005

+ xA20)

r002 = IkBa:p50:p65@csl A p50:p65@nsl ;

k010k013

k09
[K + xA20]xIkBa:p50:p65@csl

(
k013

k09
+ xIkBa@csl)(

k04 + k05
k005

+ xA20)

Figure 12: Reaction graphs of the detailed (left) and simplified (right) NF-B networks. Species are represented by circles, and reactions by squares.
A dash arrow means that the species acts as a modifier in the reaction, while a dot arrow means that the species can be modified by the context. In

the kinetic rates of the simplified reactions r001 and r002 , we have K =
k01k03k011 + (k02 + k03)(k04 + k05)k010

(k02 + k03)k005 k010
.

it. The fusion of r01 and r02 gives a useless reaction, that we
directly remove with the rule (Useless), while the fusion
of r01 and r03 forms the reaction:

r015 = (; A Ikk|act;
k01k03

k02 + k03
).

The simplification proceeds similarly, with the removal
of the intermediates Ikk|act:IkBa, Ikk|act:IkBa:p50:p65,
p50:p65@csl and Ikk|act, while normalizing and discard-
ing the useless reactions and merging reactions, until
we obtain only the two reactions presented in Figure 12
(right), with the parameter:

K =
k01k03k011 + (k02 + k03)(k04 + k05)k010

(k02 + k03)k005 k010
.

In [20], Radulescu et al. applied their reduction method
to the same sub-module. Their method is also based on
eliminating the intermediate molecules, but does not com-
pute the exact rates of the simplified reactions. Instead, an

approximation is applied based on the dominant parame-
ters. The authors find two reactions with the same struc-
ture than us, but not with the same rates, as we can see in
Figure 13. Note that if we only keep the dominant rates
of our simplified reactions, we find the same kinetic rates
as in [20].

8. Further related work

Much e↵ort has been spent on the simplification of bi-
ological systems. One simplification approach – as devel-
oped in [18] and described in the introduction – consists
in carrying over structural simplification methods from
compiler construction [29, 19], by looking at reaction net-
works as programs [30, 31, 32] with a non-deterministic
semantics. As stated already, it preserves the final non-
deterministic behavior of the network, in term of attrac-
tors, that are final connected components. Simplifica-
tion methods preserving the attractors were also devel-
oped for boolean networks in [33]. Other structural meth-
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IkBa@csl A ; ;

k01k011

k005
xIkBa@cslxIkBa:p50:p65@csl

(
k013

k09
+ xIkBa@csl)(

k05
k005
+ xA20)

IkBa:p50:p65@csl A p50:p65@nsl ;

k01k011k013

k005 k09
xIkBa:p50:p65@csl

(
k013

k09
+ xIkBa@csl)(

k05
k005
+ xA20)

Figure 13: Reactions of the NF-B network after applying the simplification from [20].

ods aims at preserving the usual properties of Petri Nets
[34, 35, 36]. In [37], subgraph epimorphisms are used to
reduce reaction networks.

Approaches aiming at simplifying reaction networks
while preserving the deterministic semantics are often
motivated by a simplification method for the underlying
Odes. Symmetries between species can be used to reduce
the network [38, 39]. Many other simplification methods
use equilibrium and the distinction between slow and fast
reactions, as for instance methods based on invariant man-
ifolds [40], quasi steady state [41, 42], quasi-equilibrium
approximation [43] or tropicalization [44].

Some of those methods eliminate intermediate species,
with concentration assumed at steady state. The prime
example is Michaelis-Menten simplification of enzymatic
reaction networks [17], which is justified by a quasi
steady state approximation [42]. King and Altman [45]
presented a simplification of a more general sequence of
enzyme-catalyzed reactions into a single reaction, when
the intermediate complexes are at steady state. It is based
on a graphic procedure to compute the kinetic rate of the
reduced reaction. In [46], a similar procedure is proposed,
using the spanning trees of the graph of intermediates to
compute the simplified Odes system of more general re-
action networks. It should however be noticed that it is
tedious to transform Odes back into reaction networks,
since some Odes system do not stem from any reaction
networks, while other do but not in a unique manner (see
e.g. [47]).

9. Discussion

In this section, we discuss the di↵erent conditions and
limitations of our method.

Most of the simplification methods for chemical reac-
tion networks with deterministic semantics are based on
Odes simplification, i.e. aim at producing a reduced Odes
system for the initial reaction network [45, 48, 49, 46, 44,
45]. In contrast, in our work, we aim at obtaining a struc-
tural simplification, to derive a new simplified reaction
network. Having the reaction network, rather than only
the Odes, provides more details about the biological sys-
tem and its structure, and makes it easier to understand.
Since it is easy to compute the Odes system from the reac-
tion network, while rebuilding a well-formed reaction net-
work from an Odes system is di�cult [47], it can be use-
ful to simplify the network and not only the Odes system.
Moreover, our simplification axioms are actually really
close to the simplification axioms we presented in [18],
for a non- deterministic semantics, that aims at preserv-
ing the final non-deterministic behavior of a reaction net-
work. Therefore, we could build a simplification method
that preserves both semantics, that was not possible when
considering only the Odes.

The partial steady state assumption is one important
necessary condition in our work to remove an inter-
mediate species. Numerous simplification methods are
based on quasi steady state and similar equilibrium con-
ditions [50, 40, 20, 46, 44]. An exact equilibrium is nec-
essary to have an exact simplification, i.e. to obtain a de-
terministic semantics of the reduced network that is per-

21



fectly equal to the initial one. Note however that in prac-
tice, reaching this exact equilibrium is not possible, the
solutions will only be close to the partial steady state, and
therefore the simplified network behavior will be slightly
di↵erent than the original one. It would be interesting to
try to estimate the error made in the simplification based
on how close the network is to the partial steady state.

The impact of order of application of our simplification
rules is an important question. Our simplification method
is currently not confluent, meaning that di↵erent orders
can produce di↵erent simplified networks. One source
of non-confluence comes from the condition on the ki-
netic expressions of the consuming reactions in the ax-
iom (Intermediate), that are not preserved when we ap-
ply the axiom on di↵erent intermediate species. Those
conditions are necessary to be able to compute the steady
state value, and to build the simplified network, and can-
not be generalized further. In a follow-up paper [23],
we showed that even if we restrain the axiom (Interme-
diate) to species with linear kinetics, the simplification is
still not confluent. Indeed, some simplification orders can
generate "dependent reactions", that are combination of
other reactions of the network. By adding an axiom re-
moving these dependent reactions, we proved that, inde-
pendently of the order of application of the simplification
axioms, we can always obtain the same reaction structure
(without the kinetic rates) and the same Odes. However,
the distribution of the kinetic rates between the reactions
may be di↵erent.

We presented three axioms in this paper: the main ax-
iom (Intermediate), and two related axioms. The axiom
(Useless) is necessary to remove the useless reactions cre-
ated by (Intermediate), while the axiom (Modifier) al-
lows us to simplify all the species of a linear intermediate
set. It could be interesting to have more simplification ax-
ioms that preserve the equivalence. We could for instance
factorize a reaction of the form (n ⇤ s1 A n ⇤ s2; e) into
the reaction (s1 A s2; n ⇤ e), or consider axioms based on
the symmetries of the network. Note that it seems how-
ever di�cult to have a complete set of axioms, that totally
characterizes the equivalence.

Our simplification method has been implemented. The
implementation includes the axioms presented in this arti-
cle, as well as some of the others mentioned in the previ-
ous paragraph. Networks can be imported from SBML
or text format. We have tested the methods on some

networks from http://www.biomodels.net/. Theo-
retically the number of reactions may increase with the
simplification, while the number of species decreases.
In practice, the number of reactions decreases on every
tested model. Note that when testing the simplification,
the intermediate species were chosen arbitrarily by hand,
but we do not check whether the system verifies appro-
priate conditions on parameters and initial conditions to
justify the steady state assumption on these intermediate
species.

10. Conclusion

We presented a new structural and contextual simplifi-
cation of reaction networks, that preserves the determin-
istic semantics, under partial steady state hypothesis. It
removes intermediate species, and can take into account
conservation laws. It requires some conditions on the ki-
netic expressions, but is not restrained to linear kinetics.
We have shown the usefulness of the simplification by ap-
plying it to biological networks. The simplification al-
gorithm has been implemented and tested on biological
models.

On the theoretical side, as future work, we want to in-
vestigate an approximated equivalence, when the species
are only close to a steady state, and to compute the max-
imal error made by a simplification. A similar simpli-
fication method with a stochastic semantics will also be
considered.
Acknowledgment: The authors would like to thank
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BioSys research network.
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