Analytical solution to the 1D nonlinear elastodynamics with general constitutive laws

Abstract : Under the hypothesis of small deformations, the equations of 1D elastodynamics write as a 2 × 2 hyperbolic system of conservation laws. Here, we study the Riemann problem for convex and nonconvex constitutive laws. In the convex case, the solution can include shock waves or rarefaction waves. In the nonconvex case, compound waves must also be considered. In both convex and nonconvex cases, a new existence criterion for the initial velocity jump is obtained. Also, admissibility regions are determined. Lastly, analytical solutions are completely detailed for various constitutive laws (hyperbola, tanh and polynomial), and reference test cases are proposed.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01350116
Contributeur : Bruno Lombard <>
Soumis le : dimanche 7 août 2016 - 08:28:56
Dernière modification le : jeudi 10 janvier 2019 - 15:38:02
Document(s) archivé(s) le : mardi 8 novembre 2016 - 10:11:29

Fichiers

Version1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

H Berjamin, Bruno Lombard, Guillaume Chiavassa, N Favrie. Analytical solution to the 1D nonlinear elastodynamics with general constitutive laws. Wave Motion, Elsevier, 2017, 74, pp.35-55. 〈10.1016/j.wavemoti.2017.06.006〉. 〈hal-01350116〉

Partager

Métriques

Consultations de la notice

366

Téléchargements de fichiers

195