Unsupervised Active Learning For Video Annotation

Abstract : When annotating complex multimedia data like videos, a human expert usually annotates them manually. However, labeling these immense quantities of videos manually is a labor-intensive and time-consuming process. Therefore, computational methods, such as active learning are used to help annotate. In this study, we propose a cluster based unsupervised active learning approach and a new active learning method for un-supervised active learning on REPERE (Giraudel et al., 2012) video dataset, which is created for the problem of person identification in videos. Our study aims to identify who is speaking and who is on screen by using multi-modal data.
Type de document :
Communication dans un congrès
ICML Active Learning Workshop 2015, Jul 2015, Lille, France. ICML Active Learning Workshop 2015 / Proceedings of the 32nd International Conference on Machine Learning
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01350092
Contributeur : Laurent Besacier <>
Soumis le : vendredi 29 juillet 2016 - 15:51:27
Dernière modification le : jeudi 13 décembre 2018 - 15:09:26

Fichier

demir_unsupervised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01350092, version 1

Citation

Emre Demir, Zehra Cataltepe, Umit Ekmekci, Mateusz Budnik, Laurent Besacier. Unsupervised Active Learning For Video Annotation. ICML Active Learning Workshop 2015, Jul 2015, Lille, France. ICML Active Learning Workshop 2015 / Proceedings of the 32nd International Conference on Machine Learning. 〈hal-01350092〉

Partager

Métriques

Consultations de la notice

217

Téléchargements de fichiers

228