Parallel Speech Collection for Under-resourced Language Studies Using the Lig-Aikuma Mobile Device App

Abstract : This paper reports on our ongoing efforts to collect speech data in under-resourced or endangered languages of Africa. Data collection is carried out using an improved version of the Android application Aikuma developed by Steven Bird and colleagues 1. Features were added to the app in order to facilitate the collection of parallel speech data in line with the requirements of the French-German ANR/DFG BULB (Breaking the Unwritten Language Barrier) project. The resulting app, called Lig-Aikuma, runs on various mobile phones and tablets and proposes a range of different speech collection modes (recording, respeaking, translation and elicitation). Lig-Aikuma's improved features include a smart generation and handling of speaker metadata as well as respeaking and parallel audio data mapping. It was used for field data collections in Congo-Brazzaville resulting in a total of over 80 hours of speech. Design issues of the mobile app as well as the use of Lig-Aikuma during two recording campaigns, are further described in this paper.
Type de document :
Communication dans un congrès
Workshop on Spoken Language Technologies for Under-resourced Languages (SLTU), May 2016, Yogyakarta, Indonesia. Procedia computer science, 2016, 〈10.1016/j.procs.2016.04.030〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01350065
Contributeur : Laurent Besacier <>
Soumis le : vendredi 29 juillet 2016 - 15:25:08
Dernière modification le : mercredi 31 octobre 2018 - 12:24:05
Document(s) archivé(s) le : dimanche 30 octobre 2016 - 12:09:02

Fichier

procs-template-generic.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

David Blachon, Elodie Gauthier, Laurent Besacier, Guy-Noël Kouarata, Martine Adda-Decker, et al.. Parallel Speech Collection for Under-resourced Language Studies Using the Lig-Aikuma Mobile Device App. Workshop on Spoken Language Technologies for Under-resourced Languages (SLTU), May 2016, Yogyakarta, Indonesia. Procedia computer science, 2016, 〈10.1016/j.procs.2016.04.030〉. 〈hal-01350065〉

Partager

Métriques

Consultations de la notice

454

Téléchargements de fichiers

134