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This review article focuses on the problems related to numerical simulation of finite dimen-sional nonsmooth multibody 
mechanical systems. The rigid body dynamical case is examined here. This class of systems involves complementarity 
conditions and impact phenomena, which make its study and numerical analysis a difficult problem that cannot be solved by 
rely-ing on known Ordinary Differential Equation ~ODE! or Differential Algebraic Equation ~DAE! integrators only. The 
main techniques, mathematical tools, and existing algorithms are reviewed.
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1 INTRODUCTION

This article focuses on the problem of numerical simulat
of systems composed of interacting rigid bodies. It aims
showing the state of the art in this field and, at the same t
introduces the main features, difficulties, and proposed s
tions to simulation of nonsmooth multibody dynamics. T
topic is an important part of the multibody systems dynam
general problem, which is itself a major field of investigati
@1–3#. It concerns many domains of applications: interact
computer graphics, virtual prototyping@4,5# ~electrical de-
vices, watch mechanisms design!, aerospace~control of
space manipulators, liquid slosh phenomena in satelli!,
diesel engines, landing gear, analysis of vibrations in
chines@6,7# assembly and disassembly processes@8#, design
of optimal protection from collisions@9#, granular matter—
dynamics of sandpiles, gravels, planetary rings—@10–12#,
1
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dynamics of buildings and structures@13#, modeling and
control of buildings, hopping@14#, walking machines@15#,
kinematic chains with backlash@16,17#, manipulators per-
forming complete robotic tasks~deburring, grinding, polish-
ing, chamfering! @18–20#, etc. It also involves various scien
tific communities: Mechanical Engineering, Systems an
Control, Applied Mathematics, Robotics, and Physics.
real-world applications, there exists a trend to use one a
the same simulator for design, engineering, and training p
poses@21#. A typical example is the simulation environmen
for a space manipulator@22#. The challenge for model devel-
opers is to provide users of simulators with accurate a
realistic responses of simulated nonsmooth systems with s
ficient level of detail @23#. Issues like repeatability and
uniqueness of solutions are clearly of paramount importan
If real-time simulations are desired, the numerical algorith
must also perform real-time~ie, it has to calculate the motion
faster than the real process evolution!, possibly in a trade-off
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with accuracy requirements. The choice of model, eg, ri
body versus compliant, becomes important. We will d
with these issues in the remainder of this paper. With
growing availability of commercial and research code
nonsmooth mechanical systems, the capabilities of th
codes become of interest, especially since those pack
tend to limit the time needed to code an application mod

The choice between rigid body or compliant models i
problem in itself. At this stage, the reader should underst
these two definitions in a very rough fashion since a rigor
definition of rigidity and compliance requires some care@24#.
This will be discussed in this article. Let us just point out th
the choice of the model in general strongly depends on o
goals and field of application. It may be the result of
iterative process with successive simplifications or compli
tions. There are applications~eg, Systems and Control, Ro
botics! in which one needs simple enough models~eg, that
allow the designer to construct a stable feedback control!.
At the same time, such models have to predict the real
tion reasonably well, hence keep enough physical inform
tion inside them. In this setting, rigid body models see
quite suitable in many applications, where a compromise
tween accuracy and tractability has to be found.

As is well known, the principal qualities of a numeric
algorithm are its accuracy and its stability~conditional sta-
bility, A-stability, or unconditional stability!. Accuracy is re-
lated to the order of the scheme. Stability is related to
boundedness of the numerical solution for fixed steps of
tegration, as time progresses. A third property is the con
gence of the numerical solution towards some function, o
fixed time interval, as the integration step goes to zero. O
question that comes to mind is: are these properties tr
ported from ODEs ~free-motion systems!or DAEs
~bilaterally-constrained systems! towards unilaterally con-
strained systems? For example, does a multistep algor
that is known to converge for index 2 DAEs~@25#, Ch.
VII.3!, still converge for nonsmooth systems? As we sh
expose throughout this paper, the answer is not trivial,
might be negative in many cases. For instance, the E
method is known to be not very accurate for ODEs or DA
~@26#, page 247!. However, the occurrence of topology mo
fications and/or impacts~state re-initializations!may also
render the higher-order methods useless, or at least much
powerful @27–29#. Moreover, some widely used tricks lik
Baumgarte’s stabilization of constraints become quite in
equate in the case of inequality constraints, where the sig
the Lagrange multipliers is of primary importance. To su
marize, the challenge could be formulated as follows: C
sider the multibody system in@25# Ch. VII.7 ~a seven-body
mechanism!, on which six different DAE codes are co
pared. Add some unilateral constraints with friction~say 15,
which is a reasonable number!. How much is the problem
complicated? What does there remain to be done before
ting a reliable and accurate simulation software, start
from the proposed algorithm~DASSL, DOPRI, RADAU,
etc!? The answer to both questions is: a lot! We will lay t
foundation for this answer in the remainder of this paper

In the following, we shall generically denote the impa
times astk , and the set of admissible positions as
2
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K5$q:f~q!>0% (1)

with f(•) a differentiable vector valued function. The ge
eral dynamics of the systems we deal with may be written
follows:

5
M ~q!q̈5Q(q,q̇,t)1¹f(q)l1P(q,q̇,l)1¹fb(q)lb

f(q)>0, l>0, fTl50

fb(q)50

State re-initialization~Impact rule)

Coulomb friction.

(2)

The matrixM (q)PRn3n is the symmetric positive definite
inertia matrix, Q(q,q̇,t) accounts for inertial~centripetal,
Coriolis!, external~eg, control inputs!, and frictional~Ray-
leigh dissipation!generalized torques,P(q,q̇,l) accounts
for frictional ~Coulomb!generalized forces,fb(q)PRmb is a
set of bilateral constraints,lb is the corresponding Lagrang
multiplier vector,f(q)>0, f(q)PRm is the set of unilateral
constraints which indicate in which domain of the config
ration space of the systemq is allowed to evolve, andl is a
vector of Lagrange multipliers which represent the norm
part of the interaction between the system and its envir
ment. As a convention in this paper,¹ will always denote the
gradient in the Euclidean metric~ie, ¹fT5]f/]q), though
we shall make use of other metrics. The complementarity~or
orthogonality!betweenf(q) and l indicates that physica
interactions producing forces without contact~magnetic ef-
fects! and gluing forces are not taken into account in t
model. In the following we shall generally consider th
there are no permanent bilateral constraints in order to fo
our attention on inequality constraints only. Systems as in~2!
are sometimes namedcomplementary slacknessmechanical
systems by analogy with the mathematical programming
convex analysis language~@30# page 226!. Assume friction
less constraints, and thatl is an impulsive term, ie,l
5pkd tk

with d tk
the Dirac measure at timetk . Let f (tk

1) and

f (tk
2) denote the right and left limits off (•) at t5tk , re-

spectively. Then the Lagrange equations attk become@18#:

M ~q~ tk!!@ q̇~ tk
1!2q̇~ tk

2!#5¹f~q~ tk!!pk. (3)

The mathematical problems associated to the dynamic
~2! are not trivial. As we shall explain later in this paper, t
dynamics in Eqs.~2! and~3! represent a Measure Differentia
Inclusion ~MDI!. Its well-posedness~existence and unique
ness of solutions!is still an open problem in the general cas
One of the very first contributions to this field can be fou
in @31#. Other contributions have been made by Montei
Marques@32#, Stewart@33,34#, Mabrouk@35,36#, Carriero
and Pascali@37,38#, Heemelset al @39,40#, van der Schaf
and Schumacher@41,42#, Lötstedt @43#, Percivale and But-
tazzo @44-48#, Ballard @49,50#, and Schatzman and Pao
@51–57#. In particular, systems with multiple contacts and/
friction create deep modeling and analysis difficulties. It
not the goal of this survey to provide many details on t
mathematical aspects of the continuous-time dynam
However, it is worth being aware of them since it see
difficult, even hazardous, to simulate a system reliably tha
not well-posed~see Section 6.2!! In particular, one should
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aware of the fact that multiple impacts generally imply d
continuity of the solutions with respect to the initial da
@18,32,39,58#. This may have consequences on the nume
as well as the control aspects. A non well-posed problem
little chance to yield a well-posed numerical algorithm wh
it is time-discretized. In@59#, it is shown that a modified
Coulomb’s law yields non-uniqueness of solutions in a
system. It is also shown that the discretization with an i
plicit Euler scheme leads to difference equations that pos
several solutions.

It is noteworthy that the tools and models described in t
paper concern essentially mechanical systems subject to
lateral constraints with or without dry friction. Howeve
they may also be suitable to the simulation of other n
smooth physical systems, like electrical networks@27,42#.
Indeed, some components like diodes can be modeled
the complementarity conditions which we describe later, a
the state may possess discontinuities in complex elect
networks, requiring reinitialization rules similar to the m
chanical collisions@39#. As we shall see, all these nonsmoo
dynamical systems can be recast in the framework of M
sure Differential Inclusions~MDIs!. Infinite-dimensional as
well as quasi-static or static problems with unilateral co
tacts are not examined in this paper, see, eg,@60# for a sur-
vey.

In this survey, we shall first recall in Section 2 the bas
of modeling nonsmooth systems so that the paper cont
some introductory material, before passing to more spec
developments for numerical simulations. In Section 3,
introduce some peculiarities of nonsmooth multibody s
tems simulations when compared to simulation of smo
systems. Such an introduction is thought to be necessa
order to fix and clarify the fundamental discrepancies
tween systems as in~2! above, and various other types
switching, discontinuous, or impulsive dynamical syste
that are often encountered in the literature~Applied Math-
ematics, Systems and Control, Computer Science!. Section 4
is concerned with a discussion on the use of rigid and co
pliant models for simulation of contact of nonsmoo
systems.

The main focus of the paper is on numerical analysis
Sections 5, 6, 7, and 9. In Section 5, a brief overview
given of numerical issues for bilaterally constrained m
chanical systems. This analysis is used in Section 6 to
cuss algorithms for unilaterally constrained mechanical s
tems. The numerical methods that are discussed are e
so-called event-driven or time-stepping methods. A comp
son of the methods is made. Convex analysis and mathem
cal programming tools are at the core of many works in t
field and are therefore recalled. In Section 8, we briefly
turn to mathematical issues in modeling nonsmooth syste
An overview of commercial packages capable of simulat
nonsmooth mechanical systems is presented in Sectio
Finally, concluding remarks can be found in Section 10.
3
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2 DYNAMICS OF BILATERALLY
CONSTRAINED MECHANICAL SYSTEMS—DAEs

2.1 Formulation of the unconstrained
continuous dynamics

When a system contains a number of subsystems, it may
be practical to obtain a single system of differential equ
tions that describes the behavior of the dynamical syst
The subsystems may be of a different dynamical charac
Take for example a satellite that contains liquid~cooling or
fuel!. Both the motion of the liquid and of the satellite can
described by differential equations. Another example is a
botic arm that contains flexible as well as rigid bodies. So
first, a system description will contain submodels that c
ture specific~local! dynamics that can already contain oper
tional constraint descriptions. By adding environmental co
straints, one obtains a closed-chain description. In addit
feedback control laws lead to closed-loop, closed-chain s
tem descriptions. There are two approaches to formu
models of unconstrained continuous dynamical syste
those that compute the mass matrix~Lagrange or Hamilton
equations, recursive Newton-Euler!, and those that do
~Featherstone recursive algorithm!. Both approaches yield
formulations that can be applied to open~serial or tree!
chains and to closed-loop chains@26#. For closed-loop chains
the trick is to cut the loop, introduce a multiplier, and th
work with the multiplier method or reduce to independe
coordinates. Recursive methods seem to have lost intere
recent years~@26# Remark, page 273!. One of the reaso
may be the availability of increasing computer power at e
lower prices. The advent of so-calledO(N) methods, where
N stands for the number of bodies in a dynamics mod
happened at a time when computers were not as powerfu
today. In many applications, special effort was paid to sav
computational effort, and also to parallelization of alg
rithms. For largeN, algorithms ofO(N) became of interest
in view of there efficiency. Some theoretical analyses s
gested that the speed of performance of anO(N) algorithm
would become superior over that of aO(N3) algorithm for a
sufficiently large number of bodies. Featherstone@61# is
O(N) and supersedesO(N3) for more than 10 bodies. In
@22#, it is reported that a specialO(N) algorithm is faster,
already, for two bodies. This may be due to tailoring t
algorithm to the application at hand: a robotic manipula
with six rigid bodies and two flexible bodies. We refer
@26# for a summary of the different methods. A note on Jo
dain’s principle, and its relation to D’Alembert’s principl
and the so-calledKane’s dynamical equationscan be found
in @22#, Appendix A.

2.2 Reduction into independent coordinates

Since the presence of~equality!constraints leads to limiting
the degrees of freedom of a system~model!, several authors
have proposed to find and select independent coordinates
reduce the number of dynamical equations. See, for exam
McClamroch and Wang’s~see@18#!, Kane’s methods~both
more or less based on implicit functions!, Wehage and H
@62#. Haug’s method does not aim at reducing the dynam
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in closed-form, but just reorders the generalized coordina
in view of correcting the drift away from the constraints@5#.
The choice of~dependent!coordinates is not unique, and th
reduction to independent ones is neither. In general, the
duction is a difficult task@63#. Advantages of the reductio
are that the reduced-order dynamics usually require
computation time and the formulation is free of drift fro
the constraint surface. Reduced-order techniques are o
available in commercial code-generation packages~see Sec-
tion 9!. A drawback is that addition of a new constraint ag
leads to a differential/algebraic description, and the inter
ing theoretical issue arises whether one should obtain a
reduced-order formulation from the original description
from the already obtained reduced-order formulation.

A decomposition into submodels simplifies modeling a
makes the overall system model more flexible and eas
adapt. This modular approach to modeling facilitates the p
sibility of exchanging models for subsystems, which is
necessity in system design. Therefore, in the remainde
this paper we will concentrate on the Lagrange multipl
approach to modeling.

Some softwares@64# include heuristic approaches whic
allow one to decrease significantly, in certain cases, the n
ber of algebraic conditions. An example of a gearbox with
clutches and algebraic~bilateral! constraints including 212
unknowns is presented in@64#. The algorithm reduces th
number of variables to 23 unknowns. This is
NP-complete1 problem. The implementation of such fa
methods that allow one to eliminate useless constraint
also employed in collision detection, see Section 6.5. Clea
a software must incorporate such algorithms to be effic
and fast enough.

2.3 Lagrange multipliers methods

Lagrange multiplier formulations of constrained mechani
systems can be obtained via so-called first-principles mo
ing. It is of interest to note that for constrained mechani
systems, Lagrange formulations can be derived that are
ticularly useful for simulation. See, for example,@25,65#
~proposition 9.4.1! @66#, and@67#.

Let us view system~2! in the absence of friction, wher
we assume thatQ does not depend explicitly on time.

H M ~q!q̈5Q~q,q̇!1¹f~q!l

f~q!>0, l>0, fTl50.
(4)

For systems as in~4!, information on where and how
contact with the constraints can be made and release can
place can be derived off-line using the algorithms in@68#, for
the linear case, and in@65# ~Ch 7! for the nonlinear case. Fo
simulation studies, it is useful to first look at~4! in case of
equality constraints. The bilaterally constrained mechan
system in Eq.~5! is obtained.

M ~q!q̈5Q~q,q̇!1¹f~q!l
(5)

f~q!50.

1See eg,Computer Theory FAQat http://www.cs.unb.ca/alopez-o/comp-faq/faq.htm
for an introduction.
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The Lagrange multiplier now ensures that the motion
the mechanical system satisfies the constraint equation.
ferentiating the constraint equation gives¹fT(q)q̇50. De-
note (x1

T ,x2
T)T

ª(qT,q̇T)T. Then starting from Eq.~5!, the
following first-order formulation can be obtained.

5
ẋ15x2

ẋ25M 21~x1!Q~x1 ,x2!1M 21~x1!¹f~x1!l

f~x1!50

¹fT~x1!x250.

(6)

In @65# proposition 9.4.1~see also@29# Ch. 2.5.3!, it is
shown that any trajectory of the system in~6! is also a tra-
jectory of the system in~7! and vice versa.

5
ẋ15x21¹f~x1!m

ẋ25M 21~x1!Q~x1 ,x2!1M 21~x1!¹f~x1!l

f~x1!50

¹fT~x1!x250.

(7)

The formulation in~7! is similar to the formulation in~6!,
apart from the presence of the Lagrange multiplierm. It al-
lows one to reduce the index of the DAE from 3 to 2~@25#,
Ch VII.1 @67#!. The actual analysis that leads to the form
lation in ~7! is beyond the scope of the present paper, and
refer to@65#, also for other equivalent~overdetermined!for-
mulations. It must be emphasized that the Lagrange mu
plier m has no physical meaning. From the analysis in@29#,
@65#, and@66#, it actually follows thatm50, but the impor-
tance of formulation~7! lies in its use to obtain numerica
solutions for bilaterally and unilaterally constrained m
chanical systems. The two continuous-time representat
are equivalent. However, they do not result in equival
discrete-time formulations~see also Section 5.3!.

All formulations ~5!, ~6!, and~7! can be used as startin
points for analysis and simulation of constrained mechan
systems. In Section 6.3, these formulations will be used
what we will call event-driven simulation schemes, whe
decisions whether or not contact or release of a constr
takes place must be based on physical interpretationsl
and information on the state of the system, and not only
the position.

3 DYNAMICS OF UNILATERALLY
CONSTRAINED MECHANICAL SYSTEMS—MDIs

3.1 The major problem of multiple contacts—LCPs

In multibody systems with multiple contacts, the major d
ficulty is that the change in one contact generally impl
changes at the other contacts, and this is true for detachm
conditions as well as for impacts. How to treat this within t
rigid body approach? This is the subject of the next sectio
In this section, we will describe the effective formalisms th
are used in view of numerical simulations. Since there g
erally exist several manners to formulate the same probl
it is quite important to choose the most suitable one~eg, the
l
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simplest one if CPU time is an issue!. In Section 6.6, we
shall focus on the numerical tools used to solve these p
lems.

Detachment conditions „Delassus’ problem…: In the
case of a single frictionless contact point, the detachm
condition can be watched by looking at the sign of t
Lagrange multiplier: ifl50, then a sufficient condition fo
subsequent detachment is that the normal acceleratio
.0. Things complicate when several contact points per
on a nonzero time interval. It is well-known since Delass
@18,69# ~see also@7# for a simpler example!that a priori
assuming~in an arbitrary way!certain values of the acce
eration ~for instance, one decides that the contacts pers!
may lead to a contradiction because the calculated mult
ers l i,0. Therefore, one is led to test all the possib
combinations—there are 2m combinations form active con-
tacts. Such enumeration is cumbersome! However, it i
simple matter to use the constrained Lagrange dynamic
order to express the accelerationf̈(q(t)) in terms ofl, see
Eqs.~10! and~35! below. Doing it this way and noticing tha
provided them contacts have been active on the interval@ t
2e,t), which allows one to state that the complementar
conditions in ~2! imply the same conditions withf being
replaced byf̈ ~see~10!!, one is able to construct aLinear
Complementarity Problemor LCP, of the form:

Al1B>0, l>0, lT~Al1B!50 (8)

where the matricesA andB generally depend onq, andq, q̇
respectively, and on the system’s physical parameters.
unknown of the LCP in Eq.~8! is l, and we shall denote it a
LCP(l). When friction is present at the contacts and in
mension 3, one gets a Nonlinear Complementarity Prob
~NCP, or NLCP!due to the 3D friction cone, which is
much more tricky object, see Section 3.3. Moreau@70,71#
was the first to formulate the contact law this way, hen
greatly improving Delassus’ work. In case of friction it
known that unexpected phenomena can occur, which are
to the lack of physical modeling. However, these phenom
do represent the behavior of the system when the con
stiffnesses are high, and will occur when doing a simulati
For instance, a planar disc may remain wedged in an a
2a if the friction coefficient at both contactsm satisfiesm
.arctan(a). This is related to the pointedness of the to
friction coneC11C2 , see@33#. Also, the LCP may not pos
sess any solution. In conclusion, let us state that the con
status management is one of the major issues of multib
systems simulation. But contrary to collisions which invol
a lot of physical modeling, it is mainly a mathematical pro
lem. As we shall recall later, LCPs possess several equiva
formulations ~quadratic programs, complementarity fun
tions! that may be used for numerical implementation.

Notice that to form LCPs that will monitor the topolog
or transition modifications, index 1 formulations are mo
convenient~but this does not imply that higher index a
proaches cannot be settled!. Hence we focus on two cas
Velocity-impulse schemes:

¹fTq̇>0, l>0, lT¹fTq̇50. (9)
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Acceleration-force schemes:

(10)

It is important to keep in mind that the dynamics in~2!
with the position complementarity conditions is not equiv
lent to the dynamics with the velocity or the accelerati
complementarity conditions. Actually, iff(q(•))50 on
I,@ t2e,t), then the position complementarity implies th
velocity complementarity onI . If f(q(•))50 and ḟ(q
(•))50 on I , then it implies the acceleration formulation o
the complementarity conditions. And so on with the high
derivatives. This yields the notion of Dynamic Compleme
tarity Problems@41#. As we shall see the index, reduction
crucial in discretized schemes since it permits to formul
complementarity problems at each step of integration. In
problems in DAEs are major problems@72#. The reader may
expect that the difficulties will be magnified when unilate
ally constrained systems are considered. See also Se
7.2.4 concerning the choice between position and velo
complementarity conditions.

Remark 1 „Hyperstatic systems…:When the system is
hyperstatic~ie, rank(¹f).n, implying m.n! it may be-
come necessary to solve an LCP at each instant~in the nu-
merical integration!to manage the detachment events.
case of non-hyperstatic system, like whenm51, the
Lagrange multipliers can be computed uniquely and it s
fices to solve an LCP when they approach zero. As long
they keep their signs strictly positive and no constraint
attained, the system can safely be considered as a DAE
integrated as such. Unfortunately, hyperstatic systems ar
far the more commonly met category in practice! An e
ample is the rocking block@18# when both contact points o
the base stick@7#.

3.2 Complementarity formulation
of restitution mappings

A multiple impact occurs each time the system collides
boundary ]K at a singularity. If the codimension of th
struck subspace ism, the impact is called anm-shock or
m-impact. In the rocking block example, the shock is
2-impact. Multiple impacts pose deep problems: continu
of the solutions with respect to the initial data may be lo2

~hence a high sensitivity with respect to the choice of
initial conditions!, and even their formulation~ie, how to get
an impact rule that maps the pre-impact velocities to
post-impact ones!is not trivial. Various approaches hav
been presented in the literature, some of which will be
scribed in the sequel. We can already state that the prob
of multiple contacts with or without friction is one of th
major problems of nonsmooth mechanics~at the date of writ-
ing of this paper!. Ivanov@58,73#argues that as soon as th
codimension of the struck subspace is larger than 3, imp
should be modeled in a statistical way. This may be relate
thehybrid manner of designing the software by introducing

2This is easily seen with a 2D particle striking in an angle. See eg@51# Section 3.a.
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tableau containing the probabilities of events to occur. S
Section 10 for more details. Actually, the study of multip
impact rules via the limit of penalized problems or the lim
of sequences of simple impacts seems to be a hard tas
general@74,75#. Collecting statistical data from experimen
may be an alternative path.

It is possible to formulate the restitution mappings~or
more generally the mappings that rule the re-initialization
the state vector when the system jumps from one mod
another one@42#! through a complementarity law. The fo
lowing plastic impact rule:

q̇~ tk
1!5arg min

¹fTz>0

s q̇
TM ~q!s q̇ (11)

with s q̇,z2q̇(tk
2), has been apparently first formulate

~with words! by Carnot@76#. Its link with Gauss’ principle
and complementarity laws has been first discovered
Moreau@70,71#, and used in@27#. Actually, solving Eq.~11!
is equivalent to solving the following LCP whose unknow
is q̇(tk

1):

¹fT~ tk!q̇~ tk
1!>0, p~ tk!>0,

pT~ tk!¹fT~ tk!q̇~ tk
1!50 (12)

where pk is defined in~3!. This can be shown using th
algebraic shock dynamics in~3!, and the Kuhn-Tucker’s con
ditions ~in which case the percussionpk is to be interpreted
as a slack variable!. Notice that for anm-shock with
m>1, pT(tk)¹fT(tk)q̇(tk

1)50 is equivalent to
pj

T(tk)¹f j
T(tk)q̇(tk

1)50 for each j 51,¯ ,m, with all m
components of each vector non-negative~hence the set o
complementarity conditions in Eq.~12! is equivalent tom
1D complementary slackness conditions!. Then it is easy to
see that in the one degree-of-freedom case, this corresp
to a plastic shocke50. The physical validity of these impac
rules is discussed in@77#, where it is argued that some simp
multiple impacts may not be described by such laws. Ba
cally, this is due to the physical fact that impulsive forc
may appear at contacting points that were previously las
and which detach after the shock. Therefore, both the p
impact velocity and percussion are nonzero at the imp
time, precluding any complementarity between them. Ho
ever, this rule may apply in other cases, as proved in@75#
where the convergence of a penalized problem is stud
Moreover, a proper definition of the pairs of complement
ity variables allows one to treat detachment of previou
contacting points~on a non-zero time interval! to describe
such motions as rocking@78#.

Notice that one can replaceq̇(tk
1) in ~12! by a combina-

tion of q̇(tk
1) and q̇(tk

2) to allow for elastic impacts, se
Sections 3.4.1 and 3.4.3~eg, replace q̇(tk

1) by q̇(tk
1)

1eq̇(tk
2) and check that this implies that¹fT(tk)q̇(tk

1)
>0 whenever¹fT(tk)q̇(tk

2)<0, eP@0,1#).

3.3 Constraints with Coulomb friction

Let us assume that there is one active constraint where
friction acts at a contact pointA. At A one attaches a loca
frame in which Coulomb’s law is expressed. The proble
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now is how to write the generalized torqueP(q,q̇,l) in ~2!
in order to recover a complementary slackness formula
that includes both normal and tangential reactions@7,41,79-
83#. Several particular cases have to be considered: 2D
sus 3D friction cones, and all possible transitions betwe
stick and sliding modes. Let us denote the tangential velo
components at the contact pointA asVt , the normal one as

Vn , so thatV5( Vi
Vn

) , and the reciprocal contact force a

F5(Ft
N) . Considerm51 in ~2!, ie, f(•) is a scalar func-

tion. If Vn5¹fTq̇, thenl5N. Then one has@82,83#:

H Vt50⇒uFtu< f N

VtÞ0⇒uFtu5 f N, Ft52aVt , a>0.

H VtÞ0⇒Ft52 f NVt /uVtu

Vt50:H V̇t50⇒uFtu< f N

V̇tÞ0⇒uFtu5 f N, Ft52aV̇t , a>0.
(13)

The first set of conditions describes dry friction at the velo
ity level, and the second set at the acceleration level.
latter is used to monitor the transitions from stick to slidi
~rolling constraints@82,89#! in what we shall call event-
driven algorithms. The reader may notice that the way to
from velocity to acceleration formulation of Coulomb’s la
is exactly the same as for the normal direction when o
replaces position by velocity or acceleration complemen
ity conditions. Here we assume that there is only one con
to avoid cumbersome notations, but the formulations can
readily extended to the case of multiple contacts~see, how-
ever, Sections 7.2.2 and 7.4 for comments about the disc
zation of multiple contacts with friction!. The next two Sec-
tions, 3.3.1 and 3.2.2, deal with how to transform the mod
in ~13! into complementary slackness forms, and Sectio
3.3.3 and 3.3.4 describe how to replaceP(q,q̇,l) by a set of
complementarity conditions~linear or nonlinear!that enables
one to monitor all the possible mode transitions for friction
contacting points. As we will see later, this enables one
discretize the whole set of dynamical equations and con
tions and construct an LCP~or an NCP, or more generally
any set of equations and/or conditions that can be sol
with available algorithms!at each step, which permits us t
advance the numerical algorithm to the next step.

3.3.1 Two-dimensional friction
In this caseVtPR. The transformation of the velocity con
ditions in Eq. ~13! uses the fact that a relay characteris
between two variablesv andz ~that may be expressed asv
5sign (z), with 21<v<1 if z50!, can be formulated with
complementary slackness conditions as@7,79,81#:

z5y12y2 , v5 1
2~u22u1!, u11u252

(14)
uiyi50, ui>0, yi>0, i 51,2.

The result follows by observing thatFt5 f .Nsign(2Vt). In
particular, if Vt50 one gets21< Ft / f .N <1. The quanti-
ties y1 and y2 are the positive and negative part
z(52Vt), respectively. This derivation can also be und
stood from~23! ~see below!noting that the projectionD of
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the friction cone on the tangent plane atA reduces to an
interval, so that the results of convex analysis concern
normal cones of polyhedral sets~see @30#, Ch 23! and
complementary slackness conditions can be used dire
The same transformation can be performed for the acce
tion law in Eq. ~13! @82,83,89#introducing the positive and
negative parts ofV̇t .

3.3.2 Three-dimensional friction
This case is more difficult sinceVtPR2 and the friction cone
is not polyhedral. Consequently~23! is still true, but cannot
be transformed into complementarity conditions by introd
ing additional slack variables as in~14!. The basic idea
@33,79,80,82–88#is to approximate the cone, ie, to perform
polygonalization. Some more comments on this will be ma
in Section 7.4. Notice that this is the same as transform
the discD in ~23! below into a~convex!polyhedral setD̂
@80,83#. The pyramid approximation obviously correspon
to D̂ being a square@89#. A finer approximation correspond
to adding edges to the polygonD̂. Then a result of convex
analysis~@30#, Ch 23! allows one to generalize~14! and to
express this approximated Coulomb’s law with complem
tary slackness conditions of the form~we choose the accel
eration formulation in~13!!:

2V̇t5(
i 51

e

eij i , s i5 f .N2ei
TFt

(15)
s i>0, j i>0, s ij i50, i 51,¯ ,e

whereei is a unit vector normal to thei th edge ofD̂, e is the
number of edges, andj i are slack variables. A similar deri
vation can be found in@89# for the pyramid approximation
where the variabless i and j i are directly the positive and
negative parts of the corresponding quantities, provided
local frame andD̂ are properly oriented~hence theeis sim-
plify!. Notice that almost all authors choose an outer a
proximation of the cone, although there does not seem to
any fundamental reason for such a choice that yields an o
estimation of frictional effects. Actually the most importa
feature is to find out a formulation that involves as few sla
variables as possible, so as to simplify the subsequent
merical procedure.

Let us assume thatV̇t5Jtq̈1h(t). At this stage one has
P(q,q̇,l)5Jt

TFt , and Coulomb’s law is expressed throug
complementary slackness conditions as in Eqs.~14! or ~15!.
The next step is: how to get an LCP that allows one
calculate the unknowns~the normal and tangential conta
forces!at each time?

3.3.3 Sliding contacts
The velocity formulation in Eq.~13! holds, which is linear in
the contact force@89#. There is a direct relationship betwee
Ft and N, whatever the dimension. ThenP(q,q̇,l)
5Jt

T(q) f .NVt /uVtu. It is therefore a simple matter to expre
q̈ as a function ofq, q̈, andN, then to replaceq̈ in f̈(q) to
get a LCP as~8! with unknown N. In the case ofms<m
sliding contacts,lT5(N(1),¯ ,N(ms)) in ~2!. Due to friction,
the matrixAPRms3ms ~see~8!! is not symmetric in genera
and it may also lose its copositivity property. Then existen
and uniqueness ofl at timet may no longer be assured. Th
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yields Painleve´ problems, see Section 8.1. Notice that the
is no inversion of the matrix¹fTM 21¹f in this procedure.

3.3.4 Sticking (or rolling) contacts
In the 3D case, one has to resort to the polygonalization
the friction cone to avoid nonlinear formulations, see Sect
3.2.2. Obviously in the 2D case the cone is already polygo
~D is an interval!so we shall consider this case as a subpr
lem of the 3D one once the cone has been polygonaliz
Notice that the acceleration friction model is highly nonli
ear in the contact force, contrary to the velocity formulati
for sliding contacts. Various techniques have been emplo
in the literature to formulate from~2! and ~14! or ~15! an
LCP whose unknowns are slack variables~includingl in ~2!!
that allow one to monitor the contact status~detachment/
contact, sticking/sliding!. The method proposed in@79# does
not accomodate hyperstatic systems. Glocker@7,83#uses the
formalism in Eq.~15! and the fact thatV̇t5Jt(q)q̈1h(t), to
get at each contact point an (e11)-dimensional LCP inl
pluse slack variabless i , j i taken in such a way that hyper
statism problems are avoided. No inversion of the ma
Jt

TM 21Jt is needed. A similar method is proposed in@82,89#
for the pyramidal approximation, together with some ex
tence result for the LCP. Without polygonalization, a Nonli
ear Complementarity Problem~NCP! of the form

y>0, g~y!>0, yTg~y!50 (16)

has to be solved for some slack variabley @83#, or even some
non-standard NCPs~generalized complementarity problem!
@82,89–91#, see Section 3.4.2. NCPs are more comple
solve than their linear counterparts, see Section 6.6, and
tential users have to develop their own codes. However t
may involve less variables than polyhedral approximatio
@90#. In @83#, it is shown how to get a standard 4D NCP p
contact. The all-rolling contacts problem is formulated with
Quasi-Variational Inequality in@90# and results on existenc
of solutions are given. The work in@92# is not based on an
approximation of the friction cone and treats the accelera
as the unknown, see Section 6.7.1 for more details.

Remark 2: From a hybrid dynamical system point o
view @42# Coulomb friction adds modes or discrete-eve
states to the system.

3.3.5 Shocks with friction
The problem of frictional impacts is complex, and we sh
not insist on it in this article, see@18,93# for details. In the
complementary slackness framework, it is of interest to
tend the frictionless rule in Eq.~12! to the frictional case.
Several authors proposed complementarity formulations
frictional impacts@7,27,86,94#. The basic idea of Lo¨tstedt
@27# is to extend directly Eqs.~11! and ~12! as:

min 1
2Pk

TM 21Pk1Pk
Tq̇~ tk

2!
(17)

pk>0, 2 f pk<pt,k< f pk

wherepk is the normal percussion in~3!, pt,k is its tangential
counterpart, andPk denotes the total percussion vector~ie,
the right-hand-side of~3! for frictional impacts!. The second
line in Eq. ~17! is the direct extension of Coulomb’s law a
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the percussion level, a model that may be energetically
consistent, see Section 7.1.2. Iff 50 then ~17! reduces to
~11! using Kuhn-Tucker conditions. There are different wa
to rewrite Eq.~17!, using the dual QP and~3!, see also~54!.
Some details on the works in@86# will be given in Section
7.4. For 2D problems, it is similar to the one in@7#, where
the collision is decomposed into a compression and res
tion phases. Concerning@94# see Section 7.2.4.

3.4 Convex analysis in nonsmooth mechanics

In this section we present compact forms of the MDIs in E
~2! and ~3!. The formulations that follow in this section ar
based on mathematical tools from convex analysis@30,95#. It
is not our goal in this article to provide details on such ma
ematical tools. However, it seems mandatory to make a s
presentation of these approaches, since they are used t
velop well-posedness and numerical issues of many a
rithms. A tool that will be needed in the following is th
definition of a subdifferential. The subdifferential of a co
vex function f (•), denoted as] f , is the set of subgradient
of f at y, ie, of vectorsg satisfying f (x)2 f (y)>gT(x2y)
for all x. This is the generalization of the derivative for no
differentiable convex functions. LetK denote a convex se
~not necessarily the one in~1!, though this may be the case
we shall see further!. The functioncK(y) is called the indi-
cator function of the setK, and is defined bycK(y)50 if
yPK, cK(y)51` if y¹K. The values inside and outsid
the setK are consistent with the definition of subgradien
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The subdifferential ofcK(•) generalizes the notion of nor-
mal directions to]K at y. Roughly speaking, this represents
the outward normal directions to the boundary ofK at some
point y, and if the boundary is smooth this is the usual out
ward normal half line. If the boundary is nonsmooth, it gen
eralizes to a cone, called thenormal coneand is denoted as
NK(•). When yP Int(K), then ]cK(y)5$0%, and when
y¹K, then ]cK(y)50” . One also definestangent cones
V(y) as V(y)5$v:; xPNK(y), xTv<0% when yPK.
Thus if yP]K, V(y) is another convex cone. In this case
tangent cones reduce to~inward! half spaces for differen-
tiable codimension one boundaries]K, see Fig. 1a,c. If y
P Int(K), then V(y)5Rn, and if y¹K, then V(y)50” .
WhenK is defined as in~1!, one may define the tangent cone
to K at q as @96#:

V~q!5$vPRn:vT¹f i>0, ; i PJ~q!% (18)

with J(q)5$ i P$1, . . . ,m%:f i(q)<0%. One notes that this
definition coincides with the original definition of the tangen
cone as long asyPK. The fact thatV(y) is given a meaning
outsideK is useful for numerical applications in which the
admissible domain of configurations in~1! may be violated.
In order to motivate the reader, let us note that compleme
tarity conditions between two scalar variablesl andy:

l>0, y>0, l.y50 (19)

can be equivalently formulated as
Fig. 1 Tangent and normal cones, and the corner law
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2lP]cK~y!, with K5R1. (20)

This means that the corner law whose graph is depicte
Fig. 1b, is actually the graph of2]cR1(•). Evidently the
role of l andy can be reversed in~20!. This generalizes to
the case of complementarity conditions as in~2! wheneverK
is convex. In this setting,~4! is equivalent to2M (q)q̈
1Q(q,q̇)P]cK(q(t)). Both Eqs. ~19! and ~20! are also
equivalent to any one of the formulations@30# page 215;
@97#:

lPK, ; zPK, ^l,z2y&>0
(21)

lPK, l5projK@l2ry#, for any r.0.

The first formulation in Eq.~21! is a variational formulation
of the complementarity conditions. This illustrates that th
are several manners to express the same physical law,
such a flexibility is likely to be very useful for various rea
sons~mathematical studies, effective dynamic formalisms
view of numerical applications!. Quite interestingly, the Cou
lomb friction model can be expressed in a similar fashion
we already saw. This comes from the fact that by introduc
slack variables@7,41#one can recast Coulomb friction into
complementarity framework, see Eqs.~14! and ~15!. The
same holds for many systems with piecewise linear cha
teristics @39,42#. Some works@64# rely on the parametriza
tion of Eq.~19! by introducing an additional slack variables.
These facts clearly indicate why the dynamics in~2! can be
rewritten as a special type of differential inclusion, conta
ing measures. This will give rise to Measure Differential I
clusions~MDIs!, as introduced by Moreau@98#.

Remark 3: One very good reason for expressing the d
namics in terms of convex analysis is that it yields comp
and powerful mathematical formulations and that these pr
erties are preserved in the numerical schemes derived
them. For instance, the graphs of the complementarity~or
Signorini!conditions and of Coulomb’s law are monotone.
has also been used to derive well-posed impact rules in@99#.

3.4.1 Moreau’s sweeping process
The theoretical setting exposed in this section has been
veloped by Moreau@96,98,100# ~we refer to@101# for a in-
troduction to the sweeping process, including the first or
case and to@102# for a general exposition of its mathematic
properties!. Moreau’s sweeping process is a velocity-impu
formulation, and its main interest lies in its compactne
This property has consequences for its numerical analy
see Section 7.2. Let us present it briefly in the case of f
tionless constraints. What follows does not pretend to p
sess any mathematical rigor, but is to be considered as in
ductionary material only. The starting point is:

2M ~q!dv1Q~q,v,t !P]cV(q(t))~v~ t1!! (22)

The variablev satisfiesq(t)5q(0)1*0
t v(t)dt, ie, it equals

q̇(t) almost everywhere in the Lebesgue measure sense.
tice that Eq.~22! is an implicit formulation in v(t1). In
particular, if v has a jumpsv5v(t1)2v(t2) at t then dv
5svd t . When v(•) is time-continuous, then one just re
places its right-limit byv(t) in ~22!. Let us intuitively ex-
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plain what the differential inclusion in~22! means. The in-
terested reader may have a look at@18,96,100#for further
details and examples with figures. The setV(q(t)) is the
tangent cone toK ~see~1!! at q(t). WhenV(q(t))5R1 then
the interpretation of Eq.~22! is obvious from Eqs.~19!–~21!
~this is, for instance, the case for a one-dimensional bounc
ball touching the ground a timet). The term]cV(q(t))(z) is a
subdifferential and can be understood as follows whenq(t)
P]K. If the vector z 3 points inward V(q(t)), then
]cV(q(t))(z)5$0%, so that ~22! reduces to the time-
continuous Lagrangian equations. Ifz belongs to the bound
ary of V(q(t)), then ]cV(q(t))(z) is the normal cone to
V(q(t)) at z. If z points outwardV(q(t)) ~thus outsideK)
then ]cV(q(t))(z)5B: this situation is forbidden, and on
sees that the implicit formulation in~22! implies that v(tk

1)
PV(q(tk)). Now recalling that att5tk , the variablez is the
post-impact velocity, one obtains that~22! becomes
2M (q(tk))svP]cV(q(tk))(v(tk

1)). This is equivalent to a

quadratic problem as the one in~11! or ~12! and this implies
that v(tk

1)P]K: this is a generalization of plastic impac
for codimension one constraints. Another interpretat
is in terms of proximation, that is v(tk

1)
5prox@V(q(tk)),v(tk

2)#, where the proximation is to be
made in the kinetic metric.v(tk

1) is therefore the closes
element tov(tk

2) in V(q(tk)), in the kinetic metric. Ifq(t)
PInt(K), thenV(q)5Rn so thatcV(q)(z)50 for all zPRn

and]cV(q)(z)5$0%: ~22! is a classical Lagrange equation

Remark 4:
• From Eqs.~19! and ~20!, one suspects that~22! implies

complementarity conditions between the contact reac
andv(t1). This is indeed the case, see@18#, @96#.

• It is possible to show that the se
]cV(q(t))(v1)#NK(q(t)). This can be seen by drawing
2D angle and plotting the various cones and half-spa
involved, see Fig. 1cwhere ]cV(q(t))(v1),NK(q(t)).
This means that~22! is not strictly equivalent to~4!.

• It is possible to include a restitution coefficiente in this
formulation by replacingv in both sides of~22! by an
averaged velocityu5 v(t1)1ev(t2)/11e @35,96#, see
Section 7.2. It is equivalent to inclusion ofu in Eq. ~12!, as
pointed out after~12! ~notice that in Eq.~22!, (11e) in the
denominator is needed to encompass continuous veloc
as well!.

• The ‘2’ sign in the left-hand-side of~22! is only a conse-
quence of some standard notations in convex analysis,
~20!.

• Mechanical systems with position constraints have inde
@25#. Indeed one needs to differentiate the constra
f(q)50 three times to recover a set of ODEs with sta
(q,q̇,l). Now consider the simple dynamicsMq̈5l,
f(q)50. Let us write it in a velocity-impulse form, ie
M (q̇2q̇(0))5p, with p(t)5*0

t l(t)dt. Then one needs
only to differentiatef(q) twice ~with respect to time!to
get an ODE with state (q,p). Thus the constrained mode
of ~22! correspond to index 2 problems.

3Usually one draws the setsq(t)1NK(q(t)) instead ofNK(q(t)) @102#, so zshould be
understood as the vector emanating fromq(t). Similarly for the other sets.
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It is important to notice that the essence of the dynam
in ~22! is that the complementarity conditions in~2! and in
~12! are stated through the subdifferential in the right-ha
side of ~22!, which is a function of the velocity~for fixed
position!. Velocity spaces are linear spaces~tangent to the
configuration space at eachq), whereas configuration space
are seldom linear. Consequently, the use of velocity spa
allows one to recover all the advantages of linear spaces~for
instance the tangent coneV(q(t)) is always convex, wherea
K in ~1! may not be!. Mathematicians use such Nonsmo
Analysis tools in their existence and uniqueness of soluti
studies, which are of high importance for numerical analy
Indeed, on the one hand, well-posedness results are o
based on time-discretization of the continuous dynam
~similarly to the fundamental result for ODEs that uses
Euler discretized scheme whose piecewise constant solu
are shown to converge to solutions of the continuous dyn
ics when the vector field is continuous@103#!. This is what is
usually called thetime-steppingmethod and will be de-
scribed later in this article. On the other hand, a neces
first step~but not sufficient to get a robust simulator!! is to
establish the existence and uniqueness of solutions be
designing a numerical simulator.

3.4.2 Coulomb friction and the principle
of maximal dissipation
Moreau@104# has shown that a Coulomb friction model a
tually satisfies amaximal dissipation principle. When ther
is sliding between two bodies at the contact point, it is in
itively clear that this model obeys such a principle. Indee
says that the tangent reactionFt has to be in the opposit
direction to the tangent velocityVt , see Eq.~13!, and the
product 2Ft

TVt is maximal when one seeksFt inside its
admissible domainD. Here one hasD5$RPP:uRu< f .N%
whereP is the common tangent plane at the contact po
Incidentally, it is understood here thatN is known. One sees
thatD is the projection of a section of the friction coneC on
P. In particular,D is convex, which allows one to use th
tools presented in the introduction of Section 3.4, replac
K by D. With this in mind, it is possible to show~see, eg,
Eqs. ~14!, ~19!, and~20!! that Coulomb friction can be for
mulated as

2VtP]cD~Ft! (23)

and this inclusion permits encompassing the sticking mo
as well. The reader may wish to check that the inclusion
~23! really represents Coulomb’s law of friction, using th
definition of the subdifferential of an indicator function~that
is nothing else but the normal cone toD at Ft). It is also
possible to rewrite Eq.~23! in terms of a dissipation function
w(Vt)5 f .N.uVtu so that2FtP]w(Vt). The functionw(•) is
called a superpotential or pseudopotential~by analogy with
the classical definition of forces that derive from a poten
F5¹V, where this time the equality is replaced by an inc
sion!. In generalized coordinates as used in the works
scribed in Section 7.4, the maximum dissipation principle
formulated asFq5arg max

zPC(q)
(2zTq̇), where Fq is the

generalized contact reaction impulse andC(q) is the gener-
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alized friction cone. The velocityV( j )PR3 at a contact point
Aj and the generalized velocity are related asV( j )

5J( j )(q)q̇ whereas from the principle of virtual workFq

5J( j ),T(q)F ( j ), where in our notationsF ( j )5(
N( j )

Ft
( j )

). J( j )(q)

is a Jacobian matrix.
Remark 5:

• More general frictional characteristics can also be writ
in a form as in~23!. However, when the considered setK
is convex one can rewrite Eq.~20! as a variational inequal
ity as in ~21!. If K is not convex as it is the case for mo
complex friction models, one has to resort to hemivar
tional inequalities, as introduced by Panagiotopou
@105#.

• The second set of conditions in~13! with Vt50 is equiva-
lent to 2V̇tP]cD(Ft) @83,92# and ~15! ⇔2V̇t

P]cD̂(Ft). The acceleration formulation is then useful
derive the dynamics of rolling~sticking!contacts, see Sec
tion 3.3.

• As we saw above, the discD can be approximated by
convex polytopeD̂ @80,83#. This is an idea that is used
some algorithms to be presented later, see Section
However, the formulation in Eq.~23! remains valid, even
with the modified friction cone. The advantage is that o
deals with LCPs instead of NCPs. The case whenD̂ is a
square~so that the cone is approximated by a pyram!
corresponds to the setK in Fig. 1a. Actually basic results
from convex analysis can be used to derive complemen
slackness conditions~the best way to understand this is
look at @30# ~Ch 23! corollary 23.8.1 and bottom of pag
226, and@83#! from the polyhedral approximation of~23!
or its acceleration formulation. Some event-driven a
time-stepping algorithms that we will describe later hin
on such convex analysis tools to derive suitable~from a
numerical analysis point of view! formulations of contact
laws.

• The maximum dissipation principle is extended in@90# to
more general friction laws. Some existence results~in the
quasistatic case!are provided for (q,N,Ft). As we shall
see in Section 7.4, some authors formulate the problem
the configuration space, andP(q,q̇,l) in ~2! is written as
D(q)b, with b satisfyingc(b)< f .l. The functionc(•)
~that definesD) should be convex. Then the maximu
dissipation principle reads@91#

b5arg min
c(z)<f.l

@q̇~t1!TD~q!z#. (24)

This can be shown to be equivalent to

0PfD~q!Tq̇~t1!1m]c~b!

m>0, f .l2c~b!>0, m@ f .l2c~b!#50 (25)

wherem is a Lagrange multiplier~or a slack variable!, and
l is as in~2!.

• The impact rule in Eq.~12! satisfies, also, a maximum
dissipation principle, see~11!. Its expression within the
sweeping process framework has been recalled in Sec
3.4.1. It can therefore also be transformed into a~convex!
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quadratic program. Notice that both~11! and ~12! can be
written in terms either of the contact percussionpk or of
q̇(tk

1), using~3!.

When combined with a velocity-impulse formulation, th
principle of maximum dissipation allows one to avoid som
inconsistency problems during the numerical integration t
are encountered in rigid body dynamics with friction, s
Section 7.4. Let us note that~23! is often formulated with
Vt(t

1) ~the right limit of Vt(t)), a choice motivated by nu
merical implementation@94#.

3.4.3 Second-order formulations
The formulations presented below concern frictionless ri
body dynamics, ie,P(q,q̇,l)50 in ~2!. The free motion of
the system is described in generalized coordinates by
ODE

M ~q!q̈5Q̄~q,p,t !,

where p,M (q)q̇ is the generalized momentum an
Q̄(q,p,t),Q(q,M 21(q)p,t). It should be noted that this
equation allows dissipative terms. Let us assume thatf(•) is
a smooth function, ie,]K ~see~1!! is a smooth codimension
one surface. From~2!, one gets the equation

M ~q!q̈5Q̄~q,p,t !1m (26)

wherem is a measure such that

m5¹f~q!l, l>0, almost everywhere (27

and

supp~m!,$t:f~q~ t !!50%. (28)

Roughly speaking, relation~28! means that the contact force
are switched on only when the constraints are saturated
is therefore equivalent to the complementarity conditions
~2!. The measure differential equation~26! does not provide
a complete description of the motion and we must add
impact law in order to describe the transmission of kine
energy at impacts. We assume a Newton’s law for gene
ized momenta. More precisely, whenever the constraints
saturated, the tangential part ofp is conserved while the
normal part is reversed and multiplied by a restitution co
ficient eP@0,1#. Here the normal and tangential part ofp are
taken in the sense of the local metric for the space of ge
alized momenta, which is defined byM 21(q). Let us denote
by Pqp the projection ofp on the tangent planeP to ]K at
q with respect to the local metric, ie,Pqp5p
2 ¹fTM 21p/¹fTM 21¹f ¹f. The complete formulation
is finally given by Eqs.~26!, ~27!, ~28!, and

p~ tk
1!5Pq(t)p~ tk

2!2e~ I2 Pq(t)!p~ tk
2! if f~q~ t !!50

(29)

and

supp~m!,$t:f~q~ t !!50%,

m5l¹f~q!, l>0, almost everywhere. (30

One notes that the impact law in~29! is equivalent to the
ones presented in Section 3.2~@18# claim 6.1!. Let us denote
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by T(tk
6) the kinetic energy at an impact timetk

6 and define
upuq(t)* 5pTM 21(q)p, the norm ofp in the local metric of
generalized momenta. One has:

T~ tk
1!5 1

2up~ tk
1!uq(t)* 2

5 1
2$uPq(t)p~ t10!uq(t)* 2 1u~ I2 Pq(t)!p~ tk

1!uq(t)* 2 %

5 1
2$uPq(t)p~ tk

2!uq(t)* 2 1e2u~ I2 Pq(t)!p~ tk
2!uq(t)* 2 %

<T~ tk
2! (31)

and the equality holds if and only ife51. Hence this model
is energetically consistent.
In the particular case of a constant mass matrix, we
consider the generalized coordinates defined byu5M1/2q,
which makes sense sinceM5MT.0. Then p5M1/2u̇ and
with this new coordinates the impact law reduces to

u̇~ tk
1!5u̇T~ tk

2!2eu̇N~ tk
2!

5whenever the constraints are saturated (

where u̇T and u̇N are the tangential and normal parts ofu̇,
with respect to the Euclidean metric. The set of admissi
positions is then described in terms of these new coordin
by K5$u:f(M 21/2u)>0%. If K is convex with respect tou,
we can replace the relations~26!–~28! by the following dif-
ferential inclusion:

2ü1 f ~ t,u,u̇!P]cK~u! (33)

where]cK is the subdifferential of the indicator function o
K and can be interpreted similarly as the right-hand-side
~22!, replacingV(q(t)) by K and the right-velocity by the
position, see Fig. 1a. Therefore, Eq.~33! is a second-order
differential inclusion, and the total dynamics is given by~32!
and ~33!, or equivalently~29! and ~27!, ~28!. Notice from
~33! that the inertial forces are therefore a subgradient of
indicator functioncK(u). From~22!, one sees that Moreau
idea has been to consider them as subgradients
cV(q(t))(v(t1)) instead.

4 RIGID BODY VERSUS COMPLIANT MODELS

4.1 Rigid body models: Some properties

First of all it is necessary to make it very clear what is me
by rigid and byflexible, see@24# for a discussion. By rigid
one may mean any model that uses velocity-impulse form
lation for the collisions~like the Darboux-Keller or Routh
approaches!. However, this does not necessarily imply
algebraic form of the shock dynamics as in Eq.~3!. In other
words, what is called the rigid body approach does not p
clude the incorporation of deformation effects, though t
way they appear in the dynamics may differ from the us
spring-dashpot formulations. This is the case of the Darbo
Keller’s shock equations@18#. Clearly, in general, a mode
may mix rigid body modelling features~complementarity
conditions, restitution coefficients! and compliance~defor-
mation of the bodies that contact!. In this section compli
models are to be understood essentially as those models
give rise to ODEs with switching vector field and consta
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dimension, but not to MDIs as in Eq.~2!. Studies based on
continuous mechanics for the bodies modelling and con
complementarity conditions@60# therefore do not fall into
the type of compliance discussed here.

Hyperstatic systems:In the case of hyperstatic system
(95% of all real systems!the Lagrange multipliers cannot b
calculated uniquely, as is well known. However, the acc
erations are uniquely determined@43,70,71#. The reader ma
think of a chair on four legs standing on rigid groun
Clearly, for reasonable applied external forces–ie, nostrange
forces that create right-accumulations of impacts like
Bressan’s counter-example@106#—the acceleration of th
chair is unique since it detaches if the normal force comp
sates for gravity, or it stays at rest if it does not. This sho
that if one is not interested in computing exactly the cont
forces, such inconsistency is not bothering.

Energetical behavior: The energetical coherence can
in some cases guaranteed by the dissipativity propertie
the schemes. At least this holds for certain choices of
restitution coefficients~e50 in case of sweeping proces
with friction @96#, or same value of normale and tangential
et restitution coefficients for Anitescuet al @7,84# in case of
multiple impacts!. In @55#, an estimation of the~discrete-
time! energy is also made for alleP@0,1#.

Impact detection: Some schemes do not require an e
plicit calculation of the impact times: convergence of t
discretized solutions towards a solution of the continuo
problem is assured so one does not need a special modu
detection. Decreasing the~constant!integration step auto
matically guarantees the improvement of the numerical
sult. This is the case for the time-stepping schemes descr
in Sections 7.2, 7.3, and 7.4. In other words, such sche
do not require~nor provide!the accurate determination of th
times tk and a specific~possibly time consuming! procedure
of local computation. They will therefore be suitable whe
one does not desire a very accurate knowledge of the dyn
ics at the contact points and/or the time of contact, but
stead is content with a global picture of the system~eg, de-
tection of particular orbits or attractors!.

Restitution laws: The restitution coefficients need not
all to be constant. They can incorporate dependence
respect to initial relative velocity, material properties, shap
dimensions etc, which take into account the influence of g
bal and/or local deformations and sources of kinetic ene
loss during the shock. The derivation of such coefficients
been and is still the object of research works. In particu
vibrational effects and transmission of energy in multip
impacts are quite fundamental issues. Some recent result
very promising@107–109#.

LCPs: The resolution of LCPs may create some pro
lems, however this is a topic that supersedes mecha
@110,111# and which is the object of many research work
see Sections 3.1 and 6.6.

Global motion analysis: It is known that nonsmooth
complementarity modeling allows one to simplify the ana
sis of motion and to permit the study of first-return 1D Po
carémaps, which would not have been possible with co
pliant models of contact@112#.
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One major and still largely open modelling problem
that of multiple impacts with or without friction.

4.2 Compliant models

Spring-dashpot model: A compliant model that is often
used is a spring-dashpot model. The linear spring-dash
model possesses some strange properties which are ofte
nored or tolerated in the literature. Let us consider the f
lowing dynamics:

mq̈5H 2kq2dq̇ if q,0

0 if q>0.
(34)

Let us considerm51, d53, k51, q(0)50, q̇(0),0. The
values of the parameters are chosen such that the mam
crushes the spring-dashpot and there is no subsequen
tachment: this is a plastic impact. Numerical calculatio
yield F52kq2dq̇56.86 exp(22.62t)20.14 exp(20.38t)
and this contact force can take negative values which wo
correspond to some ‘‘gluing’’ effects~which obviously are
not the goal of this model!. However the impulse ofF(t) is
positive, which explains why this model provides a limit~as
k andd diverge to1` in a certain way!that is compatible
with rigid body collision modeling@18,53#.

Compliance location:The first point is about which sor
of compliance is to be modeled: local deformation at t
contact point? Or global deformations distributed in the bo
ies or in the kinematic chain~finite-element-like models
@60,109,113–116#, or elasticity at joints@117# for instance!to
model the vibrational effects? Or both? A discussion on
relationships between compliant models and rigid body m
els can be found in@24#. In @118#, the domains of application
of various rigid body~also called stereocontact!models and
compliant contact/impact models~Newton’s, Poisson’s resti-
tution, Hertz’, Saint Venant’s impacts! are discussed from
their respective time-scales. It is argued that multi-rate/mu
method integration codes provide better results. A simula
has been implemented that uses Gear’s multi-rate integra
@119#. This type of arguments is consistent with@120# who
proposes to mix multi-rigid body with finite elements met
ods, and also with the general message at the end of
survey.

Impact detection: Notice that the impact detection als
exists in compliant models since one has to compute
position at which contact is made so as to switch to the n
vector field. In case of stiff equations and too large integ
tion steps the energetical behavior has to be caref
checked, because long run simulations may lead to wr
results~energy loss or energy gains!.

Integration step: The integration steph has to be chosen
satisfyingh!O(1/Ak) wherek is the contact stiffness sinc
the time of penetration~say, of deformation! is itself
O(1/Ak) @53#. If one wants, for instance, to calculate 10
points during the shock and withk51010 N/m ~a physical
value in many instances like gears, pinions, systems w
joint clearance@121#!, thenh51027 s is required. If some
real-time applications are required or ifn is very large~it can
be >104 in granular matter, think of a mere sandpile!, then
this may be an obstacle. Notice that some authors rec
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mend the calculation of at least 1000 points for each co
sion to assure a good accuracy of long run simulations@10#.
Clearly, real-time applications—or even fast enough num
cal tests—are impossible with such integration steps, see
ample 1 below for numerical values. Another important po
is the fact that, in practice, impact times may be quite cl
one to another@107#,@@54#, Ch 4#, due for instance to micro
collisions. If one desires to approximate correctly such h
frequency impacts, one is led to choose a sufficiently largk
in order to numerically detect enough impacts. Such a cho
for k is often difficult.

Example 1: Numerical results are reported in@121# who
chooses a Hertz contact model with stiffnessk56.58
1010 N/m1.5 ~let us recall that such contact model suppo
low approach velocities and is valid for central impac
only!. A slider crank mechanism with joint clearance is sim
lated. A predictor-corrector routine is used based on Ada
PECE formulas. The simulation is performed over 30 s a
its duration is 3.2 hours. A Baumgarte technique~see Section
5.2! is used to stabilize the kinematic constraints. The res
are not compared to any experimental data, and they do
concern the long-term dynamics: how does the scheme
have on longer simulation times? Is such an approach r
istic for long run prediction and for more complicated sy
tems with several clearances and other unilateral conta
both from the simulation length and the outcome accura
~Let us recall that certain mechanical systems likesimple
circuit breakers may include from 15 to 30 unilateral co
tacts, and from 7 to 20 bars: the identification of cont
parameters and the sensitivity of a long run simulation o
come with respect to their numerical value may be a
problem!. The simulation duration may be a serious obsta
in certain applications. If one wants to simulate the syst
on several minutes—and this may be needed in so
instances—then the simulation length becomes a real p
lem.

Implicit algorithms may be preferred to explicit ones as
is known that they often provide better accuracy and stab
for stiff problems. When an explicit code encounters st
ness, the integration step needs to be decreased to kee
bility ~@25# page 21!. Implicit schemes have the tendancy
filter out the high frequencies and therefore treat stiff OD
as DAEs. Larger integration steps are allowed for the sa
accuracy. However, real-time applications may require
enough algorithms that preclude the use of implicit discr
zations~consequently of iterative algorithms!.

Physical parameters identification: In practice, the
identification of the physical parameters~damping, stiffness,
or any other coefficient that appears in the contact mo!
may be quite difficult. Furthermore it should be recalled th
some well known models like Hertz hinge on a particu
stress law and are valid only for central impacts, for a sim
shock between two bodies~ie, the line joining centers o
gravity coincides with the normal direction at the contac!.
Collisions may be far from central in some applications, li
colliding kinematic chains. Moreover, the influence of t
parameters numerical values on the long run simulation
come may be important. In certain simple cases of multi
13
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shocks~such as Newton’s cradle!, it can be shown that the
collision outcome is quite sensitive to such parameters
ues@18#.

Remark 6 „Coulomb friction…: The same type of discus
sion could be done about the friction model. All the alg
rithms described in this paper and which incorporate fr
tional effects use the Coulomb friction model. On one han
is already difficult enough to properly identify and discreti
this model, so that there is no need, from this point of vie
to complicate things more. And, as we pointed out in Sect
3.2, the main problem that we face is not the complication
the dry friction model for one contact, but its formulatio
and time-discretization for multiple contacts. On the oth
hand, this model, though simple, incorporates already a lo
physical phenomena and proves to be sufficient in m
cases. In view of the large spectrum of mechanical syste
that have been simulated with the simplest model, rang
from granular matter to buildings made of blocks and de
drawing processes, there seems to be little need to use a
complex model. In particular, the sticking modes are qu
important in many applications~ . . . the physics points to rea
discontinuities, and there is little advantage numerically
smoothing the discontinuity. The discontinuity is here to s
@91#!. The simulation of a pile of rigid blocks will usually no
require anything much more complex than Coulomb’s la
because the phenomena other than sticking and sliding
not play a major role in the motion. However, it will nece
sarily involve complementary slackness conditions for b
normal and tangential directions, and consequently the n
for complementarity problem solvers.

Any more sophisticated model than Coulomb’s law tha
to be incorporated in the framework of the developments
this paper, should at least satisfy the principle of maxim
dissipation, both for physical reasons~what is the physical
validity of a model that is not dissipative with respect to t
supply rateVt

TFt?!, and for mathematical programming re
sons ~underlying complementary slackness conditions a
variational formulations!. Models of this sort have been stu
ied in @122,123#. More discussions on friction models in no
smooth multibody problems can be found in@91#.

4.3 Conclusions

The principal drawbacks of the rigid body approach are
determinate and inconsistent configurations, plus the n
for discovery of multiple impact rules. First of all, since th
rigid body model has to be seen as a limit model~in a sense
it is the model that contains the least physical information
the process!these peculiarities are not surprising: the le
information, the worse prediction. However, the other a
proaches are not perfect, either, and possess their own d
backs. In@57,124#, calculations show that elastic impact o
particle in an angle with a penalization, implies essentia
unpredictable results after two reflections. Moreover, phy
cal details can be introduced in a rigid body model, throu
suitable restitution coefficients that may incorporate vib
tional effects~global deformations!like in @107#, local prop-
erties at the contact point, etc. See@18# and references
therein. A lot depends on one’s goals and on the domain
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application which most often requires finding a comprom
between the model complexity and its tractability: eg,
signing a stable feedback control algorithm or simulating
long-run motion of a complex kinematic chain using soph
ticated compliant contact models seems unrealistic in m
cases. On the other hand, fine calculation of contact forc
impossible with rigid body approaches since they rely o
two-time scale of the dynamics and do not care about fo
during the shock but only about the impulses of forces
their effect on the velocity. Notice, however, that for some
the reasons listed above~physical parameters identificatio
unpredictable motion for multiple shocks, etc!, using compli-
ant models may not at all solve this problem.

In summary, some reasons that may motivate one to
rigid body modeling approaches are:
• Stiff ODEs are to be avoided for real-time applications

all tasks which require fast simulation~because stiff ODEs
usually require implicit algorithms!. The principal source
of stiffness is the contact model. Hence, rigid bo
contact/impact modeling allows one to avoid stiff differe
tial equations.

• Estimation of contact parameters for compliant mod
~stiffness, damping, etc!can be quite difficult in practice
and the collision outcome may be highly sensitive to s
physical parameter values.

• Simple compliant models of contact may essentially
useful for mathematical aims~study of convergence of pe
nalized problems4! and justification of rigid body restitu
tion laws, @18,51,53,74,75,125#, but not for numeric
simulation due to some fundamental drawbacks@126#.

• Rigid models serve as a convenient model for control
sign purpose~backlash, bipedal locomotion, manipulato
during complete robotic tasks, liquid slosh phenomen
etc! especially when the impact cannot be controlled
cause the input values should then be chosen too
~consequently the collisions are autonomous!.

• Provide good predictions for long term motion simulatio
especially if one is not interested in details of local co
sion ~or contact!behavior that involve complex materi
characteristics, but rather in the effect of collision on
global scale, for example the manner in which vibratio
progress from end-effector to base in a flexible rob
manipulator due to impact forces or impulses.

• It can provide the basis for a tool that is easier to use
design engineers.

• Whenn is too large~like in granular matter! penalization
models with high stiffness become impossible to simu
due to too long simulation time~to say nothing about firs
and second items!.

To end this part, let us cite Baraff in@127#: Although the
penalty method is useful in some contexts (namely lar
static environments) it has become increasingly appa
that the performance of spring-and-damper systems

4A fine examination of the planar impact of a particle in an angle@74,75#shows that a
penalized problem~damped linear spring-dashpot! yields Moreau’s rule Eqs,~11! and
~12! for generalized soft impacts in almost all the cases~in a measure theoretica
sense!.
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simulating rigid body motion is inefficient and has unpredi
able accuracy in dynamic settings . . . Notice that compliant
and rigid body approaches may also be mixed, see, eg,@120#
where rigid body and finite element approaches are mi
for collision detection.

5 NUMERICAL ANALYSIS OF BILATERALLY
CONSTRAINED MECHANICAL SYSTEMS

5.1 Introduction

From a general point of view, there are two main classes
impacting systems: the ones whose orbits undergo collis
at separated instants~ie, there existsd.0 such thattk11

>tk1d for all k>0), and the ones for which this is not tru
~see also Section 6!.

In the first case, there exist time intervals of strictly po
tive measure on which the dynamics are ODEs or DA
One also finds in this category, eg, simple systems with
riodic impacting orbits~vibro-impact systems@6#, bipedal
locomotion systems@15#, etc!. However, even for very
simple nonsmooth systems one cannot always simulate
motion by combining contact detection with DAE or OD
solvers. Consider a rigid ball falling to the rigid groun
where one models the elastic collision with Newton’s co
sion law 0,e,1. Then there exist an infinite number o
collisions in a finite time-interval. In a variation to Zeno
argument, one can then argue that such a situation is im
sible, since it requires an object to pass through an infin
number of collisions in a finite amount of time.

Obviously, the second class is the most general one,
the one which creates the most interesting challenges
terms of mathematical analysis and modeling. We shall co
back later to which ingredients one needs to construct a g
simulation software. But it is useful in this setting to reca
first the particular features of DAE simulation.

5.2 Simulation of DAEs: General methods

For unconstrained dynamical systems, there are many
cretization methods available. Discretization formulas
linear systems can be found in@128#. For nonlinear systems
there are many numerical methods available to solve O
nary Differential Equations~ODEs!, see, eg,@129,130#. This
is not the case for Differential Algebraic Equations~DAEs!:
establishing solvers for DAEs is still a very active resea
area. Overviews of the theory can be found in@25,29#.

Numerical simulation of the conventional formulation
a constrained mechanical system exhibits severe stab
problems, already, for simple systems. Since simulation
multibody systems is an activity with a long history, seve
computational procedures have been proposed to overc
the stability problems. These include techniques where a
tinction is made between dependent and independent v
ables ~a solution is sought through singular-valu
decomposition!, equilibrium correction strategies@131#,
penalty formulations @132,133#, coordinate partitioning
methods@62#, predictor/corrector algorithms@134#, a differ-
ential algebraic approach@66,67#, and projection method
@135#.
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In the literature on numerical integration, DAEs are oft
characterized by their index@25,29,136#. Roughly speaking
the index equals the number of times the constraints mus
differentiated to arrive at a set of ODEs. The index can
viewed as a measure of how far a DAE is from being
ODE. DASSL, designed by Petzold in the early eighties
capable of solving DAEs which have a low index@137#.
Constrained mechanical systems often have an index e
to three@29#. It is well known that index three systems c
not be solved directly by standard ODE solvers@135,138#.
The dynamics in Eq.~7! have been used in@67# to reduce the
index. A multistep~BDF! method with variable step-size
combined with a Newton iteration root-finding algorithm
has been shown to converge. For constrained mecha
systems, stable numerical algorithms are few, and are usu
available as research code only. A summary of DAEs sim
lation algorithms applied to bilaterally constrained mecha
cal systems can be found in@26# ~Ch 7.2!.

In engineering practice, the constraint stabilization te
nique presented by Baumgarte@131# is often applied becaus
it is conceptually simple and easy to implement. Differen
ating the position constraint twice givesf̈(q)50. It is well
known that the numerical solution of this equation can
unstable, and can lead to values off(q) and ḟ(q) that are
far from the desired value zero. The modified accelerat
equation:f̈(q)12aḟ(q)1b2f(q)50, is ~asymptotically!
stable fora.0. The additional terms in the latter equatio
can be seen to act as a proportional/derivative control w
gains equal to 2a and b2. Baumgarte also presented th
proportional/integral counterpart, for the asymptotic stab
zation of holonomic constraints@139#.

One problem can readily be seen from the formulation
the stabilization technique: how to choose the coefficienta
and b? Since the stabilization term can be interpreted a
proportional/derivative control law, it is noted that the use
the stabilization term shifts the poles of the system and al
its dynamic behavior. The choice ofa and b is merely a
matter of how fast we want to damp out the constraint v
lations. Large values ofa andb lead to high-gain feedbac
laws. Note that the choicea5b yields a critically damped
system. It is this choice that is commonly used when Bau
garte’s method is applied. In@140#, the gains 2a andb2 are
related to the step size that is applied in the numerical a
rithm. There it is remarked that their choice of gains tends
damp out constraint violations faster than any other cho
but accumulation of~integration!errors cannot be prevented
Furthermore, decreasing the step size results in larger g
As a result, the damping terms dominate the numerical s
tion process: they make the system become numerically s
A further analysis of Baumgarte’s method can be found
@141# and @142#. In spite of these drawbacks, the constra
stabilization technique of Baumgarte is often applied sinc
avoids iterative solution of algebraic constraints. This is
contrast to, for instance, a predictor/corrector algorithm a
some of the other methods. For instance, the projec
method proposed in@135#uses a combination of the numer
cal solvers known as Backward Difference Formulas~BDFs!
and a Gauss-Newton projection method. These algorith
15
n
,
t be
be
an
is

qual
n

,
,
ical
ally
u-

ni-

h-

ti-

be

ion

n
ith
e
ili-

of

s a
of
ers

io-

m-

go-
to

ce,
.
ins.
lu-
tiff.
in

int
it

in
nd
ion
i-

ms

require iteration processes to obtain values within a cer
predefined error level: a number of corrector steps mus
applied.

5.3 Application to mechanical systems

During simulation studies of unilaterally constrained m
chanical systems an expression of the Lagrange multiplie
often used as a model for a force sensor, or simply a
nonlinear expression for the contact force, expressed in te
of the motion on the constraint manifold and the cont
input @143#. Let us start from Eq.~5! and add a control inpu
w in the right-hand-side. Under the assumption that¹fT(q)
has full-row rank, and omitting friction terms, one can o
tain:

(35)

In @66#, it is noted that, although Eq.~35! provides an ana-
lytical expression for the Lagrange multiplier, it is not a
ways a good starting point to obtain a numerical solutio
The presence of numerical errors leads to violation of
constraints and eventually leads to a drift-off from the co
straint manifold. As a consequence, one obtains physic
meaningless solutions. Usually, for consistent initial con
tions, it will take a longer period of time for the drift-off to
become noticeable. And if the drift-off remains small, th
the corresponding approximate solution may well be acce
able. But, generally speaking, a growing drift-off can not
accepted. Striking examples of drift-off can be found in@66#
and @135#.

For ease of notation, let us examine drift-off in a firs
order formulation~which can be obtained, for example, sta
ing from ~6! by setting xT5(qT,q̇T)T, and redefinition of
terms!.

ẋ5 f ~x!1g~x!w1g~x!CT~x!l
p~x!50.

(36)

Instead of finding a discrete-time expression forl directly
from ~36! another sequence of steps is advocated in@66#.
This sequence of steps can be described asdiscretize first–
substitute next–combine later. This approach to simulatio
has been applied to restricted ODEs in@66# and to boundary
value problems of Partial Differential Equations~PDEs! in
@144#. But the original idea can already be found in@145#
where it is applied to index one systems with linear, statio
ary constraints in combination with the Forward-Euler in
gration method.

First the equations in~36! are discretized. We will use the
Forward-Euler method only to illustrate the concepts,
though in general it is not advisable to simulate mechan
systems using the Forward-Euler method. This gives

H xi 115xi1h@ f ~xi !1g~xi !wi1g~xi !C
T~xi !l i

d#

p~xi 11!50.
(37)
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Note that the constraint is treated in an implicit mann
The notationl i

d is used to distinguish the discrete Lagran
multiplier from the analytical one in eg,~35!. The idea now
is to obtain a discrete formula forl i

d directly from Eq.~37!.
Let e i denote the numerical error at stepi , and let us assume
here thate i is a constante. First assume that the matricesC
and H5 ]p/]x are constant. The discrete generaliz
Lagrange multiplierl i

d is given by

l i
d52~CCT!21S H@ f ~xi !1g~xi !wi #1

p~xi !

h D . (38)

We will refer to p(xi)/h as a compensation term in the r
mainder. One can now obtain@66#:

p~xi 11!5hCCTe. (39)

No error accumulation can take place. Indeed, ifh→0 one
hasp(xi 11)→0, as desired.

In contrast, if one used the analytical expression of
Lagrange multiplier as in Eq.~35! it is shown in @66# ~see
also@65#, Ch 9! that one obtains, with neglect of the highe
order terms:

p~xi 11!5p~x0!1h(
j 50

i

C~xj !C
T~xj !e j . (40)

From the latter equation, it follows that once an error is ma
the solution is not on the constraint manifold. Now aga
consider the special case wheree i5e, ; i PN, with e con-
stant, and thatC is a constant matrix. This gives

p~xi 11!5p~x0!1t iCCTe. (41)

Note that it makes no sense to leth→0 sinceh does not
even appear in Eq.~41!. And if t i→`, for instance becaus
we are interested in an equilibrium solution, one even
thatp(xi 11)→`! Even if the initial conditions are consisten
with the equality constraints, error amplification is inevitab
due to the presence of numerical errors. Each error so
will contribute to the drift-off. This is one of the reasons wh
many simulation codes project the state on a timet i 11 back
to the constraint surface for example using Newton-Raphs
before proceeding the time simulation.

The expression for the discrete generalized Lagrange m
tiplier l i

d is useful also in combination with other explic
and implicit integration routines, and for nonlinear co
straints as well. For this one treats the compensation term
a constant on an interval@ t i ,t i 11) and evaluates all othe
functions in the points needed by the numerical method
is applied. For application to mechanical systems, the
pression for the Lagrange multiplier on intervals@ t i ,t i 11)
now reads:

(42)
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Using Eq.~7! one also obtains:

m i
d52@¹fT~q!¹f~q!#21S ¹fT~q!q̇1

f~q~ t i !!

h D . (43)

Observe that analytically the constraints are strictly satisfi
and one hasl i

d5l andm i
d5m.

Using the ‘‘discretize first—substitute next—combin
later’’ sequence of steps, a numerical method can be obta
that has the property that it is robust with respect to error
the initial conditions, and stable with respect to errors ma
during numerical integration. Moreover, the use of the d
crete generalized Lagrange multipliersl i

d and m i
d does not

yield numerically stiff equations when the time-step is r
duced: the termh in the denominator is canceled agai
Since the compensation term is fixed on each time-interva
is easy to combine the method with variable stepsize m
ods ~see@146,147#for a variable stepsize method!. The n
merical method can be extended to cover constra
f(q,t)50, ie, constraints that depend explicitly on tim
These constraints arise, for instance, in dynamic path p
ning of robotic manipulators, and also in flight-path manag
ment of airplanes. Most of the theory remains valid, but
the case of, for example, Runge-Kutta-4 there are additio
requirements on higher derivatives of the constraints t
need to be satisfied. This still leads to stable numerical sim
lation of bilaterally constrained dynamical systems.

6 NUMERICAL ANALYSIS OF UNILATERALLY
CONSTRAINED MECHANICAL SYSTEMS

6.1 General motivations for new specific schemes

The main problem in simulating DAEs is the stabilization
the constraints. For MDIs, additional difficulties occur:
• Complementarity conditions are an essential part of

dynamics and have to be carefully incorporated into
numerical scheme. In particular, Baumgarte’s stabilizat
technique is not suitable since the resulting multiplie
signs are physically meaningless, and cannot be used~even
in the codimension one constraint case! to detect release.

• Detection of contact instants and re-initialization of t
state. In the case where one is able to detect analytic
what the precise impact point and time are, there are
problems in the numerical approximation of these
stances. First, one must be sure that an impact is
missed~see Section 6.5!. Next, since machine zero is
identical to zero, there will almost always be a small m
match between, for instance, actual impact location a
simulated impact location. It must then be decided whet
a collision will take place or that the bodies remain
contact with each other. Clearly,a priori determination of
all possible contact points, necessarily including the vel
ity information as done in@148#and@149#, is an asset. Las
but not least, one must decide whether or not, after c
strained motion a release takes place. Since zero fo
level can not be maintained numerically and since DA
solutions do not yield exact satisfaction of a constrai
also in this casea priori determination of all possible re
lease points, including the velocity and force informati
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is a benefit@149#. In Section 6.4 we will come back t
these difficulties in relation to event-driven softwa
schemes.

• Accumulation point of the sequence$tk%k>0 occur fre-
quently. One has to impose a threshold or derive lo
analytical forms of the impact Poincare´ map@150#—which
are similar to the bouncing ball dynamics. Forn5m51,
the transition to the permanently constrained mode ca
decided via a threshold. Forn>2 and/or m>2, things
complicate because generally the coordinates are dyn
cally coupled. If one constraint is decided to be satura
because numerically one is unable to detect rebounds
longer ~ie, computer accuracy may be attained!, then the
overall motion may be drastically modified. In general,
methods based on impact detection will provide good
sults for:
—Periodic motions with finite number of impacts per p

riod, for all n, m.
—Periodic motions with finite or infinite number of im

pacts per period, forn5m51 @151–153#.
The multiplicity5 of the shock is not easy to calculate, s

works on Newton’s cradle@154# and on impact of a particle
with an angle@73,155#.

6.2 MDIs are not concatenation of ODEs, DAEs, MDEs

It is important to realize that an MDI as in Eq.~2! is quite
different from ODEs, DAEs, DIsà la Filipov, MDEs6 of the
form

ẋ5 f ~x,t !1g~x,t !ẇ, x~02!5x0 (44)

where xPRn, and the control inputwPRm is of bounded
variation, and even MDEs as in@156#, which are defined as

H ẋ5 f ~x! if tÞtk

x~ tk
1!5x~ tk

2!1a~x~ tk
2!! if t5tk

x~02!5x0

(45)

for a sequence$tk%k>0 , wheretk→1` ask→1`, tk may
or may not depend onx7. The following fundamental dis
crepancies between the last two differential equations
our MDIs are@18,87#:
• It is clear that the overall dynamics with complementa

slackness mechanical systems is far from being only a
ferential equation with impulsive inputs. The way the
of indices for active constraints and sticking/slipping co
tacts are refreshed is a fundamental part of the~hybrid!
system@157#. Only the very simplest dynamics of syste
as in Eq.~2! seem to resemble Eq.~45!. But they are of
different nature, as explained below.

5The multiplicity is to be understood here as the number of shocks that the sy
undergoes when it strikes in a neighborhood of the singularity of]K. It should perhaps
better be called the orderO of the collision, which can be simple or multiple. In th
sense, the ball falling on a ground undergoes, in finite time, a simple shock of
infinity. A 2D particle striking an angle undergoes a 2-shock of finite or infinite or
depending on the angle, initial data, restitution coefficients. Actually, these two no
require more accurate definitions: ifO,1` then one just faces a series of simp
shocks. So the only relevant case isO51`.
6Measure Differential Equations.
7Evidently k here is an index and has no relationship with the stiffness in Section
17
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• The commutativity property of the vector fieldsgi(x)
PRn, i P1, . . . ,m allows one to decouple the MDEẋ
5 f (x)1g(x)ẇ into simpler systems for which existenc
and uniqueness of solutions are easier to prove. Th
commutativity properties are always satisfied for mecha
cal systems, but they do not at all solve the problem
multiple impacts@18#.

• If f (x) and a(x) in Eq. ~45! are linear then the whole
nonsmooth system is linear as well. On the contrary,
earity of the continuous vector field in a mechanical s
tem subject to a unilateral constraint does not at all im
linearity of the total system~see@18#, Ch 1!.

• The system in Eq.~45! and the developments in@156# do
not allow for finite accumulation points of discontinuitie

• The productg(x)ẇ is quite meaningful for unilaterally
constrained mechanical systems becauseg(x) contains
only positions and only the velocities are discontinuo
@18,87#. Otherwise specific tools have to be developed
render Eq.~44! meaningful. The formulation in Eq.~45! is
a way to overcome such problems.

• The abundant literature on~Lyapunov!stability properties
of impulsive differential equations as in Eq.~44! deals
only with the stability of the fixed point ofẋ5 f (x), where
the remaining terms are considered as disturbances. St
ity studies of unilaterally constrained mechanical syste
require other tools. Mainly because@18–20# i ! they are
hybrid dynamical systems with different modes~in other
words there is a natural Discrete Event part whose st
correspond to the modes associated to the index set
sticking and sliding contacts!,ii! the fixed point of the
overall system may not at all correspond to the one of
continuous dynamics~think of the bouncing ball example
in which the vector fieldq̈52g does not even possess an
fixed point!!, andiii! the stabilization goals may be quit
different depending on the task~stabilizing jugglers or
hopping robots@14# is totally different from stabilizing a
manipulator along a time-varying trajectory including fre
motion, constrained motion and impacting phases@19,20#!.

• Nonsmooth mechanical systems as in Eqs.~2! and~3! have
solutions which are generally discontinuous with respec
initial conditions@51,39#. This is not the case for MDEs a
in Eq. ~44! as can be easily seen taking, for instan
g(x,t)5g(t) @158#.

• A lot of work has been dedicated to simulation of bilate
ally constrained mechanical systems, since they are in
3 DAEs ~see@25# for further references and see Section!.
But as we said above for hyperstatic systems, LCPs h
to be solved at each step and integrating switching DA
is far from being sufficient. Baumgarte’s method is n
suitable since it does not guarantee that the sign of
multiplier has any physical meaning.

In summary, the MDIs in Eqs.~4!, ~22!, ~26!–~28!, and
~32!–~33! are quite different in nature from the other types
MDEs. They are not a simple concatenation~except in very
simple cases!of ODEs and/or DAEs separated by r
initializations of the state~the velocity!. In order to reinforce
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these ideas, let us consider the following third order sys
~@39#, Ch 7.3;@159#!, which belongs to the class of Line
Complementarity Systems@42,160#:

5
ẋ15x2

ẋ25x3

ẋ35l

l>0, x1>0, lx150

xT~02!5~0,21,0!.

(46)

The state has to jump initially to the valuexT(01)
5(0,0,0), and withl(0)50. Then the system stays at re
keeping the same state for allt>0 ~note that the DAE cor-
responding to Eq.~46! reduces to the trivial systemx[0,
l[0). Let us apply the following backward Euler~implicit!
scheme to the system in~46!:

H xi 112xi

h
5Axi 111Bl i 11

x1,i11>0, l i 11>0, x1,i11l i 1150.

(47)

The matricesA andB are easily identifiable from~46! andxi

denotes the discretized value ofx at stepi . Roughly, one
constructs a LCP whose unknown isl i 11 by insertingx1,i11

into the complementarity conditions~which requires that (I
2hA) be invertible, which is true forh small enough!. This
way of doing is classical in time-discretization procedur
see Sections 7.1 and 7.4. Under certain conditions~satisfied
for this example!the constructed LCP(l i) in Eq. ~47! pos-
sesses a unique solution for sufficiently smallh. The initial
state jump is computed by solving the LCP at the first st
and one finds (x1,0,l0)5(0,1/h2). Then the solution should
converge to the null solution. The application of the alg
rithm in Eq. ~47! yields @39#: (x1,i ,l i)5( i ( i 11)/2h,0) for
i>1. Moreover it can be shown that the nonimpulsive par
x1 satisfiesix1i> Nh(Nh21)/2h3/2, whereNh is the integer
part of T/h for someT.0 and i•i is the Euclidean norm
Thereforex1 diverges ash→0!

Following @72#, let us consider linear DAEs. If the initia
values are inconsistent~ie, they do not satisfy the con
straints!, then fixed-stepk-step backward differentiation for
mulas ~BDF! produce solutions which may diverge durin
the first steps ash→0, for k<6. However, they areO(hk)
after a maximum of (m̃21)k11 steps, wherem̃ is the DAE
index. Therefore, the example in Eqs.~46! and ~47! shows
that one should be very cautious when applying an impl
Euler discretization to a nonsmooth system as in~46!: the
results of convergence which are available for ODEs
DAEs may absolutely fail when considering complement
ity systems. Indeed it is really the complementarity con
tions~and consequently the LCP(l i)! which create the diver-
gence phenomenon. The initial jump drives the state aw
from the constraint, but convergence is not recovered a
wards. Fortunately, this sort of problem is shown not to oc
for linear mechanical systems in@39,159#, and more gener
ally for dissipative systems~see@117# for details on dissipa-
tive systems theory!. The example in Eqs.~46!and~47!dem-
onstrates that the existence of solutions to the~discrete-time!
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LCP(l) does not imply at all the stability of the overa
integration scheme nor convergence of its solution ash
→0. This fact is quite similar to what occurs for th
continuous-time dynamics,@18# Remark 5.18. Another ex
ample that demonstrates the importance of the~discretized!
complementarity conditions can be found in@91#. It concerns
a bouncing ball, whose dynamics is in Hamiltonian for
with state (q,p), discretized by a implicit Euler midpoin
rule. If one uses 0<l i'(qi 111qi)/2>0, then the effective
restitution is not elastic and the energetical behavior is
sastrous. If one uses 0<l i'(pi 111pi)>0, the energetical
behavior is perfectly elastic~this had also been noticed i
@28,96#!.

It has been stated@161# that ‘‘Differential/Algebraic equa-
tions are not ODEs.’’ We conclude that:Measure Differential
Inclusions that represent complementary-slackness mech
cal systems are not concatenations of ODEs and DAEs,
ther MDEs.

6.3 Simulation algorithms

It is difficult to classify the existing methods of numeric
integration since there are many different criteria that can
used to fulfill such a task: acceleration-force/velocit
impulse; computation of the contact forces or not; resolut
of LCPs/NCPs for all times, at certain times, never; frictio
less constraints; Coulomb friction, regularized Coulom
Signorini conditions; polyhedral approximation; revolutio
cone of friction; 2D/3D order of the discretization, conta
point; finite-element methods, quasistatic/dynamic, inclus
of complementarity conditions in the discretization; calcu
tion of impact instants or not; proof of convergence towa
a solution of the rigid body dynamics or not; inclusion
multiple shocks; implicit or explicit form of the numerica
scheme etc. Following@101#, we choose the following clas
sification in this paper~another classification is chosen
@115#!:
• Event-driven schemes: one integrates the DAEs betw

state re-initializations. One needs some basicingredients
that we will describe below.

• Time-stepping schemes: one considers a time-dis
tization of the nonsmooth dynamics~MDI! including
complementarity conditions and impact rules. The wh
set of discretized equations/conditions is used at each
to calculate the future state.

• Penalized-constraint schemes: the unilateral constraints
replaced by some compliant model of the contact.

Consequently, we will first describe the main ingredien
that any good event-driven software should incorporate,
then we shall describe the most advanced methods that
been proposed in the recent years by several authors
which incorporate~implicitly or explicitly! such modules.
Evidently we do not deal with penalized schemes and s
ODEs here, as announced before. The problem of discre
tion of the continuous dynamics~ODEs or index 3 DAEs!
has been discussed in Section 5, as well as the problem
constraint stabilization.
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6.4 Overview of modules for event-driven schemes

It is clear that there is a need for simulation tools that p
vide routines that can be used to simulate MDIs. In the
mainder of this section we will discuss some of the ingre
ents that should be incorporated in event-driven simula
softwares. It must be stated that even for bilaterally c
strained mechanical systems, commercial tools are not a
dant and in many cases the numerical code that implem
the transition rules and discontinuities due to uncontrol
collisions must be supplied by the user. In this section
overview of different modules is given.

In order to simulate unilaterally-constrained dynamic
systems, one needs to know whether or not there will b
jump in the state or its derivative~the acceleration!, and if so
how this jump is made. A simulation of contact must u
models for the collision maps, the transition rules and
dynamics. For affine nonlinear systems,@65,149#give algo-
rithms that compute all possible contact and release sets
line. Using these sets, explicit expressions for the collis
maps can be made off-line as well. During simulation, on
the contact point is known, a simple check followed by o
function evaluation then suffices to obtain the desired resu
Due to discretization however, there remain a number
problems with respect to simulating uncontrolled and c
trolled contact. The problem with~un!controlled contact is
the approximation of the time that contact with the bound
set is made. The problem with controlled contact is the v
dation of the transition rules for contact and release. Si
real-time simulation often involves trade-off between ac
racy and computation time, in@65# ~Ch 9!, parameters ar
introduced to aid the user of a simulation program to c
tomize simulation to his/her specific needs.

The introduction of the Lagrange multiplier makes dete
tion of contact and release during simulation studies n
trivial, as pointed out in Section 3.1. For instance the de
sion that a release takes place cannot be based on a c
whether or notf(q).0, since an active Lagrange multiplie
will ensure thatf(q)50. It must be decided when to~de!ac-
tive the Lagrange multiplierl. The transition from free mo-
tion to constrained motion, and vice versa, or plastic co
sion detection can be based on the following analytical ru
@43,149# ~for codimension one constraints!.

Contact rule: if f~q!50 and

¹fT~q!q̇50 then activatel
(48)

Release rule: ifl,0 then deactivatel.

First we discuss the problem of determining the time t
a trajectory makes contact with the boundary set. Assu
that at timet i there holdsf(q(t i)).0. If contact is made in
the interval (t i ,t i 11) then this can be detected only
f(q(t i))•f(q(t i 11))<0. This also implies that if a con
trolled contact and a controlled release take place in the
terval (t i ,t i 11), ~and the motion stays on a boundary for
small period of time!, this can be detected numerically o
if the time-step is small enough. We assume that this is
case.
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Depending on the characteristics of the numerical so
tion, it may well be thatf(q(t i 11)) is significantly smaller
than zero. This implies that even with a fixed step-size,
called step back is necessary. Step back means that the
steph is adjusted and the simulation is started again fr
time t i . This means that the same dynamic equations
solved again. And if the new estimate ofq(t i 11) is not sat-
isfactory, again step back is necessary. Clearly such an it
tive procedure may increase computation time significan

The method of false position or regula falsi can be used
establish the time-instantt* where a trajectory makes conta
with the boundary set. Since we assume stable nume
integration, the numerical approximated trajectory and
analytical trajectory are related through the accuracy of
numerical ODE solver that is used, and to the approxima
error on the initial data~that is needed after each impac
This means that it makes sense to search for a time instat̂
that is close, but not necessarily equal tot* . The step-size is
adapted to a valueĥP(0,h). This givesf(q(t i1ĥ))'0.
This approximation of the contact point may already be
ceptable to the user of the simulation program. And us
this value ofĥ, a linear~or nonlinear!interpolation with the
numerical value of the velocities at timest i and t i 11 may
give an acceptable value of the velocity component at c
tact. But we can go on by restarting the simulation from tim
t i by usingĥ as the new time-step. Now the obtained nume
cal approximation is checked again to see iff(q(t i1ĥ))
<0. If this holds then the procedure outlined above can
repeated until a point is reached for which the position c
straint is not satisfied. The approximation of the time of co
tact, t̂ , is now set equal tot i1ĥ, whereĥ is the last update
such thatf(q(t i1ĥ))'0. Next, the timet i1ĥ is also used
to approximate the velocity vector at the time of conta
Subsequently we set the time-step to its old valueh again as
the time-stepĥ may be too small to maintain real-time simu
lation. A parameterg should be introduced to set an a prio
bound on the number of iterations. The trade off betwe
accuracy and computation time is then put in the hands of
user. In @162,163#,h is divided by two until f(q(tk)) is
smaller than a given tolerance. Another adaptive step-
method is proposed in@164#. Various methods similar to
what is described above to computet* are discussed in
@151–153#as well as their influence on the scheme ord
when combined with Newmark, RK24 and Dormand-Prin
RK ~the benchmark is a one-degree-of-freedom system w
a single constraint!.

Even though the procedure outlined above is simple
still uses an iteration process. If the time needed to exec
the procedure violates real-time simulation, the initial line
interpolation step may be replaced by a higher-order inter
lation method using information at velocity level. Anoth
promising approach is to use in the iteration process it
only a part of the dynamics equation:M (q)q̈5w. This
choice is motivated by the fact that the contact set is in
pendent of the system matricesM andQ and the importance
of the matrixM in calculating the impulse@149#. This is still
an active research area for real-time simulations of unila
ally constrained robotic manipulators~see also Section 6.5!
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Next it must be determined whether one is dealing wit
collision or not. In case plastic collisions are considered,
ter detection of contact, the Lagrange multipliers are a
vated and the motion remains on the surface, see Eq.~48!.
When elastic collisions are possible, there is another num
cal problem sinced/dt $f(q)%(t* ) will in general not be
zero numerically. This problem is similar to the problem
bilaterally constrained mechanical systems when the reac
force is approximately zero. A heuristic approach is t
following. If at a contact point one has thatn
< df/dt (q(t* ))<0, for a user defined value of the param
etern, then the motion is assumed to proceed on the bou
ary. If d/dt $f(q)%(t* ),n(<0) then the motion is to pro
ceed by the use of an uncontrolled collision map. To de
release from the surface a check is made whether or nol i

d

,0, wherel i
d is in Eq. ~38!. If this inequality holds true

then the Lagrange multiplier is deactivated. Since the co
pensation terms are usually much smaller then the valu
l i

d itself, these compensation terms have no influence on
decision@65#.

There remains a problem when the desired~simulated!
contact force during motion on the boundary is very sm
But then controller design is also difficult: the slightest d
viation from the desired path will mean that release ta
place, although control is aimed at maintaining contact. T
is the reason that in practice a certain amount of~constant!
normal force on the surface is chosen.

6.5 Collision detection between bodies

This section and the next one concern a very important m
ule: the management of contacts status.

Approximation of the shapes and approximate calculat
of impact times are generally CPU-time intensive tas
@120#. Many works have been dedicated to collision det
tion, eg,@148,165–167#to cite a few. Roughly this module
requires to calculate, explicitly or implicitly, the expressio
for f(q) and solvef(q)50 ~ie, determinate the points tha
are going to touch–which are not necessarily the ones w
are the closest at the instant of the computation, so sev
pairs of points have to bewatchedsimultaneously!. Even in
very simple cases such as one degree-of-freedom syst
various numerical methods may be used to calculate
times tk such thatf(q(tk))50 @151–153#. Their influence
on the algorithm properties~consistency, order!may be sig-
nificant.

The main problem is that an exact analytical descript
of the objects shapes, even when this is possible, is q
time consuming. Secondly one has to calculate with a s
able numerical routine the timestk . In case of accumulation
of impacts and for multiple contacts, the problem is har
because the influence of deciding the end of the se
$tk%k>0 according to the machine accuracy, is not easy
quantify. Micro-collisions phenomenon@107#prove that it is
possible in some cases that there is a large quantity o
bounds, but finite number of collisions, and an escape ou
]K after a finite time. Things even complicate for multip
impacts. What is the influence on the long run motion if o
decides instead that one constraint becomes active?
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As pointed out in Section 2.2, it may not be possible
define all the constraintsf j (q)>0: there would be too
many! Hence one usually employs procedures that elimin
uselessconstraints, ie, those bodies which are too far o
from each other to be likely to collide in the next future ste
of integration. Consequently one implementsrough teststhat
select the bodies which may collide, andfine teststo com-
pute the collision times@120#. Rough tests usually consist o
surrounding the bodies by simple volumes~spheres, boxes
and watching whether they overlap or not. Concerning
finest tests, the main approaches are~see@166# for a review!:
• Classification of typical contacts and geometri

@163,168–172#. In other words, process the real surfac
the objects and the type of contact~circle-circle, circle-
line, angle-line etc!. These methods are essentially stu
in the Mechanical Engineering literature. They are
stricted to certain types of geometries contained in
availablelibrary developed for the software. If the bodie
surfaces are simple enough to be described by analy
curves, one gets an explicit functionf(q(t)) ~see for in-
stance the developments in@83# for the derivation off(q)
from a local frame at the contact point!. The next step is to
solve numericallyf(q(t))50-which can be done with a
Newton-Raphson method or a polynomial root finding ro
tine, since in case of several roots Netwon-Raphson m
compute the wrong zero and there is penetration before
algorithm decides that contact has occurred. Oth
@162,163#use a time step halving process untilf(q(tk))
50 is satisfied within a specified tolerance. We have
ready outlined this problem in Section 6.4. For instan
for two bodies with parametric surfacesf i(ui ,v i ,t)50,
i 51,2, one hasf(q,t)5f1(u1 ,v1 ,t)2f2(u2 ,v2 ,t) and
one faces a nonlinear 5-dimensional root-finding probl
@148#. These methods are however less fast and more c
plex to implement than the 2-dimensional ones@127#.

• For 2D systems, one can approximate the bodiesBi , i
P$1,¯ ,N% by polygons made of edges and nodesNi .
Two main methods are used@120#: the node-in-polygon
test~NIPT! and the ray-crossing approach~RCA!, see Fig.
2a,b, respectively. Letni be the number of nodesNi in
polygon i , and a i i the angle (NjNi ,NjNi 11). Then if
(nodes ofBi

a i i 50, the nodeNj¹Bi , if (nodes ofBi
a i i 52p,

then NjPBi : the bodies intersect. The RCA consists
looking at the numberñ of intersections of a straigh
halfline ~a ray!emanating fromNj , with the polygon]Bi .
If ñ is odd thenNjPBi , if ñ is even thenNj¹Bi . The
RCA is more robust than the NIPT. Both methods a
O(ninj ) for two bodiesBi andBj . However, their gener-
alization to 3D systems is not easy@120#.

• Approximation of the objects surfaces and of the imp
times by bounding boxes methods@166#are more efficient
for 3D systems. These methods are essentially studie
the Computer Science literature. If the bodies are con
and subject to gravity~or more generally to any vecto
field that is integrable!it is possible to approximate th
distancef(q) and to calculate a lower-bound on the im
pact time@165#. The approximation can be refined as mu
as the constraints~desired accuracy, speed of computatio!



Fig. 2 Collision detection methods
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permit to do it. In@148#, it is pointed out that just watchin
positions to determine collision times cannot work sin
contact may occur between two sampling instantst i and
t i 11 while f(q(t i)).0 andf(q(t i 11)).0. So including
the velocity information in the algorithm is mandator
Adaptive subdivision of the bodies into simple volum
~polygons or polyhedra@120#, spheres@165,166#, rectangu-
lar prisms@148#! and incorporation of a Lipschtiz bound
edness condition onf(•) allows one to approximate the
collision times@148,173#. This method is calledbounding
box schemes: each object is surrounded by bound
boxes. When these boxes overlap, the objects mus
close one to each other. Then a more accurate collision
is made once more. Bounding box schemes allow one
avoid testing all possible contacts (5O(N2) for N bodies!,
but to focus on objects in close proximity only. Rough
speaking, the Lipschitz bounds permit to approximate
next step motion of each simple volume~or surface!and to
determine if a collision has occurred. A refinement of t
mesh can be used to increase the accuracy of the colli
time computation, in an adaptive way. These methods
ply well to convex bodies. Nonconvex bodies can be d
composed into convex parts to be treated. Voronoi regi
for polytopes@167,174#are used to maintain a list of clos
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est distances during the simulation8. The change in
Voronoi cells from one step to the next one is usua
small, facilitating the calculations. An implementation
the Lin-Canny algorithm with a running time linear inN,
can be found in@175#. Baraff@176# proposes a coherenc
based bounding box test that isO(N).

6.6 LCP and NCP solvers

LCPs: As we saw in Sections 3.1, 3.2, and 3.3, the dynam
in Eq. ~2! with or without friction, can be transformed in
form involving LCPs or NCPs which is useful to cope wi
detachment, sticking-sliding, impacts. Notice from Eq.~8!
that if B>0 ~componentwise!, thenl50 is a solution to the
LCP. Problems arise whenBi,0 for somei . The most popu-
lar algorithm used to solve LCPs, Lemke’s algorithm, is m
tivated by this observation@110,177,178#. Basically this is a
pivoting method that converges in a finite number of pivo
provided the LCP matrixA in ~8! is a copositive matrix. In
the worst case, Lemke’s algorithm is exponential but is
pected to be polynomial inm. Lemke’s algorithm is initial-

8A Voronoi cell associated to an object consists of the set of points whose distan
this object is the smallest. The object can be a node, an edge, a face. See Fig. 2c.
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ized using a so-called covering vector@89#, or supplementary
variable@178#, or initial ray@177#, that is chosen arbitrarily
or even randomly@89#. Lemke’s algorithm is formulated in
@177#as finding the zero of a piecewise linear function, us
a homotopy method. Even in the nice case whereA is cop-
ositive, Lemke’s method is known to fail when the dime
sion is too large~because of accumulated errors of pivoting!,
or even for medium-sized problems if the diagonal ofA has
null entries@115#. Further interesting properties of Lemke
algorithm have been proved in@179#. Other methods to solv
LCPs exist, such as Mangasarian which consists of usin
nonlinear~complementarity!function whose zero is the LCP
solution@180#, then a root-finding algorithm. Another hom
topy method called Katzenelson’s algorithm exist@181#.
Mangasarian’s method has been used in@182#. As we pointed
out above, LCPs and Quadratic Problems under constra
are equivalent whenA is copositive~then the QP is convex
and its solution satisfies the so-called Karush-Kuhn-Tuc
conditions which are complementarity conditions betweenN
and a Lagrange multiplier—a slack variable!. In @183#, Inte-
rior Point algorithms are described that solve LCPs as Q
under constraints. In@89#, a comparison between Lemke
and a new specific Interior Point algorithm is proposed.
different problems are tested, randomly generating 328 d
sets, with LCPs of dimensions ranging from 2 to 170. The
seems to supersede Lemke in terms of the number of p
lems it can solve when Lemke’s covering vector is chos
arbitrarily. See@115#, @178#, and@184# for a comparison be-
tween Lemke, Gauss Seidel and augmented Lagran
methods, using distinct-element models of various mech
cal systems: Lemke’s algorithm is shown to provide t
smallest CPU computation time.

Baraff developed a Dantzig algorithm@185#. Let there be
m frictionless contacts with a set of complementarity con
tions betweenV̇N

( j ) andN( j ) at each contact. Initially the con
tacts are classified into 2 sets:V̇N

( j )50 andV̇N
( j ).0, whereas

one setsN( j )(0)50, ; j P$1, . . . ,m%. Dantzig algorithm is a
pivoting method of the indices between the 2 sets. One s
by computing suitable values ofV̇N

(1) and N(1), then one
passes to contact 2 and adjusts both contacts 1 and 2. In
modifying the dataN(2) and V̇N

(2) must in general modify
N(1) andV̇N

(1) , see Eq.~8!. Then contact 3 is adjusted, takin
into account 1 and 2 as well. And so on until contactm is
attained. Then all contacts satisfy the complementarity c
ditions and the LCP(l) in ~8!. The algorithm terminates ifA
is copositive. Extensions to frictional contacts are possi
in 2 or 3 dimensions. It is noted in@185# that in many prac-
tical cases¹f is constant, consequentlyB in ~8! is in the
column space ofA: this property may be used for singularA
~eg, hyperstatic systems!. Moreau uses a Gauss-S
method@78#, see Section 7.2.2.

In general, users may be tempted to directly connect t
software with available codes. However the use of packa
has the following drawbacks@185#:
• Interfacing the numerical software package with the sim

lation software may not be easy.
• The available codes are often implemented as rese

codes, especially for QPs.
• The tuning of the package adjustable parameters~numeri-

cal tolerances, iteration limits etc!may not be easy.
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• The packages are oftenblack boxeswhose codes are no
accessible to the user. The origin and remedy of numer
problems may therefore be difficult to isolate.

Algorithms for 2D frictional contact problems in the qua
sistatic case have been presented and compared in@186#. It is
shown that this reduces to finding the zero of a function i
closed domain. Newton’s method seems to supersede int
point ones.
NCPs: The NCP in Eq. ~16! is equivalent to solving
min@y,g(y)#50. Such nonsmooth equations can be trea
with nonsmooth Newton methods@187#. As a generalization
of the variational expression in Eq.~21!, ~16! is also equiva-
lent to the variational inequality@111#: find yPR1 such that
(z2y)Tg(y)>0 for all zPR1. From a theoretical point of
view NCPs are still an active research area,~see eg,@188#
and @189# and references therein!.

6.7 Event-driven algorithms

Basically these are algorithms which integrate the mot
between events~shocks or stick-slip transitions!and use
some event detection procedure. They are of the for
acceleration type and require the computation of con
forces. The works therefore focus on the improvement of
modules in Sections 3.2, 3.3, 6.5, and 6.6. The tim
discretization problems are not treated explicitly, but the
thors generally merely use available DAEs or stiff OD
solvers. Roughly, the main discrepancy between what we
event-driven and time-stepping schemes is that the for
are closer to the continuous-time description of the dynam
in Eq. ~2! with a two-time-scale dynamics~which is close in
spirit to the hybrid dynamical systems point of view@42#!.
The latter are a real difference equation approach, and th
fore, better lend themselves to convergence analysis, a
cial property. On the contrary event-driven algorithms do n
seem amenable for convergence analysis. This may have
portant consequences for the simulation of complex dyna
ics. The first three groups of algorithms in Sections 6.7
6.7.2, and 6.7.3 clearly supersede the others in the way
formulate the nonsmooth dynamics. They are briefly p
sented here since most of the specific material they con
has been presented elsewhere in this paper.

6.7.1 Pfeiffer and Glocker’s formulations
These authors proposed in@7# a general formulation of the
dynamics in Eq.~2!, at acceleration-force level. The bas
convex analysis tools described in Section 3.4 are use
derive complementarity conditions and write friction and im
pact rules with LCPs or NCPs@83#. Two-dimensional friction
~planar systems!are treated in@7#, Lemke’s algorithm is
used. Extensions to 3D systems is studied in@83#, using
polytope approximations of the friction cone and conv
analysis tools which allow one to express such approxim
Coulomb’s law with complementary slackness conditions
encompasses collisions with friction and tangential rest
tion, see Section 3.3. The work in@92# uses the second for
mulation in Eq.~21! to express the complementarity cond
tions in Eq.~10! and dry friction in dimension 3~see~23!
and its acceleration counterpart!. The dynamics in Eq.~2! is
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transformed in an implicit equation for the acceleration a
N, Ft , to be solved at each step by a root finding algorith
~a subroutine NEWT from@190# is used, and the dynamic
are integrated with a RK-Fehlberg with automatic control
the integration step!. Again convex analysis tools are at
core of the proposed method. The numerical results are c
pared to experiments~a planar mass on an oscillating obliqu
plane!. In another work@182# the same authors use an au
mented Lagrangian approach to solve the same prob
with a linearized friction cone. The numerical predictions
well with experiments.

In most of these schemes, the integration of the conti
ous dynamics is done with a RK scheme. The existence
solutions of the obtained LCPs~Painlevéparadoxes!is dis-
cussed but not treated. Some of these results have
implemented in a commercial software@191,192#.

6.7.2 Modified Moreau’s scheme
The algorithms presented in@4# and @5# may be seen as a
adaptation of Moreau’s schemes~in particular the Gauss
Seidel method to solve the multi-contact problem with fr
tion!. They provide the user with the event occurences
the contact forces values, which are of primary importan
for engineers doing virtual prototyping. Due to these ind
trial constraints, an event-driven force-acceleration formu
tion is more suitable than a time stepping velocity-impu
one. Also low-order algorithms~Euler! may not be very ac-
curate when applied to systems with sparse events, a d
back that is well-known for free-motion systems@26#. The
algorithms have been thoroughly tested on the comp
Schneider Electric circuit breakers~low and average tension
and have proved to supply the design engineers with m
more reliable results than the available penalty-based s
wares, see Section 9. In particular, a significant advantag
that a change of topology in the mechanisms does not ne
sitate a re-estimation of the contact parameters as it is
case when spring-dashpot contact models are used.

6.7.3 Baraff ’s algorithms
Baraff, motivated by problems in computer graphics and a
mation, essentially focused on the calculation of cont
forces and development of specific methods to increase
speed of calculation and the resolution of LCPs or NC
Many different aspects of rigid body simulations are d
cussed in@179#, like Painleve´ paradoxes, the formulation o
friction in 3 dimensions, as well as quite interesting dev
opments on Lemke’s algorithm. Lemke’s algorithm is used
the early works, but Baraff developed a Dantzig algorithm
@185#, See Section 6.6.

6.7.4 Other schemes
The works in @64#, @162#, @163#, @168–172#, @191#, and
@193–198#essentially focus on the dynamics formulatio
~Section 2.1!, the collision detection~Section 6.5!, the im-
pact rule. The type of integrator that is used for the conti
ous phases of motion is generally not provided~except
@169,196#RK 4, @162# DADS 2D, @198# Newmark!. The
problems raised in Sections 3.1, 3.2, and 3.3 are usually
nored, except@171#and@193#who analyze multiple impacts
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It is for instance not clear how the capture and finite ac
mulations of impact timestk are treated numerically. An ex
tension of DASSL~called DASSLRT!has been used in@199#
to simulate several discontinuous phenomena that affect
bot motion. Basically these authors consider that the dyn
ics in Eq.~2! is a time concatenation of DAEs~no mention is
made of inequality constraints and related notions!. A root
finding algorithm is used to compute transition instan
DASSLRT and the ADAMS routine supplied in SIMULINK
with a coordinate reduction, see Section 2.2—are compa
on an example~a double pendulum with a singular configu
ration, ie,¹fb(q) in Eq. ~2! is not full column rank!. Other
routines failed. DASSLRT seems to be quite fast,O(0.1 s),
while ADAMS took 20 min, due to the singular configura
tion, in the neighborhood of which acceleration diverge9.
No numerical result incorporating detachment and collisio
is presented. The specific multiple contacts modelling pr
lems and complementarity conditions are almost totally
nored in most of these studies. The study in@151–153#may
be a first step towards a better understanding of intercon
tions between the integrators of ODEs or DAEs and imp
detection algorithms, despite it is limited to a very simp
one degree-of-freedom system~with however possible finite
accumulations of impacts!.

7 TIME-STEPPING ALGORITHMS

We have described above some various~and classical!man-
ners to discretize DAEs and ODEs. The question one m
ask to oneself is: how does the addition of complementa
conditions and state re-initialization modify the properties
such schemes? In other words, many schemes are know
be consistent~ie, the discrete piecewise constant soluti
converges—in a certain sense—towards the solution of
real dynamics!. As we shall see further, many time-stepp
schemes, though not all, consist of discretizing simu
neously the continuous dynamics and the complementa
conditions, consequently forming a LCP or a NCP to
solved at each step. The simulation is then easily advance
time by solving the LCP, using the available solvers, s
Section 6.6. Additionally, state re-initializations are need
The interest of time-stepping methods over event-driv
ones, is that they aim at providing a difference-equation
proach to the simulation problem, which is suitable for co
vergence proofs. This may be quite important in case th
are many impacts, because it remains to be shown that ev
driven schemes are robust with respect to the accumula
of initialization errors~after each impact!. This fact com
bined with the problem of sensitivity with respect to initi
data, may render their use quite delicate.

Actually the methods presented in this section all belo
to the time-stepping schemes family. But as we shall expl

9Notice that this is an artifact. Indeed consider Eq.~35!. Clearly, if one tries to compute
the multiplier using this formula, difficulties arise whenever the inverted matrix lo
its rank. However, as shown in@43# and@71#, if ¹fPRn3m has full column rank, then
the multiplier vector and the acceleration are unique. If the matrix loses its colu
rank, then the acceleration remains unique, but not the multiplier vector. Loss of
umn rank may occur because of hyperstatism or at a singular configuration. Sp
techniques can be developed to cope with this problem@4,7#. Some authors@83# rec-
ommend to avoid inverting matrices of the typeWTM 21W.
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there are significant discrepancies between the sche
within this family. For instance, the ones in Section 7.2 a
Section 7.3 do not explicitly require the calculation of t
contact forces, contrary to the ones in Sections 7.4 and
Moreover the schemes in Section 7.2 and Sections 7.3,
do not rely on an accurate determination of the shock
stants: they work with constanth. These schemes are, ther
fore, true difference equations of the MDI in Eq.~2!, with
however, possible iterations within a step due to their i
plicit form. The schemes in Section 7.4 work withh con-
stant, but the shock equations~in some of them!are treated
apart when a velocity reinitialization is needed. The schem
in Section 7.1 are based on an accurate calculation of
times of contact with a linear interpolation, similarly t
event-driven algorithms. The algorithms in Section 7.2 a
Section 7.4 are of the velocity-impulse form. This has so
consequences on the integration when friction is present,
Section 8.1.

7.1 Lötstedt’s algorithms

In @27#, Lötstedt introduced time-discretization procedur
at the acceleration/force level. We choose to classify th
algorithms into the time-stepping section, because Lo¨tstedt
explicitly discretized the dynamics and the complementa
conditions~on the velocity!to form a LCP or a NCP whose
unknown is the multiplierl i at each stepi . However the
discontinuity instants~on the velocity—when there is
shock— and the acceleration—when there is a transition
tween stick and slip phases—!are computed by an invers
linear interpolation, similarly to an event-driven algorithm
The detection of these instants is made by monitoring
impulse~considered to be zero under a certain threshold a
Section 6.4!. Lo¨tstedt’s work can with no doubt be consid
ered as an important pioneering work in the field of tim
discretization of nonsmooth mechanical systems.

7.1.1 The frictionless case
Let us consider first the frictionless case. The following n
merical scheme is proposed to compute the state at stepi :

5
qi5

1

a0
1 bi

1

q̇i5
1

a0
2 @hb0

2M 21~Qi1¹f il i !1bi
2#

¹f i
Tq̇i>0, l i>0, l i

T¹f i
Tq̇i50

(49)

where

bi
15h(

k50

r

bk
1q̇i 2k2 (

k51

r

ak
1qi 2k

(50)

bi
25h(

k51

r

bk
2M 21~Qi 2k1¹f i 2kl i 2k!2 (

k51

r

ak
2q̇i 2k .

Clearly, the complementarity relations in Eq.~49! correspond
to the active constraints at stepi , see Section 3.1. They en
compass the persistent contact as well as plastic imp
phases. The formulas in Eqs.~49! and~50! correspond to two
linear r -step methods@25# Section VII.3.¹f i5¹f(qi) and
24
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f i5f(qi). The coefficientsak
1 andbk

1 are determined from
an Adams-Bashforth family of explicit formulas~@26#, page
250!, denoted as AB-r , b0

251, bk
250 for all k51,2,¯ ,r .

The second equation in~49! is a backward difference for
mula, denoted BDF-r . Notice that the mass matrixM is
assumed to be constant~hence the Coriolis and centrifuga
torques are zero!, which restricts the application to sim
mechanical systems with Euclidean configuration space~like
collections of particles!. It is however argued that this is ju
a matter of convenience to allow for an easy factorization
M , and that the extension towardsM (q) is possible~@27#,
Section 6!. The torqueQi5Q(qi ,q̇i ,t i) therefore contains
gravity, viscous friction, and external actions~like control
inputs!. The integration step is chosen constant, equal toh.

WhenQ5Q(t,q), it is shown in@27# that a LCP whose
unknown isl i can be formulated from~49!. As we already
pointed out, this LCP can be rephrased as a quadratic
gram:

min
l i>0

1

2
l i

T¹f i
TM 21¹f il i1h21l i

T¹f i
T@bi

21hM21Qi #.

(51)

Consequently, the set of equations in~49! allows one to ad-
vance the solution in time fromi 21 to i . The methods AB-1
~forward Euler!-BDF-1 and AB-2-BDF-2 are chosen in@27#,
where it is recalled that it is useless to use methods of o
>3 ~linear multistep A-stable methods have an accuracy
order <2, ie, at mostO(h2) @26# pages 250–251!. After
discontinuities inq̇i or q̈i ~which are detected from the valu
of the impulse on one step-with a threshold under which i
considered to be zero!, the AB-1-BDF-1 algorithm is us
during two steps to restart the simulation~it is known that
multistep methods are not self-starting and require the h
of a single-step algorithm initially!.

When Q5Q(q,q̇,t), then the LCP formulation is lost
However Lötstedt proves that provided the matrix

A~ q̇!5M2
h

a0
2

]Q

]q̇
~q,q̇,t ! (52)

is full rank and¹f i
TA21¹f i is positive definite, then~49!

still possesses a unique solution so that the algorithm ca
used to safely advance the solution in time. However t
time l i is generally the solution of a NCP~a quick look at
the second equation in~49! allows one to realize this!. The
condition in~52! can be used with the implicit function theo
rem to expressq̇i5gi(l i) for some functiongi(•). The sec-
ond condition is used to prove the existence of a solution
the NCP. A way to solve the NCP is proposed, based
functional iteration. Certainly this could be improved usin
new tools, see Sections 3.1 and 6.6. In summary, Lo¨tstedt’s
algorithm is given as follows@27#:
• Computeqi using AB-1 or AB-2, withh such that the local

error in qi is smaller thanhe for a prescribed tolerancee
~ways to estimate such ah are given in@27#!.

• Calculate¹f i to a prescribed accuracy and calculateq̈i

5M 21(Qi1¹f i) and q̇i by BDF-1 or BDF-2.
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• Test whether velocities and accelerations are discontinu
betweent i 21 and t i , either due to an impact~detected
from a nonzero value of the impulse!or to the activation of
a new constraint (fk(t i 21).0 andfk(t i)<0 for somek!,
or to the deactivation of a constraint. The time of su
jumps is calculated by inverse linear interpolation. Afte
shock a new velocityq̇i 11 is computed by a collision rule
~the rule in Eq.~12! is used!. Then restart the algorithm
the first step with AB-1 and the new set of active co
straints.

• Test the detachment conditions by checking whether
entry of the vectorl i passes through zero, and whether t
corresponding entry in the normal velocity¹f i

Tq̇i is posi-
tive. Then refresh the set of inactive constraints if need

• End.

Remark 7:
• The algorithm is based on velocity constraints to redu

the index and form an LCP. The drawback is evidently
possible drift away from]K during permanent contac
phases~DAE simulation!. The stabilization on the con
straints]K during permanent contact phases needs spe
attention@22,66#, see Section 5.

• Lötstedt also shows that the LCP(l i) can be reformulated
as the minimization problem

min i(
k50

r

ak
2q̇i2k2hM21QiiM , ¹fi

Tq̇i>0. (53)

• The velocity can be calculated directly from Eq.~53!.
However it is argued in@27# that it is better to compute th
multiplier and then insert it in the dynamics because t
simplifies the initialization of the algorithm~a feasiblel0

is easy to find!, the QP in Eq.~51! is a particular case o
the QP constructed for the case with friction~see below
with comments!, and it may be interesting to know t
value ofl i explicitly, sincel i can be used as a measure
force. This is of interest for control design of real-wor
systems@21#.

• Dissipativity of Eqs.~49!, ~50!, and~51! plus the impact
rule and convergence of the algorithm are not proved.

7.1.2 Constraints with 2D friction
As recalled briefly in the introduction and Section 8, t
dynamics in Eq.~2! is much more complicated when frictio
is considered. Friction may create some unexpected phen
ena @18,96,200,201#as the divergence of the contact for
~but with bounded impulses!or so-calledImpacts without
Collisions. These phenomena are not to be considere
artefacts due to the model deficiencies. Although theydisap-
pearwhen rigidity is relaxed, or when the Coulomb model
replaced by some regularized law, they really repres
physical phenomena which occur in real systems. More c
ments are given in Section 8. Since Lo¨tstedt’s algorithms are
acceleration/force schemes, these phenomena shoul
taken into account. Lo¨tstedt was perfectly aware of suc
problems@202#, and therefore, proposed a particular num
cal procedure to avoid them.

The same algorithms AB-1-BDF-1 or AB-2-BDF-2 a
used as in the frictionless case. When 2D friction is incor
25
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rated in the algorithm, one has to add the tangential con
bution of the contact force in the right-hand-side of the s
ond equation in~49!. The contact force is split into two part
see Section 3.3:¹fl1P(q,q̇,l)5@G1(q)1H(q,q̇)#l1 .
RoughlyG1(q)l1 contains the normal generalized force a
the contribution of the sticking contacts, whereasH(q,q̇)l1

accounts for the sliding contacts. The vectorl1 contains the
normal multipliers ln, j and the tangential onesl t, j

56 f ln, j for the j th contact. There are two features in th
algorithm proposed in@27#. The first one is the approxima
tion of l1,i , the second one is the calculation of the impuls
at the shock instants. Let us denote thej th component ofl1

by l1
j and its i th iteration byl1,i

j . Then the approximated
value is l̄1,i

j 5l1,i21
j 1 hi(l1,i21

j 2l1,i22
j )/hi 21 , for a vari-

able step of integrationhi . A QP is constructed that allow
the computation of the termG1(q)l1 . As noted in@185#
~Section 9.2.1!, it possesses the advantage of assuring
the tangential force is opposite the tangential accelerat
But it has the strong drawback that sliding generally impl
the QP matrix to be non-symmetric, rendering the probl
harder to solve. It is clear that the introduction ofl̄1,i

j in the
dynamical equations modifies the subsequent calculation
a non-physical manner right after the first step10, and should
be avoided. Special procedures are also used after a s
and a discontinuity in the acceleration. The error introduc
in q̇i by the use ofl̄1,i

j in a permanent contact phase a
shown to beO(h3) whenhi5h, a constant. They areO(h)
after a reinitialization of the velocity or of the acceleration

The second point~calculation of the impulse at a shoc
instant!, is formulated as follows. Taking frictional effects
impacts into account, let us denote the right-hand-side of
~3! as Pk5G(q)Lk , whereLk is a vector of normal and
tangential percussions. Then Lo¨tstedt proposes to calculat
the impulse from the QP in Eq.~17!. The dual version of this
QP is:

min
1

2
@ q̇~ tk

1!2q̇~ tk
2!#TM @ q̇~ tk

1!2q̇~ tk
2!#

WTv5GTq̇~ tk
1!, v>0, vTWLk5Lk

TGTq̇~ tk
1!50

W5S I 0

f impI 2I

f impI I
D (54)

where I is the identity matrix with dimension equal to th
number of active constraints, andf imp can be considered a
an impulse ratio@93#. The main problem with the calculatio
in Eq. ~54! is that although it looks like the plastic impac
rule Eq. ~12!, it is not like ~12!: there may be rebounds. I
addition, if there is a tangential velocity reversal during t
shock~ie, the post and pre-impact tangential velocities ha
opposite signs!, then there may be a kinetic energy gai
the shock instant~this phenomenon is well-known in th
literature, see eg,@18,93#!.

10Indeed the state at step 2 is calculated withl̄1
j , so the nextl1

j is calculated from
wrong positions and velocities.
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Remark 8:
• Lötstedt discusses the issue of Section 6.5 for collecti

of polyhedral objects. He points out the need for a sel
tion procedure for the collision detection, but does not p
vide many details on this part of his algorithm.

• The algorithm in@164# is close in spirit to Lo¨tstedt’s one
~time-stepping with accurate detection of contacti
times!. It uses a trapezoidal discretization of the conti
ous frictionless dynamics~implicit one-step scheme
solved by a Newton method with an initial guess from
Euler’s discretization!, and an adaptive step size proc
dure. Several simple examples show thath may decrease
to very small values as 10212 s during the simulation.
Lemke’s algorithm is used to solve the contact force L
and the impact percussion LCP~see Eqs.~11! and ~12!!.

7.2 Discretization of Moreau’s sweeping process

7.2.1 Frictionless sweeping process
We describe in this section and the next one the tim
discretization of the general MDI presented in Sections 3
and 3.4.2. It has been named theNonSmooth Contact Dy
namics ~NSCD! method by Moreau and Jean, and can
considered as one of the results of the research led
Moreau in Montpellier on Convex Analysis and Nonsmoo
systems since the early 60s~see eg,@70,95,104,203,204#!
The presented methods constitute the first attempt@28# of
time-discretization of MDIs as in~22!, ie, simulation of
multibody systems without regularization of either the n
mal or the tangential friction laws of contact/impact. T
Contact Dynamics method provides a very general and p
erful framework for the simulation of various nonsmoo
mechanisms, including granular matter@12,78,205#, build-
ings made of blocks and monuments@13#, deep drawing pro-
cess @94,206,207#, robotic systems@208# and kinematic
chains@5#. It so happens that the time-discretization of t
MDI in Eq. ~22! yields an intrinsic implicit formulation. But
it can be transformed into an explicit scheme using ba
convex analysis@101,209#. We first concentrate on the d
cretization of~22!, then we indicate how friction is treate
and finally we focus on the general NSCD method. Follo
ing @28,96#choose in Eq.~22! at stepi :

¦

tm,i5t i1
1
2h

qm,i5qi1
1
2hv i

Mm,i5M ~qm,i !

Qm,i5Q~ tm,i ,qm,i ,v i !

v l ,i5v i1hMm,i
21Qm,i

2Mm,i~v i 112v l ,i !P]cV(qm,i )
~v i 11!

qi 115qm,i1
1
2hv i 11

(55)

whereh is the integration step~that might be varying from
one step to the next!. One sees that the computation o
values at stepi 11 depend on intermediate calculations at t
midpoint tm,i . The midpoint velocityv l ,i is equal to the ap-
proximated velocity that the system would have at stei
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11, if there was no collision on (t i ,t i 11). This is easily seen
from the equivalence between the inclusion in Eq.~55! and

v i 115proxMm,i
@V~qm,i !,v l ,i # (56)

where prox means the proximation operation in the kine
metric ~with an underlying projection in the same metric!.
The tangent coneV(q(t i)) is defined also outside the admi
sible domainK in order to cope with possible violation o
the constraints in the course of the simulation, see Eq.~18!.
Indeed if there is a contact event betweeni and i 11, which
is detected by checking the negative sign off(qm,i), one
uses Eq.~56! to computev i 11 . This is a quadratic program
in the kinetic metricMm,i . The reader may recognize aga
that the formulation in the last line of Eq.~55! encompasses
the whole dynamics~continuous motion and shocks!. Th
discrete-time inclusion is a discretization of the MDI in E
~22! with dv.v i 112v l ,i , v(t1).v i 11 and v l ,i can be in-
terpreted as a left-velocity att i 11 .

The general case 0<e<1 can also be handled, as w
observed in Section 3.4.1@35,96#. Letu5 v(t1)1ev(t2)/1
1e in Eq. ~22! ~with v(t1) in the right-hand-side of~22!
also replaced byu, see also Remark 4!. Then Eq.~22! can be
discretized as follows@35#:

h

11e
Q~ t i 11 ,qi 11 ,v i 11!2M ~qi 11!

v i 112v i

11e

P]cV(qi 11)S v i 111ev i

11e D (57)

which is clearly an implicit formulation but is equivalent to

v i 111ev i

11e
5proxS V~qi 11!,v i

1
h

11e
Q~ t i 11 ,qi 11 ,v i 11! D . (58)

One notes that there are some differences between Eqs.~57!,
~58!, and~55!. This last formulation is used in@32# and@35#
for the study of convergence of the algorithm. This indica
that mathematical convergence proofs and real impleme
tion of an algorithm may lead to different discretization
Equation~58! is an explicit form as long asQ5Q(t,q) and
provided one choosesqi 115qi1hv i . Indeed in this case
introducing qi 11 inside the left hand side of Eq.~58! one
gets a direct way to calculatev i 11 by a proximation tool~ie
a quadratic programming approach!.

Remark 9:
• Convergence: Proofs of convergence of the discreti

Moreau’s sweeping process can be found in@32#, using a
discretization as in Eq.~57! ande50. The scheme in Eqs
~57! and ~58! is proved to converge globally for 0<e<1
in @35# using techniques inspired from@32#, with ]K
PC1,b, b. 1

2 and codimension one constraints (m51).
• Impact calculation: The usefulness of the midpoint calc

lation in Eq. ~55! lies for instance in the fact that, as on
easily calculates,qi 115qi1

1
2h(v i1v i 11). Contact is de-

tected if f(qm,i),0, while f(qi).0. In the case of an
elastic collision ~think for instance of the simple one
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degree-of-freedom bouncing ball!, one getsv i 1152v i ,
since the velocity is simply reversed as can be chec
from Eqs.~55! and ~56!: one has prox@R1,v i1 h/2g#50
for h small enough sincev i,0 at a shock instant; modify
~56! in the same lines as Eq.~58! to get the result. Thus
qi 115qi , hence the ball rebounds exactly~at the machine
accuracy!to the same height, whatever the length of t
simulation. This is also pointed out in@91# who discusses
symplectic integrators and energy conservation proble
on the bouncing ball example. As we shall see so
schemes do not possess this property, and may yield e
getical inconsistencies. One sees that in the time-step
scheme in Eqs.~55!–~56!, v i ,l plays the role of the pre
impact velocity, whilev i 11 plays the role of the post
impact velocity. This is on contrast with some event-driv
schemes, where the impact rule is applied at stepi . The
midpoint Euler scheme is further justified in@28# ~Section
6!, by the fact that it assures a much more accurate e
mate ofqi than a Euler algorithm. This fact combined wi
the need of jumps detection led Moreau to choose a
cretization as in Eq.~55!. Notice that~55! is a one-step
method, but is not a second-order explicit RK~@26#, page
247!. Further sophistications of the algorithm are presen
below.

• Constraint drift: When there is only one contact that
made, the proximation in Eq.~56! is equivalent to
¹fm,i

T v i 1150. This will generally result in a bad stabili
zation of the constraints during persistent contact pha
The approximation of the tangent coneV(qm,i) can be re-
placed byV(qi1hv i). This may help in satisfying the con
straint better@96#. In addition if the constraints are no
respected, then Moreau@28# proposes to use a projectio
of qi 11 , denoted asqi 11

c , onto ]K, computed in the ki-
netic metric as:

qi11
c 5qi112f~qi11!~¹fM21¹fT!M21¹f (59)

where the last term is evaluated atqi 11 .
• Transition phases and capture:As we explain in theIm-

pact rules paragraph of Section 7.4, the transition betwe
free-motion and persistent-contact phases—ie, the prob
of capture—,via a shock or a sequence of shocks, is a
tomatically treated by the algorithm in Eqs.~55! and ~56!
or ~57! and ~58!. This feature is actually shared by oth
time-stepping schemes as the ones in Section 7.3, and
stitute a serious advantage of time stepped algorith
~which are a truly difference equation approach to simu
tion, contrary to event-driven schemes which are in a se
closer to the continuous-time description for impact det
tion and collision effects!. Note however that in event
driven schemes contact/rebound happens at one time
stancet i , whereas with time-stepping schemes there
always at least a time-delayh between contact and releas
Incidentally, notice that replacing the left-hand-side in E
~56! by v i 111ev i /11e does not change much the captu
problem oncev i'0. Here again one sees thatv i 11 plays
the role ofv(t1) whereasv i plays the role ofv(t2) when
an impact is detected attm,i .
• Actually as shown by Moreau@100,101#the first-order
27
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sweeping process formulation2dv/dt P]cC(t)(v(t))
with C(t) a moving convex set, cannot be discretized v
any Euler explicit scheme of the formv i2v i 11

P]cC(t i )
(v i) since this is equivalent to v i

5prox(C(t i),v i 11) which is nonsense. On the othe
hand,v i2v i 11P]cC(t i 11)(v i 11) makes sense since th

is equivalent tov i 115prox(C(t i 11),v i) which provides
an explicit way to calculatev i 11 . One notices that the
integration step does not appear in these expressi
this is due to the fact that since the right hand side i
cone, multiplying it by any positive constant does n
change the inclusion. In the second-order sweeping p
cess formulation,h appears explicitly at the velocity
level, see Eq.~57!.

7.2.2 Constraints with Coulomb friction
At each contactA ( j ) the Coulomb friction law is formulated
as @94,104#:

Ft,i 11
( j ) PD i 11

( j ) , ;sPD i 11
( j ) , @s2Ft,i 11

( j ) #TVt,i 11
( j ) >0 (60)

where the notations are the same as in Section 3.4.2. In
ticular, D i

( j )5D( f uNi
( j )u) has an obvious meaning from th

definition of D. The discrete form in Eq.~60! is equivalent

to Ft,i 11
( j ) 5arg maxzPD

i 11
( j ) (2zTVt,i 11

( j ) ), and to Fi 11
( j )

5arg maxzPC
i 11
( j ) (2zTVi 11

( j ) ). In the 2D case, Eq.~60! exactly

represents the Coulomb graph betweenVt,i
( j ) andFt,i

( j )/Ni
( j ) . In

the 3D case, one recovers a friction cone.
The Gauss-Seidel method@78,101#roughly consists of the

following Signorini Coulomb loop@94#. Suppose that for
contactl at stepi the dataFt,i

( j ) , Ni
( j ) , Vt,i

( j ) , Vn,i
( j ) are known

for all j . l from the previous iteration, and from the curre
iteration for all j , l . Then compute the status of contactl by
solving the Signorini Coulomb conditions~which monitor
the transitions atA( l ): sticking/sliding/detachment!. Iterate
until the last contact. Then apply a convergence test,
may be on the contact forces, ie,uFi

k112Fi
ku/uFi

ku <e, where
k is the index of the iteration of the Signorini Coulomb loo
at stepi , or on the distance to the Signorini graph. If it is n
satisfied redo the calculations for all contacts. One may a
choose to stop arbitrarily after a certain number of iteratio
since in some practical cases convergence is not at all g
anteed and the algorithm could stuck at one step. The
that the contacts are treated independently one after e
other, guarantees at least that Coulomb friction law is sa
fied by Vt,i 11

( j ) and Ft,i 11
( j ) at each contact at the end of th

iteration process. This is not necessarily the case for o
formulations, see Section 7.4. Such a cyclic procedure
similar to a nonlinear block Gauss Seidel algorithm~which is
for instance used to solve QPs@5#!. Some convergence re
sults can be found in@113#.

Remark 10:
• The dynamics is written from the Lagrange equations a

~2! whereas the dry friction law involves local quan
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tities at the contact pointsAj as in~60!. Consequently one
has to calculate the JacobiansJ( j )(q) to relate both~see
Section 3.4.2!. It is argued in@94# that J( j )(q) may be
evaluated at various intermediate values ofq, eg, qi , or
qi1 h/2q̇i , or even a value obtained from an iteration pr
cess to approximateqi 11 ~in case of an implicit formula-
tion of the dynamics one needs to implement a Newt
Raphson like algorithm to computeqi 11 and q̇i 11 at step
i !. This is however related to the curvature of the conta
ing surfaces, which regulates the change in¹f from i to
i 11.

• A discretization of the sweeping process with friction th
generalizes that in@32# is proposed in@210#, form.1. The
inclusion ~23! is merely written at each contact point.

• The sweeping process~second order!discretization does
not resort to any calculation of the acceleration and
contact forces. Only velocities~and implicitly the contact
impulses!are calculated at each time step. This allows o
to avoid the problems related to Painleve´’s paradoxes
when friction is present~see Sections 7.2.2 and 8.1!, ie, t
computation of unbounded contact forces~for certain fric-
tion coefficients and configurations of the system!. Indeed
as shown in@200,201#on a simple example, the force im
pulse remains bounded when the orbit crosses so-ca
critical points. The so-calledimpacts without collisions, or
tangential impacts~which are of a different nature from
the contact force unboundedness problem! are handled via
the principle of maximal dissipation: at each time step,
tangential impulse is calculated so that it maximizes
dissipated frictional energy.

7.2.3 Simulation results
Extensive numerical tests have been performed by Mor
on granular matter@78,205#. Simulation of granular matte
~sand piles, planetary rings!is a difficult subject, essentially
due to the very large number of degrees of freedom. It is a
difficult to make experiments and to compare them w
simulations~try to follow the motion of a sand grain in
sand pile!!. Only macroscopic phenomena may be chec
~resulting pressures, average stress tensors, distributio
reaction forces!, and may be expected to be robust with
spect to numerics@94#. It is even difficult to make numerica
simulations, and compliant models may simply be imp
sible to use, see Section 4.2. On the other hand, this is a t
with major applications in industry and in theoretical phy
ics. In @78#, a 2D vertically shaken cylindrical vessel is sim
lated. It contains 3999 beads with diameter 0.2 cm and
bead with diameter 0.5 cm~ie, n54000 in ~2!!!. In @205#,
another test is made with 2000 beads with diameter 0.2
and 200 beads with diameter 0.02 cm. A 3-parameter imp
law is chosen (en , et , f !, whereet is a tangential restitution
coefficient@93#. The numerical integration allows one to te
the influence of the physical parameters on the global beh
ior, and to verify if some phenomena like clusterization, fl
idization, bulk segregation, convection effects, occur and
der which conditions.

Remark 11:
The dynamical effects can be quite important in the ove
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motion even for almost static systems, because they pe
to simulate possibly sparse events that have a crucial in
ence on the final configuration.

7.2.4 Related algorithms

NSCD methods: The work in @116#, that is part of the
NSCD method, is dedicated to the simulation of a continuo
medium, approximated by a mesh of nodes. This is called
distinct elements method, in order not to confuse with the
classical Finite Element Method~FEM!. The nodes collide
with the obstacle while the whole structure deforms. T
inertia matrix is constant. Various discretization procedu
based onu- andu-Euler methods are compared. Let us rec
that the u-method yields * t i

t i 11f (t)dt'h@u f (t i 11)1(1

2u) f (t i)#. The u-Euler method consists of discretizing th
Lagrange equation in~2! by au-method, and the position by
a Euler method. A modifiedu-method is also tested whic
consists of using au-method, then replacingqi 11 by qi 11

1h(12u)q̇i 11 in the contact relations. In particular the in
fluence of the discretization of the complementarity con
tions ~second line in Eq.~2!! is discussed in@116#. The term
f ( j )(q(t)), which represents the local distance between n
j and the constraint, is discretized at each node as~see Re-
mark 12!:

f i 11
( j ) 5f i

( j )1hu@¹f i 11
( j ) #Tq̇i 111h~12u!

3@¹f i
( j )#Tq̇i , ~u-method!

f i 11
( j ) 5f i

( j )1h@¹f i 11
( j ) #Tq̇i 11 ,

~u-Euler and modifiedu-methods!. (61)

The reader will see that contrary to Eqs.~49!, ~50!, and~69!,
~70! which base on the analytical form of@¹f ( j )(q)#Tq̇ and
on the calculation of this expression usingqi or qi 11 and
q̇i 11 or q̇i , the expressions in Eq.~61! are a time-
discretization off ( j )(t). As shown in@155# this may have
important consequences on the numerical results~eg, con-
cerning the calculation of Lyapunov exponents!. For theu
andu-Euler methods, the complementarity conditions are
node j : f i 11

( j ) >0, Ni 11
( j ) >0, f i 11

( j ) Ni 11
( j ) 50. For the modified

u-method, they are formulated withf̄ i 11
( j ) 5f i 11

( j ) 1h(1
2u)ḟ i 11

( j ) . It is noted that for theu-method,f i
( j )50 does

not imply that@¹f i 11
( j ) #Tq̇i 1150, but this is the case for the

u-Euler and modifiedu methods. In@94#, it is pointed out
that the position complementarity conditions withf̄ i 11

( j ) are
not recommended for large collections of bodies~like granu-
lar matter withn>1000!, because the correcting impulse th
is calculated after a penetration to send back the system
Int(K) may be a non-negligible numerical artifact. Then
velocity complementarity formulation is preferable.

Remark 12: The idea ofconsistency of the gap approx
mation with unilateral conditionis introduced in@94#. It
means thatf̄ i

( j )50 andf̄ i 11
( j ) 50⇒(¹f i 11

( j ) )Tq̇i 1150 is sat-
isfied. For instance if one chooses simplyf̄5f, this consis-
tency is satisfied only whenu51. Other choices are possibl
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as the ones above. When this consistency property is
satisfied, some artificial numerical oscillations may app
@116#. The choice of the gap approximation is not importa
provided it has the consistency property.

For the 2D case, dry friction is transformed in@116# via
velocity slack variables into a set of two complementar
relations per contact, see Eq.~14!. Then the whole stuff is
assembled as for the time-stepping schemes in Section 7~a
technique already used in@114#!. Lemke’s algorithm is used
to solve the LCP in@116#. Inelastic impacts with friction are
treated in@94# by combining the resolution of complement
rity conditions between the normal quantitiesf̄ i

( j )/h 1Vn,i
( j )

andNi 11
( j ) , and the resolution of Eq.~60!. In a compact form,

they might be written as SignCoul(i ,Vi 11
( j ) ,Fi 11

( j ) ). Using the
second formulation in Eq.~21! it may be shown that the
mapping (V,F)°SignCoul(i ,V,F) is piecewise affine in
2D, and continuous raywise in 3D.

Simulation results: Due to its implicit formulation and
the Signorini Coulomb loop, the NSCD method consists
two nested iteration loops at each time stepi @94#. Although
large integration steps can be used, it is therefore time c
suming, which renders its use for real-time applications l
easy. The numerical results obtained by the three discre
tion methods above, are compared to the exact solution in
case of the impact of two identical elastic bars moving o
line. They are further compared to a Newmark method w
g50.5 andb50.25 ~these values are the smallest ones t
guaranteeA-stability @26# Ch 7.1.5!. The Newmark and
u-method withu50.5 generate oscillations during the co
tact phase. Takingu50.55 damps out the oscillations~in-
creasingu renders the algorithmmore implicit, and it is
known @94# that implicit schemes behave nicely when a
plied to nonsmooth problems, although their implementat
is more complex!. The transition contact-non contact is
slow with theu-Euler method. So the modifiedu-method is
the best one for this 1D case. For more complex case stu
theu-Euler method is said to be a good compromise betw
the u-method ~too smooth velocity! and the modified
u-method ~oscillations!. A 2D example from@211# ~a disc
colliding a rigid ground!is simulated with theu-method (u
50.55). The mesh has 99 nodes. The oscillations obta
with a Newmark scheme and an impact detection proced
as in @211#, and which cannot be explained by acous
waves propagation, are damped out. Evidently in these c
only a comparison with experimental results would really
telling ~although the validation of a code cannot be made
comparison with experimental results@115#, but by compar-
ing various numerical schemes tested on benchmarks, o
comparing the discrete solution with the analytical one
simple cases!. In @13#, buildings made of blocks are sim
lated ~an arch under various loads!. Each block is appro
mated as in Fig. 3. Comparisons with experimental res
with wood blocks led in the Ecole Supe´rieure de Me´canique
de Marseille~F! are encouraging. It is important in this se
ting to recall that Coulomb friction is the main effect th
precludes the existence of a unique equilibrium point~de-
spite its dissipativity, see@18# pages 207-208!, so that th
obtained state depends on the history of loading. Phys
29
not
ar
t,

ity

.4

-

of

on-
ss

iza-
the
a

ith
at

-

p-
ion
oo

dies
en

ned
ure
tic
ses

be
by

r by
in
u-

xi-
lts

t-
t

e
ical

situations are like this. The simulation of a Couette granu
flow with 2400, 4000 and 16000 polydisperse disks can
found in @94#. An implicit Euler scheme has been used~u
51 in Eq.~61!!. The NSCD method seems to be particula
suitable for granular matter simulation and has been a
used to study stress transmission and granular pressure@12#.
Different quasistatic examples are presented in@115#: a dove-
tail assembly~4345 nodes, 49 contact nodes!, a block sliding
on a plane~4193 nodes, 65 contact nodes!, and a press
vessel~674 nodes, 54 contact nodes!, a high presssure screw
press~11933 nodes, 250 contact nodes!, the extrusion of
aluminum cylinder~105 nodes, 21 contact nodes!. Empha
is put on the efficiency of various LCP solvers in terms
CPU times. Some preliminary results have been obtained
kinematic chains@208#. However such systems differ a lo
from granular matter and distinct element systems, so
other algorithms~more accurate, with explicit contact force
and events calculation!may be preferred, see Section 6.7
The Contact Dynamics method has been implemented
software called Simem3@206#.

3-parameter impact law: A numerical scheme inspired
from @78# and @96# has been proposed in@212#. It applies to
a 2D rigid body hitting a wall. Its focus is on the proper u
of LCPs for impacts with friction and tangential restitutio
so that 3 parameters are used~the 3-parameter impact law
( f ,en ,et) is one of the most used in the literature@18# for
impacts of spheres!. A contact with Coulomb friction
treated with two LCPs, see Eq.~14!. The LCPs are solved b
a pivot algorithm. Experimental results of a rubber b
thrown in a box with wooden walls and steel plate are
ported. The real motion of the ball between two impacts
recorded by a high-speed camera. The coefficientsf anden

were measured off-line andet fitted afterwards to get a goo
matching between experiments and simulations. The ch
en5et ~which assures some energetical consistency@7,84#!is
made in most experiments, althoughet is sometimes varied
to get a better result. Further comparisons are made w
experimental results available in the literature. The conc
sions are mitigated and it is pointed out that a more comp
impact model including moment impulse@93# could improve
the results. The work is extended to 3D problems in@213#,
relying on an impact rule proposed by Moreau@78#.
Roughly, it uses a variational formulation of this impact ru
and of Coulomb friction~similar to the variational inequality
in ~21! and to~60!! to express the dynamics as a nondiffe
entiable equation, inspired by the works for quasi-static fr
tional contact in @214#. The problem is solved using
Newton-type algorithm specially devised for such nondiffe
entiable equations@215#. We note that such a procedure
formulate the complementarity relations from Eq.~21! is
quite similar to what is used in@92,182#for the acceleration
calculation. Similar experiments as in@212# are made and
compared to the numerical results, showing good agreem
whenet5en .
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7.3 Discretized second-order MDI

A numerical scheme especially suited to the second-o
formulation presented in Section 3.4.3 is proposed by P
and Schatzman in@54-56,216,217#.

7.3.1 Description of the scheme
The scheme is written in terms of positions only. So t
relevant local metric is defined locally by the mass matrix
the system. Let us use the same notations as in Section 3
If we assume that]K andq°M (q) are smooth~the second
property being satisfied in most cases!, it is possible to de
locally a projection onK relatively to the Riemannian metri
defined byM (q).

Let F be a continuous function, consistent withQ, ie,

F~ t,q,q,v,0!5M 21~q!Q̄~q,M ~q!v,t ! ;~q,v,t !.

The scheme is given by:

qi 1152eqi 211~11e!PKS 2qi2~12e!qi 211h2Fi

11e D
(62)

Fi5FS t i ,qi ,qi 21 ,
qi 112qi 21

2h
,hD

provided thatqi 11 is uniquely defined in a neighborhood o
K. The projectionPK is done in the kinetic metric.

In order to understand how this scheme approximates
system~26!–~29!, we must say a few words about its co
struction. Let us consider the simplest formulation whi
corresponds to the case of convex constraints with a cons
mass matrix. The dynamics in Eq.~33! is approximated by
the implicit algorithm

qi 1122qi1qi 21

h2 1]cKS qi 111eqi 21

11e D{Fi . (63)

Remark 13:
The reader may notice the similarity between Eq.~63! and
the last equation in~55!. However this time the positions ar
involved, not the velocities. Notice thatFi is premultiplied
by h2 in Eq. ~62! whereas the same term is multiplied byh in
Eq. ~55!.

We can transform Eq.~63! by using a result of convex
analysis. It can be shown that ifK is a nonempty closed
subset ofRd (d>1), then withyPRd and l.0 given, the
equation

x1l]cK~x!{y

admits a unique solutionx5PK(y). Taking x5 qi 11

1eqi 21/11e in Eq. ~63! one gets:

qi 1152eqi 211~11e!PKS 2qi2~12e!qi 211h2Fi

11e D
(64)

which is exactly the first equality in Eq.~62!.
Remark 14:

Notice that the proximations in Eqs.~56! and ~58! can also
be formulated as projections in the kinetic metric but the
of projection ~ie, V(qm,i) in ~56! and V(qi 11) in ~58!! de-
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pends on the stepi . Here the set of projection is the same
each step: one always projects onK. Another common point
between the schemes~55! and~62! is that they do not require
the calculation of contact efforts.

It should be noted that the constraints are satisfied at e
time step by the average positionq̄i5qi 111eqi 21/11e.
Moreover, if q̄i belongs to Int(K), equation~64! reduces to

qi 1152qi2qi 211h2Fi (65)

which is a classical second-order approximation for the eq
tion of the free motion of the system. Furthermore, the c
straints on positions and the impact law are taken into
count at the same time by using the average positionq̄i . Due
to the choice forFi in Eq. ~62!, Eq.~64! is an implicit equa-
tion as soon asQ̄ depends onp5M (q)q̇. In such a case
some iteration~Newton-Raphson like algorithm! has to be
used at each step to computeqi 11 ~see eg@109#!. Notice that
the formulation~57! and~58! used in the convergence proo
of the discretized Moreau’s sweeping process is also an
plicit formulation. For ODEs or DAEs implicit methods ar
known to possess larger domains of conditional stabi
~@218#, page 239!. What about MDIs?

As pointed out above the scheme in Eq.~62! does not
require the systematic detection of impact times and does
need to refine the time step when the discrete positions
close to the boundary ofK. As an example let us conside
the 1D model problem described byK5R1, Q̄(q,p,t)[0
and the initial dataq(0)51, q̇(0)521. The motion is given
by

q~ t !512t if tP@0,1#, q~ t !5e~ t21! if t>1.
(66)

The algorithm~62! yields

qi 1152eqi 211max@2qi2~12e!qi 21 ,0#.

Let us chooseq051 andq1512h. For i>1, let wi52qi

2(12e)qi 21 . For i 51, we have

w152q12~12e!q05~11e!22h

andw1.0 if and only if h,(11e)/2. From now on, let us
assume thath,(11e)/2. We define n5 inf$kPN* :wk

,0%. We haven>2 and for alli P$2, . . . ,n% we get

qi2qi 215qi 212qi 2252h

Fig. 3 Elementary block
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henceqi512 ih.
One can also observe thatqn21.0 since wn215(1

1e)qn212(12e)h>0. Since wn,0, we have qn11

52eqn21,0. Let us computewn11 :

wn1152qn112~12e!qn522eqn21

2~12e!~2eqn221wn21!

52e~2qn212~12e!qn22!2~12e!wn21

52wn21<0. (67)

It follows that qn1252eqn and

wn1252qn122~12e!qn11522wn>0
(68)

qn1352eqn111wn125e2qn211wn12>0.

Moreover, a straightforward induction givesqi5qn12

1eh(i 2n22) for all i>n12.
The approximate positionsqi do not satisfy the con-

straints at each time step, similarly to the discretized swe
ing process. Of course, the average positionsq̄i5qi 11

1eqi 21/11e belong toK for all i>1 but not necessarily
qi 11 andqi 21 . In this 1D example, at least one and at mo
two approximate positions are outsideK.

It can proved that the penetration tends to 0 uniform
with respect to the time step since

iqi2q̄i i<hi q̇hiL`5O~h!.

Moreover, modification has been proposed in@155# that
assures penetration on one step only. It follows that
scheme is at most of order 1. This fact is not surprising si
we approximate a second-order differential equation in te
of positions only. Such a choice means that we prefer
propose a fast scheme than a very accurate one. We sh
remind that we have to deal with highly nonlinear proble
that are often very sensitive to initial data. Thus the accur
of the scheme may be less important. But its convergenc
always a crucial property.

7.3.2 Convergence
The convergence of this scheme is proved. The result
been established first in the case of convex contraints wi
trivial mass matrix in@54# and @216#, then an extension t
non convex constraints~but still trivial mass matrix! is pro-
posed in@217#, finally the general case is studied in@55# and
@56#. The proof follows the sketch described in Section
and is based on a rather natural geometrical idea: with
appropriate choice of local coordinates we can describe
set of admissible positionsK by an half-space and obtain
simpler expression of the constraints and the projection
K. Nevertheless, the change of coordinates introduces o
quadratic terms in the algorithm due to curvature effec
These new terms interact with the constraints and create
rious difficulties in the study of the scheme.

7.3.3 Implementation
The scheme could seem to be difficult to implement sinc
requires to solve at each time step an implicit equation
volving a projection onK for a Riemannian metric. But, in
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most of the cases, it is possible to describe the system w
choice of generalized coordinates such that the projec
term is easy to compute exactly or to approximate. T
scheme has been implemented on different examples
@54#, @219#, and@220#, a 1D model of tight joints is consid
ered; in@54# and@220#, the discretization of a guided beam
examined; and in@109#, the motion of a slender bar is stu
ied. For the two first cases the mass matrix of the system
constant, but not for the last one since a model in la
deformations is considered. The results are compared
other numerical results obtained by systematic detection
impact times for the first and last examples and to exp
mental results for the last two examples. For instance
@109# free-motion dynamics is discretized with a Newma
scheme~implicit algorithm! with g50.5 andb50.25 ~such
values guaranteeA-stability @26#, Ch 7.1.5!, and impacts ar
detected by a root-finding algorithm~a Newton scheme ini-
tialized by the values computed at the preceding step!. In all
the cases, the performances of the scheme in Eq.~62! were
satisfactory: the scheme is substantially faster than the de
tion method~almost 40% faster in@109#, three times faster in
@219#! and gives good approximation of the motion ev
with rather large time steps and/or on long time intervals~see
@219#!. This scheme has also been implemented in@151–
153#. Therein they consider a spring-dashpot system w
one degree-of-freedom. They compute its motion for t
sets of data leading to periodic motions, by using the tim
stepping scheme~62! and different event-driven scheme
They compare the numerical results to the analytical so
tion. In the two cases the scheme~62! is of order 1 and is
faster than the event-driven schemes for a given time-s
On the other hand, due to its low order, the scheme~62!
requires a larger computing time than the event-driv
schemes, in order to approximate the solution to a giv
precision.

7.4 Velocity-impulse formulations

These works have been performed by a group compose
Stewart@33#, Trinkle@84#, Pang@85#, Anitescu@86#, and Po-
tra @87#: different formulations have been proposed by Ste
art et al following the works of Moreau and Lo¨tstedt. They
may be seen as variants of the semi-implicit Euler meth
for DAEs ~which are very attractive for systems as in Eq.~6!
@25#, page 524!. Some details have been given concer
friction formulation, see Eqs.~24! and ~25!. In Eq. ~70!, a
polyhedral approximation of the friction cone is used, so t
the conditions in Eq.~25! are modified. The algorithms hav
the general form:

H M ~qi 11!~ q̇i 112q̇i !5

¹f~qi !Ni 111D~qi !b i 111hQ~qi ,q̇i !

qi 115qi1hq̇i 11

(69)
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In relationship with Section 3.4.2, let us note that t
complementarity conditions in Eq.~70! are equivalent to~Lq

is the generalized impulse in coordinatesq!

Lq,i 115arg max
zP Ĉ(qi )

$2zTq̇i 11%. (72)

If they were formulated with¹f(qi 11) and D(qi 11) then
one would getLq,i 115arg maxzPĈ(qi 11)$2zTq̇i 11%, yielding
however a NCP instead of a LCP to be solved at each s

Remark 15: The polyhedral approximation ofC hampers
to have the tangential velocity in a direction exact oppos
to the tangential force, since the latter belongs to one of
corners of the polygon@89#. If the number of faces of the
polyhedral set is increased, this effect is decreased, but
number of LCPs to be solved at each step is increase
well. Hence the interest of looking for solutions that do n
approximate the coneC and minimize the number of equa
tions to be used@83#.

In case of multiplem contacts, the~generalized!friction
cone~see eg,@18,28,201#!is taken as the sum of the frictio
cones at each contact, ie,C5( i

mCi ~in other words an ele-
ment RPC can be written asR5( i

mRi with eachRiPCi!.
The vectors¹f, l, b, N, are then simply constructed as th
concatenation of the vectors for each contact. In the mu
contact case~say 2!, it may therefore occur thatq̇i 11 and
Lq,i 11 are computed from Eq.~72! inside Ĉ11 Ĉ2 , whereas
¹f (1)T(qi)q̇i 11.0, ie, there is detachment from constraint
at t i 11 . However as we pointed out above this implies
turn thatNi 11

(1) 50 andb i 11
(1) 50 too. Thus the impulseLq,i 11

is calculated insideĈ2(qi). It is not clear at this stage
whether this formulation would allow to get satisfaction
Coulomb law ash→0 or not. It seems that the main obstac
towards such a result is the possibility of Painleve´-like ef-
fects, which have not yet been understood for several c
tacts. Another problem that might occur ash→0 is that there
may be somecyclic situations in whichĈ switches infinitely
fast between several values, eg,Ĉ11 Ĉ2 , Ĉ1 and Ĉ2 . What
happens in the limit then? This problem is—at least at
philosophical level—of the same nature as that of multi
impacts. Interestingly enough, the conclusions in@125#about
the relationship between the limit of a penalized proble
with Coulomb friction and the LCP~as constructed in Sec
tion 3.3.3!, hold also only for the one-contact sliding mod
Singular perturbation analysis is used and the stability of
so-called boundary layer is no longer equivalent to the e
tence and uniqueness of solution to the LCP~l! when ms

>2.
Impact rules: The impact rules are chosen according

Moreau’s maximal dissipation principle@104# in @33# and
@34#, ie, Eqs.~69! and ~70! represent a plastic generalize
impact as in Eq.~12!. In @84,86#, the collision rule of Pfeiffe
and Glocker@7# is chosen, ie, one solves a LCP to compu
the velocity at the end of the compression phase, and ano
LCP for the velocity at the end of the expansion phase~recall
that such an approach relies on Darboux-Keller’s model
collisions @18#!. Poisson coefficients of restitution are ch
sen. Energetical consistency holds when all coefficients
chosen equal to a unique valueep . Roughly one considers
5
Ni 11>0, ¹f~qi !

Tq̇i 11>0, Ni 11¹f~qi !
Tq̇i 1150

b i 11>0, l i 11e1D~qi !
Tq̇i 11>0,

b i 11
T @l i 11e1D~qi !

Tq̇i 11#50

l i 11>0, f Ni 112eTb i 11>0,

l i 11@ f Ni 112eTb i 11#50.
(70)

It is clear that the complementarity relations in Eq.~70!
apply when the constraint is active only~including impact
times!, ie, if f(qi1hq̇i),0. If Ni 1150, thenb i 1150 as
well. In Eqs.~69! and~70!, eT5@1,1,. . . ,1#PRe wheree is
the number of edges of the polyhedral approximation of
friction cone, andf denotes here the friction coefficien
HencebPRe as well. Indeed the friction cone is approx
mated by the polyhedral setĈ(q)5$N¹f1D(q)b,N>0,b
>0,eTb< f N%. The columnsDl of the matrixD(q) are vec-
tors that span the tangent subspace at the contact point.
also assumed that there is alwaysl and j such thatDl

52D j . For instance in the case of a planar point-mass s
tem D15t andD252t, and the tangential part of the con
tact reaction is given byD(q)b5D1b11D2b2 , wheret is
the tangent direction at the contact point. LetqT5(x,y) with
x the tangential coordinate. The two sets of complemen
slackness conditions in Eq.~70! then become~in continuous
time, so drop the indices!:

0<~l1 ẋ!'b1>0

0<~l2 ẋ!'b2>0 (71)

0<~ f N2b12b2!'l>0.

Assume for instance that there is a sliding motion withẋ
.0. Then sincel>0, one hasb150. Now necessarilyl
.0 sincel> ẋ.0. Thusb25 f N. If ẋ,0 one would find
b15 f N and b250. Consider nowẋ50. One finds that if
lÞ0, then f N5b11b2 . Sincel.0 the third relation im-
plies b11b2< f N: the contact reaction is inside the frictio
cone. Such a reasoning generalizes to 3D cases and the
mid cone formulation. The conditions in Eq.~25!, when dis-
cretized, yield a highly nonlinear complementarity proble
@91#.

It is assumed thatQ(q,q̇) derives from a potential energy
It can be shown that ifM (q)[M then the set of discretize
equations in~70! can be transformed in an LCP whose u
known is the vector (Ni ,l i ,b i), and this LCP possesses
solution. Thus the algorithm can be advanced in time. No
thatl i andb i are to be considered as impulses since they
proportional to forces timesh. The last two sets of comple
mentarity conditions in~70! represent an approximation o
Coulomb model, where the friction cone is replaced by
polyhedral set~a pyramid if e54!. They are the Kuhn-
Tucker conditions for the maximum dissipation principle
Eq. ~72!. This is what allows one to express this model a
LCP, using tools from convex analysis, as pointed out
Remark 5. Otherwise in dimension 3, one would end up w
a NCP to formulate dry friction. The tangential impulse
represented byb, while l is a slack variable.
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the same set of discrete-time equations as in~69! and~70! at
qi , replacing all quantities indexed byi 11 by i 11/2 for the
compression phase, ie, one writesM (q̇i 11/22q̇i)
5¹f(qi)Ni 11/21D(qi)b i 11/2. For the expansion phase
one replacesq̇i by q̇i 11/2 ~ie, one writesM (q̇i 112q̇i 11/2))
and the right-hand-side of the Lagrange dynam
becomes ¹f(qi)Ni 111D(qi)b i 111ep(¹f(qi)Ni 11/2

1D(qi)b i 11/2). Finally, qi 115qi1hq̇i 11/2 after these two
half-steps. Let us note that the scheme in Eq.~55! incorpo-
rates the termhMm,i

21Qm,i in the calculation of the postimpac
velocity, see Eq.~56!. This is not the case for the algorithm
in @84,86#. The termhQ(qi ,q̇i) is however present in the
right-hand-side for the compression phase calculation
@87#. Actually adding this term permits to better handle t
problem posed by the capture of a constraint after an infi
series of rebounds~like the classical ball that rebounds o
the ground!, which is not the case if one applies an imp
rule which neglects all non-impulsive terms. This can
understood with the 1D bouncing ball. In this case, one
v i 115prox@V(qm,i),v i2 h/2g#. When v i becomes very
small, thenh/2g dominatesuv i u and there is no numerica
problem in continuing the calculations. Since the te
2 h/2g is ,0, v i 1150 in the subsequent steps. So t
threshold parameterg introduced in Section 6.3 is directl
incorporatedvia h. On the other hand this numerical tric
hampers the simulation ofreversedaccumulations of impacts
@49,106# ~a situation that might occur with a particle at re
on a table submitted to some excitation!. However, such
tachment conditions are met much less often than captur
practice.

There is, therefore, a significant difference between
schemes in@33# and @86#. Indeed in the second case, o
integrates the motion and applies the impact rule whe
collision has been detected, ie,f(qi),0. Then the algorithm
computesqi 115qi1hq̇i 11/2 after the two steps of the colli
sion rule. When applying the maximal dissipation ati , the
algorithm computes the quantities ati 11 by modifying
abruptly the velocity direction if needed, but the forc
Qi(qi ,q̇i) are part of the calculation~as in Moreau’s
scheme!.

Remark 16:
• Similar backward Euler methods are used for the simu

tion of complex electrical circuits@160,221,222#. Notice
that event-driven algorithms have also been used in
framework@223,224#. The discretization of so-called Lin
ear Complementarity Systems@18,39,40#with an initial
state jump as in Eq.~46! is studied in@159#. Sufficient
conditions for consistency~ie, convergence of the discrete
time solution towards a solution of the continuous-tim
system!are given.

• Concerning multiple shocks with friction, it seems th
both the algorithms in this section and Section VII A yie
similar results, in the sense that the outcomes they pro
are rather unpredictable: although they are formulated
generalization of the frictionless plastic impact in Eq.~12!,
they may yield rebound depending on the parameters
data. The extension of the maximum dissipation princi
and the generalization of Gauss’ principle towards multi
collisions with friction, is far from being a trivial matter.
33
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Several ways to formulate Eqs.~69! and ~70! have been
proposed by this group of authors. In@86#, M (q)[M and
¹f(qi 11)q̇i 11 is used. In@33#, ¹f(qi)q̇i 11 and M (qi 11)
are used~which in practice leads to solving a NCP!, but the
work is essentially aimed at convergence proofs. In@85#, the
normal constraint is formulated as¹f(qi1hq̇i)qi 11>a,
which assures the respect of the constraints for the linear
dynamics. It is argued that the various quantities~mass ma-
trix, ¹f, matrix D(q)! can be calculated withqi1hq̇i or
qi 11 or qi1qi 11/2. But the last two approaches yield NCP
no longer LCPs, consequently more difficult to impleme
although perhaps more accurate. These variations are
gratuitous, as they may have strong consequences on:
• The implementation of the algorithms and their speed,

curacy, robustness, etc.
• The mathematical analysis needed to prove their prope

~consistency, stability, etc!.

These influences may have opposite effects! Some of th
properties are discussed in the related papers. With respe
Lötstedt’s schemes, Stewartet al have improved the algo
rithm in several directions:
• Friction: 3-dimensional and 2-dimensional friction~Pain-

levé paradoxes for one contact are treated without res
ing to any numerical trick!.

• Dissipativeness of the numerical scheme:Stewart
@33,88# proves that the algorithm in Eq.~70! with the
maximal dissipation principle, is dissipative ifM (q) and
Q(q,q̇) are constant~linearized dynamics, or affine poten
tial energy!. The same is proved for the scheme in@85#
providedK is convex andf(qi)>0 for all i ~no violation
of the constraints!. Anistescu and Potra@86# prove a simi-
lar result whenM (q)[M . However Stewart proves tha
the limit of his scheme is dissipative~which makes sense
since otherwise it could not be a solution of the origin
problem!.

• Convergence: Convergence~but not uniqueness!of the
solutions of Eqs.~69! and ~70! towards a solution of Eq.
~2! has been proved only for the one frictional contact ca
@33,34,87#, encompassing Painleve´ paradoxes. In the mul-
ticontact case, it seems difficult to prove the converge
of the piecewise constant solutions of Eq.~70! towards a
solution of Eq.~2! that satisfies Coulomb friction law. It is
not clear whether this problem comes from the formulat
of Coulomb friction itself~through the generalized coneC
and the maximum dissipation!, or from the interaction be-
tween the discretization and this formulation. In any ca
the problem of multiple contacts with friction still require
investigations. No convergence proof is available for t
schemes in@84,86#.

Some questions need to be still investigated: why solv
LCPs at each step when the constraints are independ
What happens when systems are hyperstatic? Which p
lems does the multiplication of LCPs for solving Coulom
friction ~polyhedral cone!create for real-time applications
Is the formulation of generalized friction for multiple con
tacts equivalent to Coulomb friction at each contact? Is
possible to recover sticking and sliding contacts from
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multicontact generalized formulation, in all cases? Solutio
proposed for treating Coulomb with the revolution cone a
new methods~homotopy etc!to solve NCPs need to be com
pared carefully with Moreau’s Gauss-Seidel method. M
generally it seems that there is a strong need for clarify
the domains of application and the performance of the v
ous methods that allow to solve LCPs or NCPs~Lemke, NCP
or LCP-functions and homotopy, nonsmooth Newton alg
rithms, QPs, interior point!. See comments above and in R
mark 9. From a general point of view, there is a lack
available numerical studies concerning the time-stepp
schemes in Section 7.4 and comparisons with other meth

7.5 Convergence studies

A very important mathematical study is the proof of conv
gence of the approximate~piecewise constant!discrete solu-
tion, towards a continuous function that is the solution of
continuous dynamics. These are the results of Monte
Marques, Stewart, Mabrouk and Paoli and Schatzman
we have outlined above. Let us define the approximate s
tion qh by

qh~ t !5qi1~ t2t i !
qi 112qi

h
if tP@ t i ,t i 11!.

The goal is to prove that one can extract a subseque
still denotedqh , which converges uniformly to a solutionq
of the Cauchy’s problem. One shows first that the seque
(q̇h)h is bounded independently ofh. Hence, Ascoli’s theo-
rem implies that there is a subsequence of$qh%h which con-
verges uniformly. Moreover, one establishes that the t
variation of q̇h is also bounded independently ofh and with
Helly’s theorem it follows that the sequence (q̇h)h converges
pointwise~except perhaps on a countable set of points!to q̇,
and (q̈h)h converges weakly toq̈ in the space of vector val
ued measures.

Remark 17: This notion of convergence is needed for t
acceleration, because it allows one to get convergenc
functions towards~singular! measures like the Dirac mea
sure. This is not possible with other convergence notio
This is clearly explained in@87# in a way accessible to non
mathematicians.

Then one has to check that the limit (q,q̇) satisfies the
constraints~ie, f(q(t))>0 for all t! and the impact and
friction laws. Convergence ensures that a scheme give
good approximation of the continuous motion even wh
there is an accumulation point in the set of impact tim
This is a great advantage of the time-stepping methods
sented in Sections 7.2, 7.3 and 7.4 over all other meth
especially over the event-driven algorithms based on a
tematic detection of impacts which may fail whenever th
is an infinite converging sequence of impacts, without s
cial attention to such phenomena in the schemes.

7.6 General comments

We have seen that Moreau and the NSCD method us
first-order discretization, the works in this section and
Section 7.3 as well, whereas Lo¨tstedt chose multistep meth
ods. Actually, if the goal is to build a LCP~l! at each step,
34
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this is quite understandable since it may simplify the co
struction of this LCP. However there is another reason~that
is also known in the DAE literature for problems with inco
sistent initial data@29#!: after each collision the order de
creases to one. So if the system undergoes many collisi
why using higher order and/or multistep algorithms? He
comes into play the nature of the system to be simulated.
argued in @86# that Runge-Kutta methods could be use
without further argumentation however. In@26# ~page 264!, it
is indicated that multistep BDF methods result in a sev
reduction of the step sizehi when a discontinuity in the stat
occurs, because it tries to fit a polynomial through this jum
Reinitialization techniques must be used. This, however, m
apply to systems that consist of switching DAEs, but can
reasonably constitute a general method for MDIs simulati

The problem of drift away from the constraints is seldo
discussed in these works. In@85#, ~see also@27#! it is pointed
out that the normal complementarity conditions could
stated asf(qi)>0, Ni>0, f(qi)

TNi50. However this yields
a NCP. It can be solved as a series of LCPs, but this m
drastically increase the number of LCPs to be solved at e
step ~if one considers the ones coming from approxima
friction!. In @91#, it is pointed out that using the condition
0<f(qi 11)'Ni 11>0 does not work because the behav
is that of a random impact when a shock occurs. Projec
of qi 11 back on the constraints is also alluded to as a rem
to drift. Lötstedt @27# points out that the velocity comple
mentary slackness formulation in Eq.~49! may yield drift,
and proposes to use Baumgarte’s method as a remedy.

The integration step can be chosen as time-varying. Ac
ally, the scheme in Eqs.~69! and~70! is of order 1 therefore
not very accurate unlessh is decreased a lot. Similarly a
Moreau’s scheme, it should therefore be preferred for s
tems with a lot of events only.

Notice that it may however be argued that such modifi
tions of time-stepping schemes may make them lose t
basic interest, which is to remain simple enough but rob
In other words, they should be able to detect the main ch
acteristics of a system~strange attractors, periodic orbits etc
without necessarily providing very accurate results~for in-
stance if the solutions are very sensitive to initial data, it m
be hopeless to get accurate numerical results!.

However the reader should keep in mind that some of
presented time-stepping schemes provide a new value o
state and contact forces, at each stepi . In many cases, the
resolution of LCPs or NCPs passes through a fixed-po
calculation~Newton’s like, smooth or nonsmooth!, similarl
to the proximations or projections operations. Except wh
there is an abrupt change in the system topology~deletion or
activation of a constraint, which implies a change in the
dices sets and consequently in the LCP dimension!, the root
at stepi should not be too far from that at stepi 21. Hence
the apparent complexity of having to solve LCPs or NCPs
each step may be greatly simplified and accelerated in p
tice, providedh is taken small enough~and provided the
algorithm used permits to fix the initial conditions at wil
which is for instance not the case for Lemke’s!. More ge
erally it is of interest to reuse the data of the previous step
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decrease the computational efforts in all the modules of
software, like contact force calculation@185# and collision
detection@225#. The combined BDF-Newton Raphson alg
rithm proposed in@67# for systems as in Eq.~7! uses itera-
tions to calculatem i , x1,i andx2,i that satisfy the two equality
constraints. Interestingly enough, it is pointed out in@67# that
one iteration of the Newton-Raphson seems sufficient to
stability, from numerical experiments.

What is it that leads the authors to use one discretiza
procedure or another one? We already provided the re
with some elements of an answer, concerning Moreau’s m
point scheme. This may be the ability of constructing
LCP(l i) or NCP(l i) at each step~Lötstedt, Stewartet al!,
the combination of a second-order ODE discretization w
shock dynamics~Paoli and Schatzman, Eqs.~65! and ~64!!.
Recall also that the four classes of time-stepping sche
presented above, discretize different models. About DA
Petzold said that ‘‘BDF is so beautiful that it is hard to ima
ine something else could be better’’@25#, page 481. BDF
combined with the reduction index in Eq.~7! has been ap-
plied to bilaterally constrained mechanical systems in@67#
and has been shown to converge. This also may have be
motivation for the choice in Eqs.~49! and ~50!. There may
also be significant discrepancies between the schemes
structed for mathematical convergence proofs, and the o
with more practical goals~compare Eqs.~57! and ~55!!.
Moreau@28# ~page 33!noted thatmultiple step methods see
a priori inadequate since one looks for algorithms allowin
to take impacts into account. Consequently it seems
single step methods should be preferred to multistep o
Then the advantage or drawbacks of Euler versus RK a
rithms remains an open issue.

8 MATHEMATICAL ISSUES

Even for simple ODEs it is known that numerical metho
that converge do not necessarily yield stable and robus
sults ~see eg,@218#, Chs 3 and 5!. For instance an ODE
simple asẋ52ax must be simulated with care whena be-
comes large@218# ~page 238!ie, when the problem become
stiff. Then implicit methods are known to provide much be
ter results@25#. For ODEs analysis of round-off errors influ
ence, problems of conditional stability, are understood.
MDIs, things complicate so drastically that mere conv
gence is in general very hard to prove@32,33,54,55#. If one
wants ultimately to avoid ad hoc tricks in the course of t
simulation, schemes with strong mathematical foundati
seem mandatory. Additional problems arise with the n
uniqueness of solutions: uniqueness is assured only if
data ~constraints, external forces and mass matrix! satisfy
some stringent conditions like analyticity@44,45,49–52,106#
Coulomb friction may also result in non-uniqueness of so
tions @59,200#. We reiterate that such phenomena, altho
they are due to the rigid body assumption and/or the frict
model, are not to be considered as artifacts. Rather, th
simplified models allow one to highlight physical phenom
ena which otherwise would have remained hidden. For
stance, the unbounded force/bounded impulse phenom
of Painlevé’s problem ~see Section 8.1!can hardly be
35
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guessed if a penalized scheme is adopted. But in the co
of a simulation with a large stiffness, the contact forces m
become very large as well and create subsequent nume
inaccuracies. The rigid body analysis allows one to be
understand such a phenomenon, and consequently to b
circumvent it.

8.1 Is Painlevéa real obstacle?

One should not think that Painleve´ paradoxes~ie, non-
existence or non-uniqueness of solutions to the LCP~l!for
frictional contacts!occur only for unrealistic friction coeffi-
cient values. This depends a lot on the contact geom
@201#. From the results of@33# and@200#, the Painleve´ para-
doxes are better understood, at least in the simplest cas
one contact. Time-stepping impulse-velocity schemes do
face Painleve´ paradoxes since impulse remains bounded
the vicinity of critical points. Moreover the maximal dissipa
tion principle allows one to impose a velocity jump~the
so-calledimpacts without collisions!that prevents the system
from penetrating into the zones of non-existence of a so
tion to the LCP~N!, even if force-acceleration schemes
used. Notice that a penalized problem with high stiffness w
necessarily yield the same problem, ie, computation of v
large interaction forces. Once again the study of the ri
body case allows one to highlight some crucial properties
the models which have an important consequence for
merical applications. In other words, a compliant cont
model with Coulomb~or any variant of Coulomb!friction
will show instability phenomena for certain configuratio
and large enough coefficient of friction, see eg,@179#. How-
ever for finite stiffnesses the contact force always rema
bounded. It is only the study of the limit case that reveals
underlying structure and the fundamental nature of the pr
lem. A comparative study of compliant models behav
when the stiffness is large~via singular perturbations analy
sis! and the LCP~N!has been made in@125#. Since in many
practical applications the contact stiffnesses are finite
quite large~gears commonly possess contact stiffnessek
51010 N/m or higher!such studies are far from being o
pure theoretical interest. Results in@226#and@227#show that
the impacts without collisionsare the limit behavior of solu-
tions of penalized problems~with finite but high stiffness!:
there are configurations in which the velocity varies ve
rapidly whenk,1` and jumps in the rigid body limit as
k→1`. Though the results in@33,200#are for the moment
essentially limited to the casem51, they look quite promis-
ing. Some numerical results can be found in@227# for the
scheme in Eqs.~69! and ~70!. As we pointed out at othe
places of this paper, one big challenge in multibody dyna
ics is a better modeling and understanding of dry friction
the multi-contact case. Painleve´-like phenomena require fu
ture investigations~such as the influence of the friction mod
els, extension to multi frictional contacts!.

For the classical Painleve´ example ~a slender rod that
slides on a rigid ground,m51 andn53!, the last problem
that remains to be solved is uniqueness of the solutions
particular as shown in@200# there exists in the phase plane
critical point that some trajectories may cross with u
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bounded velocities~but bounded impulses!. However, ju
after this point, two solutions are possible: additionalrules
are necessary to decide which one has to be chosen.
possible that studying penalized problems is going to prov
us with such rules~which could hinge for instance on a ce
tain relationship between the friction coefficient and the t
gential and normal stiffnesses!. This is reinforced by the fac
that mathematical works@44,45,49,51,52#conclude that
uniqueness holds only under very restrictive conditions
f j (q) and analyticity of all data. Since analyticity is muc
too stringent for practical applications, adding informati
into the model~but keeping the rigid body approach!seems
mandatory. This should be done in a way similar to what
been done for collision rules@107,108#: use a better unde
standing of the physical process and lump these informat
in some model parameters.

8.2 Is the discontinuity with respect to
initial data a real obstacle?

Such phenomenon seems unavoidable and part of the
namics. From a mathematical point of view~well-
posedness!, this does not necessarily preclude to get
tence and uniqueness of solutions, see@40#. For stability of
trajectories this may be an obstacle~it is known that
Lyapunov stability is equivalent to continuity with respect
initial data@103# ~page 124!uniformly in t overR1). This is
the reason why the available results on control of system
in Eq. ~2! remain until now restricted to codimension one
to orthogonal constraints, see@18–20#. New notions of sta
bility have to be studied. For numerical simulations, there
no way to strike right at the singularity of]K due to the
finite accuracy of the calculations, so one can always app
sequence of simple impacts and treat possible accumula
as usual. Evidently when getting close to the singularity
outcome becomes random@74,75,126#. This point added t
the fact that even low-dimensional systems may posse
chaotic behavior@228,229#, raises the question on whethe
is useful to focus on the accuracy of the numerical al
rithms. In this setting, the numerical computation
Lyapunov exponents is of primary importance in many st
ies, since they are used to detect chaos. As shown in@155#,
the discretization procedure has a strong influence on
numerical result.

9 COMMERCIAL SOFTWARE PACKAGES

Commercial softwares can be classified in two categorie
a function of the frictional contact model they have adopt

• Software packages with a penalized contact model.
• Software packages with unilateral contact model.

In this section, we will briefly discuss these two categor
~and the contact models!.

The penalized contact models are the most widespr
mainly because these contact models are very easy to im
ment. Contact forces~normal and tangential!are considered
as external forces, so they are just added to the right h
side of the dynamic equations. The normal contact forc
usually modelled by a non-linear spring~ie, the elastic part!
36
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and a damper~ie, the dissipative part!that is added between
the two contacting bodies, in order to model a visco-elas
behavior of the materials. The normal contact force is th
expressed in the following form:

Fn5Felastic1Fdamper,

with H Felastic5Kya

Fdamper5Cẏ
if y>0. (73)

Here y denotes the penetration between the contac
bodies~positive means in contact!, andẏ its first derivative
as a function of time. The parametersK anda can be esti-
mated using Hertz theory~see, eg,@5#!. It must be remarked
that this theory is only valid under the following condition

• Central impact with the gravity centers of the contacti
bodies and the contact point on the same line.

• Quasistatic phenomenon.
• Elastic impact.

Even if Hertz theory is not generally valid~due to the
preceding hypothesis!, it can give a rough idea of the val
of parametersK anda. K is sometime considered as a co
stant parameter~see for example Adams, MDI software! or is
calculated as a function of the geometry of the contact bod
~see for example Mechanica Motion, PTC software!. The
normal elastic contact force can be considered to be a
good approximation. Things are much more complicated
the normal damping contact force. In fact, each softw
with a penalized contact model proposes its own formula
the damping factorC. We report here some expressio
given in some widespread simulation tools that are valid
y>0.

5
Fdamper5regul~d,C1!ẏ

Fdamper5C2Ky3/2ẏ

Fdamper5C3y1/2ẏ

Fdamper52ermAK̄

m
ẏ, with K̄5

3

2
AmgK2.

(74)

The function regul is plotted in Fig. 4,C1 , C2 andC3 are
damping factors,er a parameter homogeneous to a restitut
coefficient, andm the equivalent mass of the contactin
bodies.

The expressions in Eq.~74! are used respectively in Ad
ams~MDI!, Mechanica Motion~PTC!, SDS~Solid Dynam-
ics! and Dads~LMS!. All these expressions verifyC50 for
a zero penetrationy50. Moreover, the normal contact forc
is continuous as a function of the penetrationy. The expres-
sions in Eq.~74! can lead in some cases to energy gains.
example, in case of the simple example of a ball bouncing
a plane, the dynamic equation in the direction normal
the plane can be written~using Hertz theory for the elasti
component!:

mÿ52Fn1mg, (75)

whereFn5Ky3/21Cẏ is the normal contact force. WhenC
equals a constant value orC5C3y1/2, the contact forceFn
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can be negative, that is to say attractive. As a conseque
the formulation of the normal contact force is changed,
example according to:

Fn5abs~Ky3/21Cẏ!, or

Fn5max~0,Ky3/21Cẏ!.
(76)

It is remarked that already in the case of the bounc
ball, for the same ball movement~ie, same velocity before
and after the shock!the normal contact forces predicted b
the preceding models are very different. So the impact for
must be considered with care and cannot be used as a pr
estimation for structural analysis. The determination of i
pact forces is still an active research area. To end this
cussion, let us state that the parametersK, a, and C are
difficult to predict and cannot be measured easily.

For the tangential contact force, penalized softwares u
ally adopt a regularized Coulomb law~see Fig. 5a! or the
sign function ~see Fig. 5b! In Fig. 5, Ft is the tangential
contact force,v t the relative tangential velocity of the con
tacting bodies,m the friction coefficient, andveltol a param-
eter specified by the user.

Some recent softwares have started to implement un
eral contact models as an alternative to the penalized con
model. It is not easy to get reliable and precise informati
on these contact models because vendors do not, in gen
share implementation details with users. Consequently,
report here some very general informations concerning s
of these softwares.

Probably the most famous software is Working Mod
~MSC!. One of this software’s particularities is its automa

Fig. 4 The function regul
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contact detection~in 2D and in 3D!. It uses a Newton rest
tution coefficient in order to model dissipation during im
pacts ~which may cause in certain cases energy gain!, to-
gether with a fifth-order Runge-Kutta integration schem
~Kutta Merson!. We assume that this program is an eve
driven scheme, but are not sure that each event~like impact,
lift-off or stick-slip transition!is accurately located. No pre
cise informations could be obtained on the formulation of
frictional contact problem and on the way it is solved.

More recently, SDS~Solid Dynamics!has also adopted a
2D frictional contact model based on unilateral conta
theory. Unlike Working Model, the contact model used
SDS is fairly well documented. Its general description can
found in @5#. It uses a Poisson restitution coefficient with
fifth-order Runge-Kutta integration scheme~Dormand and
Prince!. Each event is located accurately using a dichoto
procedure. The problem is written on the form of tw
coupled quadratic programming problems and is solved
ing the famous Moreau relaxation method~ie, Gauss-Seide
with a projection method!.

The two preceding softwares are widely used in the
dustry. Of course other programs exist that support unilat
contact theory, like for example Simpack@192#, but it seems
that it is less complete than Working Model or SDS. F
Simpack, only one reference could be traced on this softw
that only describes frictionless contacts. The problem is
mulated in the form of a DAE and it is solved using a tri
and error method~which may in practice be untractable!.

All the commercial software packages are using an ac
eration formulation~ie, event-driven formulation, with even
detection!. This kind of method is fast and reliable for pro
lems with less than, say, a hundred of frictional contacts
one plans to treat problems with thousands of contacts,
should use a time-stepping scheme~no event detection!to
get an idea of the behavior of the system.~Even a rough idea
because these time-stepping formulations are usually b
on a first-order integration scheme.! But time-stepping
schemes are research codes like LMGC of Moreau that
been extensively used for 15 years for the simulation
granular materials@13#.

In conclusion, the penalized and the unilateral cont
models have some advantages and some drawbacks, an
user has to be aware of them in order to choose the softw
Fig. 5 Examples of tangential contact force approximations



Table 1. Advantages and drawbacks of a number of softwares

Penalized contact model

Unilateral contact model

Event-driven schemes Time-stepping schemes

Most famous • Adams~MDI! • Working Model 2D & 3D • LMGC ~Moreau!
softwares • Dads~LMS! ~MSC!

• Mechanica Motion~PTC! • SDS ~Solid Dynamics!

Advantages • Model easy to implement • Restitution coefficient can be estimated
• No problem of redundancies • Sticking effect taken into account~real Coulomb law!
• No problem of impulse propagation • No oscillations of the contact forces
~see also Newton cradle example! • Effective for less than

100 of frictional contacts
~good CPU time!

• Usable for thousands
of frictional contacts
~huge CPU time!

• Very accurate • Can give a rough idea
of the results

Drawbacks • Contact parameters unknown • Redundancy varies during simulation
(K,a,C) • No impulse propagation~see Newton cradle example!
• Sticking effect not modeled
• Stiff differential systems
• Oscillations of the contact forces
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to solve the problem at hand. To close this section on co
mercial softwares, let us summarize these advantages
drawbacks in Table I. This has to be considered as a com
ment of informations with respect to the material in Sect
4.

Remark 18 „Vehicle crash dynamics and simulation…:
The general problem is quite different: find how to recons
tute the motion of accidents from some data~physical param-
eters, estimation of dissipated energies etc.!. Details and ref-
erences can be found in@93# and @230#.

10 GENERAL CONCLUSIONS

‘‘ . . . unilateral problems are slowly noticed by the scienti
community, but are migrating fast into industrial applic
tions’’ @231#. It is clear that the development of a reliable a
efficient software for nonsmooth multibody systems is
result of assembling various modules. We have chosen n
incorporate numerical examples in this paper. The main
son is that it is not our aim here to classify the approache~if
this is possible!, but to introduce the reader to the field
numerical analysis and simulation of nonsmooth multibo
systems. Despite the many open problems that remain t
solved before getting a satisfactory software, the rigid bo
approach is quite interesting. One of the reasons is that c
pliant contact models may really fail in providing reliab
schemes.

In this article, the state of the art about numerical simu
tion of unilaterally constrained mechanical systems has b
described. The general message is that the analysis of
systems~mathematical, numerical, system theoretical! is by
far not a simple extension of that of DAEs. Also the inte
connections between modeling and these topics is an im
tant point. It is not possible to decouple the mathemati
modeling and numerical problems. For instance multiple
pacts create deep modeling problems. Even the friction
case has not yet been solved in its generality, although
work in @108# seems quite promising. As pointed out abo
in this article, some authors argue that statistical mode
should be investigated. In regard to this point, it could be t
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a purecontinuousdiscretization of the dynamics in Eqs.~2!
and~3! is not sufficient in general. A possible path is to res
to hybrid simulators which incorporate not only the classic
event-driven or time-stepping algorithms, but also so
high-level rulesthat would guide the user in the choice
future events~detachment, impact, sticking etc!. This can
done via the construction of a tableau containing poss
choices and their probability to occur. Such data may
obtained from experiments. This may constitute a way
connect experiments, modeling and numerics via some lo
included in the software@65# ~page 175!The determination
of the qualitative properties of a system may be sufficien
certain applications~ie, one requires only to detect some d
namical invariants in the system, like attractors!. Thus those
schemes with less accuracy but high robustness and co
tency results may prove quite useful~like time-stepping
schemes!. But qualitative properties may not be sufficie
quantitative ones can be crucial in industrial applications~eg,
aeronautics where long-run simulations may be need
sometimes one wants to observe the evolution of a system
several hours or days!. Notice that the length of the simu
tion has to be modulated by the number of events occur
during the simulation: some very short motions~like in cir-
cuit breakers!can involve a great number of events on a ve
small time interval. Hybrid schemes that switch betwe
various integrators depending on the phase of motion@232#
may also represent a promising path for simulation of co
plex multibody systems.

Let us end this article by citing some of the importa
problems which still deserve deep research study~this list
does not pretend to be exhaustive!:
• Comparison and determination of the domains of appli

tions of complementarity problems solvers.
• More generally, determination of the domains of applic

tions of the algorithms on suitable benchmarks allowi
one to detect their capabilities with respect to various
namical situations~periodic/non-periodic motion, sensitiv
ity to initial data or not, large or smallN, etc!

• Better understanding of Painleve´-like phenomena in highe
dimensions and multiple contacts.

• Modeling of mutiple impacts with or without friction.
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• Incorporation of more sophisticated dry friction mode
that satisfy the principle of maximum dissipation, in
mathematical programming framework.
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