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This review article focuseson the problemsrelatedto numericalsimulation of finite dimen-sionalnonsmoothmultibody
mechanicalsystems.The rigid body dynamicalcaseis examinedhere. This classof systemsinvolves complementarity
conditionsandimpactphenomenawhich makeits studyandnumericalanalysisa difficult problemthatcannotbe solvedby
rely-ing on known Ordinary Differential Equation(ODE) or Differential Algebraic Equation(DAE) integratorsonly. The
maintechniquesmathematicalools, and existing algorithnere reviewed.

1 INTRODUCTION dynamics of buildings and structur¢43], modeling and

This article focuses on the problem of numerical simulatio(li‘f)ntrOI t9f bziIdings,.tEoSpirll(ijl4],6vvla;lking mgcr:ir:eﬂs],
of systems composed of interacting rigid bodies. It aims hematic chains wi acklasfi6,17], manipulators per-

. L - forming complete robotic taskgleburring, grinding, polish-
showing the state of the art in this field and, at the same tm}ﬁg, ch%mferi%g) 18-20], etc. It also inv%l\?es var?oups scien-

introduces the main features, difficulties, and proposed Solific communities: Mechanical Engineering, Systems and
tions to simulation of nonsmooth multibody dynamics. Thigontrol, Applied Mathematics, Robotics, and Physics. In
topic is an important part of the multibody systems dynamiceal-world applications, there exists a trend to use one and
general problem, which is itself a major field of investigatiothe same simulator for design, engineering, and training pur-
[1-3]. It concerns many domains of applications: interactivieoses 21]. A typical example is the simulation environment
computer graphics, virtual prototyping,5] €lectrical de- for a space manipulatg22]. The challenge for model devel-

vices, watch mechanisms desigraerospace(control of opers is to provide users of simulators with accurate and
' . I . .._realistic responses of simulated nonsmooth systems with suf-
space manipulators, liquid slosh phenomena in satellite

. . . , o ) ficient level of detail [23]. Issues like repeatability and
diesel engines, landing gear, analysis of vibrations in Mgaiqueness of solutions are clearly of paramount importance.
chines[6,7]assembly and disassembly proce§$sdesign |f real-time simulations are desired, the numerical algorithm
of optimal protection from collision§9], granular matter— must also perform real-timge, it has to calculate the motion
dynamics of sandpiles, gravels, planetary ringj#6—12, faster than the real process evoludiopossibly in a trade-off



with accuracy requirements. The choice of model, eg, rigid K={q:¢(q)=0} (1)

body versus compliant, becomes important. We will deal

with these issues in the remainder of this paper. With tl){gth () qdiﬁerentiable vector valued.function. Thg gen-
growing availability of commercial and research code fdf'@l dynamics of the systems we deal with may be written as

nonsmooth mechanical systems, the capabilities of thdgdows:

codes become of interest, especially since those packagesy - q.t) 4 + g+
tend to limit the time needed to code an application model. M(a)g=Q(a,a,t) + V(AN +P(a,0,\) + Vy(a)Ap

The choice between rigid body or compliant models is a | #(a)=0, A=0, ¢'\=0
problem in itself. At this stage, the reader should understand{ ¢, (q)=0 2)
these two definitions in a very rough fashion since a rigorous
definition of rigidity and compliance requires some da@4].
This will be discussed in this article. Let us just point out that | Coulomb friction.
the choice of the model in general strongly depends on ongBe matrixM(q) e Rnxn is the symmetric positive definite
goals and field of application. It may be the result of amertia matrix, Q(qg,q,t) accounts for inertial(centripetal,
iterative process with successive simplifications or complic&oriolis), external(eg, control inputs), and frictiongRay-
tions. There are applicatiorieg, Systems and Control, Ro-leigh dissipation)generalized torquesP(q,q,\) accounts
botics) in which one needs simple enough modeds, that for frictional (Coulomb)generalized forcesp,(q) e R™ is a
allow the designer to construct a stable feedback contjolleset of bilateral constraints,, is the corresponding Lagrange
At the same time, such models have to predict the real m@ultiplier vector,¢(q) =0, ¢(q) € R™ is the set of unilateral
tion reasonably well, hence keep enough physical informgonstraints which indicate in which domain of the configu-
tion inside them. In this setting, rigid body models seemation space of the systeqis allowed to evolve, and is a
quite suitable in many applications, where a compromise bgactor of Lagrange multipliers which represent the normal
tween accuracy and tractability has to be found. part of the interaction between the system and its environ-

As is well known, the principal qualities of a numericaiment. As a convention in this pap&twill always denote the
algorithm are its accuracy and its stabilityonditional sta- gradient in the Euclidean metrige, V¢ = d¢/q), though
bility, A-stability, or unconditional stability Accuracy is re- we shall make use of other metrics. The complementéoity
lated to the order of the scheme. Stability is related to ﬂmthogonality) betweeng(q) and \ indicates that physical
boundedness of the numerical solution for fixed steps of imteractions producing forces without contdotagnetic ef-
tegration, as time progresses. A third property is the convegcts) and gluing forces are not taken into account in the
gence of the numerical solution towards some function, omgodel. In the following we shall generally consider that
fixed time interval, as the integration step goes to zero. Ofifere are no permanent bilateral constraints in order to focus
question that comes to mind is: are these properties tragsr attention on inequality constraints only. Systems g8)n
ported from ODEs (free-motion systems)or DAES are sometimes namezbmplementary slacknessechanical
(bilaterally-constrained systegowards unilaterally con- systems by analogy with the mathematical programming and
strained systems? For example, does a multistep algoritgghvex analysis languadf30] page 226). Assume friction-
that is known to converge for index 2 DAHE$25], Ch. |ess constraints, and that is an impulsive term, ie\
VII.3), still converge for nonsmooth systems? As we shalt Pidy, with 8, the Dirac measure at tintg. Let f(t;) and
expose throughout this paper, the answer is not trivial, a@gk—) denote the right and left limits of(-) att=t,, re-

might be negative in many cases. For instance, the E“gﬂectively. Then the Lagrange equations,abecome 18];
method is known to be not very accurate for ODEs or DAES

([26], page 247). However, the occurrence of topology modi- M (a(ti))[a(ty) —a(ty )1=V &(a(t)) Pi- 3)
fications and/or impactgstate re-initializationsymay also  The mathematical problems associated to the dynamics in
render the higher-order methods useless, or at least much (@$sare not trivial. As we shall explain later in this paper, the
powerful [27—29. Moreover, some widely used tricks likedynamics in Eqs(2) and(3) represent a Measure Differential
Baumgarte’s stabilization of constraints become quite inaghclusion (MDI). Its well-posednessexistence and unique-
equate in the case of inequality constraints, where the signréfss of solutionsis still an open problem in the general case.
the Lagrange multipliers is of primary importance. To sum@ne of the very first contributions to this field can be found
marize, the challenge could be formulated as follows: Cofn [31]. Other contributions have been made by Monteiro-
sider the multibody system if25] Ch. VII.7 (a seven-body Marques[32], Stewart[33,34], Mabrouk[35,36], Carriero
mechanism), on which six different DAE codes are conand Pascal[37,38], Heemel®t al [39,40], van der Schaft
pared. Add some unilateral constraints with fricti@ay 15, and Schumachdi1,42], Ldstedt[43], Percivale and But-
which is a reasonable numbeHow much is the problem tazzo [44-48], Ballard[49,50], and Schatzman and Paoli
complicated? What does there remain to be done before gett—57. In particular, systems with multiple contacts and/or
ting a reliable and accurate simulation software, startirfgction create deep modeling and analysis difficulties. It is
from the proposed algorithniDASSL, DOPRI, RADAU, not the goal of this survey to provide many details on the
etc)? The answer to both questions is: a lot! We will lay théathematical aspects of the continuous-time dynamics.
foundation for this answer in the remainder of this paper. However, it is worth being aware of them since it seems
In the following, we shall generically denote the impadgifficult, even hazardous, to simulate a system reliably that is
times asty, and the set of admissible positions as not well-posedsee Section 6.2)! In particular, one should be

State re-initialization(Impact rule)




aware of the fact that multiple impacts generally imply di2 DYNAMICS OF BILATERALLY
continuity of the solutions with respect to the initial dat&ONSTRAINED MECHANICAL SYSTEMS—DAEs

[18,32,39,58]. This may have consequences on the numerE;il Formulation of the unconstrained
as well as the control aspects. A non well-posed problem r@éntinuous dynamics

little chance to yield a well-posed numerical algorithm Whe{hhen a system contains a number of subsystems, it may not

It is t|me:d|scret|;ed. In(59], .'t is shown that ,a mo.d|f|ed be practical to obtain a single system of differential equa-
Coulomb’s law yields non-uniqueness of solutions in a 1,,q that describes the behavior of the dynamical system.
system. It is also shown that the discretization with an impq subsystems may be of a different dynamical character.
plicit Euler scheme leads to difference equations that possggke for example a satellite that contains liqéboling or
several solutions. fuel). Both the motion of the liquid and of the satellite can be
Itis noteworthy that the tools and models described in thiescribed by differential equations. Another example is a ro-
paper concern essentially mechanical systems subject to dnatic arm that contains flexible as well as rigid bodies. So, at
lateral constraints with or without dry friction. However/irst, a system description will contain submodels that cap-
they may also be suitable to the simulation of other noffure specifiaiocal) dynamics that can already contain opera-
smooth physical systems, like electrical netwof@d,42]. tional constraint descriptions. By adding environmental con-

Indeed, some components like diodes can be modeled V\ﬁgﬁaints, one obtains a closed-chain description. In addition,

the complementarity conditions which we describe later, afgedback gontrol laws lead to closed-loop, closed-chain sys-
teﬁn descriptions. There are two approaches to formulate

the state may possess discontinuities in complex electrical ; . . i
K . initializati | il h models of unconstrained continuous dynamical systems:
netwgr S, requiring reinitialization rules similar to the meg, oo 4t compute the mass matfbagrange or Hamilton
chanical collision$39]. As we shall see, all these nonsmootgquaﬂonsy recursive Newton-Euler), and those that do not
dynamical systems can be recast in the framework of Mé@eatherstone recursive algorithnBoth approaches yield
sure Differential InclusiongMDIs). Infinite-dimensional as formulations that can be applied to opéserial or tree)
well as quasi-static or static problems with unilateral corthains and to closed-loop chaii26]. For closed-loop chains
tacts are not examined in this paper, see,[6@] for a sur- the trick is to cut the loop, introduce a multiplier, and then
vey. work with the multiplier method or reduce to independent

In this survey, we shall first recall in Section 2 the basicgoordinates. Recursive methods seem to have lost interest in

of modeling nonsmooth systems so that the paper contalf§ent years[26] Remark, page 273). One of the reasons

some introductory material, before passing to more specift2y Pe the availability of increasing computer power at ever
developments for numerical simulations. In Section 3, wer prices. The advent of so-callé¥(N) methods, where

. - : stands for the number of bodies in a dynamics model,
introduce some peculiarities of nonsmooth multibody sys- :

. : ) . appened at a time when computers were not as powerful as
tems simulations when compared to simulation of smoof

_ e day. In many applications, special effort was paid to saving
systems. Such an introduction is thought to be necessarysfinputational effort, and also to parallelization of algo-
order to fix and clarify the fundamental discrepancies b@thms. For largeN, algorithms ofO(N) became of interest
tween systems as if2) above, and various other types ofn view of there efficiency. Some theoretical analyses sug-
switching, discontinuous, or impulsive dynamical systengested that the speed of performance ofiN) algorithm
that are often encountered in the literat@pplied Math- would become superior over that of(N®) algorithm for a
ematics, Systems and Control, Computer Scigrection 4 sufficiently large number of bodies. Featherstded] is

is concerned with a discussion on the use of rigid and co(N) and supersede®(N?®) for more than 10 bodies. In
pliant models for simulation of contact of nonsmooth22]. it is reported that a specig)(N) algorithm is faster,
systems. already, for two bodies. This may be due to tailoring the

The main focus of the paper is on numerical analysis FHgorithm to the application at hand: a robotic manipulator
with six rigid bodies and two flexible bodies. We refer to

Sections 5, 6, 7, and 9. In Section 5, a brief overview .
. ¢ ical | for bilaterall trained %6] for a summary of the different methods. A note on Jour-
given of numerical ISsues for bilaterally constrained Megy,; . principle, and its relation to D’Alembert’s principle

chanical systems. This analysis is used in Section 6 t0 di§;q the so-calledane’s dynamical equationsan be found
cuss algorithms for unilaterally constrained mechanical SYi#r[22], Appendix A.

tems. The numerical methods that are discussed are either
so-called event-driven or time-stepping methods. A compag->  Reduction into independent coordinates
son of the methods is made. Convex analysis and mathemgtl'-

| ina 100l t th ¢ ks in th hce the presence ¢Gequality) constraints leads to limiting
cal programming tools are at Ineé core of many Works in thige degrees of freedom of a systémodel), several authors

field and are therefore recalled. In Section 8, we briefly gy e nroposed to find and select independent coordinates and
turn to mathematical issues in modeling nonsmooth systemgyyce the number of dynamical equations. See, for example,
An overview of commercial packages capable of simulatingcClamroch and Wang'ssee[18]), Kane's methodsboth
nonsmooth mechanical systems is presented in Sectionnfbre or less based on implicit functions), Wehage and Haug
Finally, concluding remarks can be found in Section 10. [62]. Haug's method does not aim at reducing the dynamics
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in closed-form, but just reorders the generalized coordinatesThe Lagrange multiplier now ensures that the motion of
in view of correcting the drift away from the constraiffg. the mechanical system satisfies the constraint equation. Dif-
The choice ofldependentgoordinates is not unique, and theferentiating the constraint equation givEsgh'(q)gq=0. De-
reduction to independent ones is neither. In general, the rste (x1,x3)":=(q",q")". Then starting from Eq(5), the
duction is a difficult task63]. Advantages of the reductionfollowing first-order formulation can be obtained.
are that the reduced-order dynamics usually require less
computation time and the formulation is free of drift from X1=Xa
the _const_raint surface. Reduced-ordgr techniques are often Xo=M ~1(x1) Q(X1,X2) + M 1)V S(Xx)A
available in commercial code-generation packageg Sec- (6)
tion 9). A drawback is that addition of a new constraint again $(x1)=0
leads to a differential/algebraic description, and the interest- | V' (x;)x,=0.
ing theoretical issue arises whether one should obtain a new " L
reg(]iuced-order formulation from the original description or In [65] proposmpn 9.4.1(see alsq29] Ch: 2.5.3), itis
from the already obtained reduced-order formulation. §h0wn that any trajec_tory of the_ system(®) is also a tra-
y
A decomposition into submodels simplifies modeling angetory of the system iri7) and vice versa.

makes thg overall system model morg erX|b.I(.a and easy to X1 =Xo+ V (X1)
adapt. This modular approach to modeling facilitates the pos- | .
sibility of exchanging models for subsystems, which is a | X2=M ™1 (X1)Q(X1,X2) + M~ 1(x1) V (x1)\ @
necessity in system design. Therefore, in the remainder of | ¢(x,)=0
this paper we will concentrate on the Lagrange multiplier T _

. Vo' (x1)x,=0.
approach to modeling.

Some software§64] include heuristic approaches whichThe formulation in(7) is similar to the formulation in(6),

allow one to decrease significantly, in certain cases, the nuapart from the presence of the Lagrange multipfiert al-
ber of algebraic conditions. An example of a gearbox with Jdws one to reduce the index of the DAE from 3 tq[25],
clutches and algebraitbilateral) constraints including 212 Ch VII.1 [67]). The actual analysis that leads to the formu-
unknowns is presented if64]. The algorithm reduces thelation in (7) is beyond the scope of the present paper, and we
number of variables to 23 wunknowns. This is amefer to[65], also for other equivaleribverdeterminedjor-
NP-completé problem. The implementation of such fasinulations. It must be emphasized that the Lagrange multi-
methods that allow one to eliminate useless constraintspiéer « has no physical meaning. From the analysi$28],
also employed in collision detection, see Section 6.5. Clear|g5], and[66], it actually follows thatu =0, but the impor-
a software must incorporate such algorithms to be efficiefaince of formulation(7) lies in its use to obtain numerical
and fast enough. solutions for bilaterally and unilaterally constrained me-

o chanical systems. The two continuous-time representations
2.3 Lagrange multipliers methods are equivalent. However, they do not result in equivalent
Lagrange multiplier formulations of constrained mechanicaiscrete-time formulationésee also Section 5.3).
systems can be obtained via so-called first-principles model- All formulations (5), (6), and(7) can be used as starting
ing. It is of interest to note that for constrained mechanicpbints for analysis and simulation of constrained mechanical
systems, Lagrange formulations can be derived that are pgystems. In Section 6.3, these formulations will be used in
ticularly useful for simulation. See, for examplg25,65] what we will call event-driven simulation schemes, where

(proposition 9.4.1) 66], and[67]. decisions whether or not contact or release of a constraint
Let us view systen{2) in the absence of friction, wheretakes place must be based on physical interpretations of
we assume thaD does not depend explicitly on time. and information on the state of the system, and not only on

M(9)q=Q(a,q)+ V(AN the position.

#(q)=0, A=0, ¢'\=0.

For systems as irf4), information on where and how3 DYNAMICS OF UNILATERALLY
contact with the constraints can be made and release can t@KkENSTRAINED MECHANICAL SYSTEMS—MDIs
place can be derived off-line using the algorithm$68], for ] )
the linear case, and {i65] (Ch 7)for the nonlinear case. For3-1 The major problem of multiple contacts—LCPs
simulation studies, it is useful to first look &) in case of In multibody systems with multiple contacts, the major dif-
equality constraints. The bilaterally constrained mechanidiulty is that the change in one contact generally implies

(4)

system in Eq(5) is obtained. changes at the other contacts, and this is true for detachment
. . conditions as well as for impacts. How to treat this within the
M(a)a=Q(a,a)+V&(a)x (5) rigid body approach? This is the subject of the next sections.
#(q)=0. In this section, we will describe the effective formalisms that

are used in view of numerical simulations. Since there gen-
1See eg,Computer Theory FAQat http://www.cs.unb.ca/alopez—o/comp—faq/faq.htmler.a”y e_XIS_t several manners to formulate t.he same prObIem’
for an introduction. it is quite important to choose the most suitable ¢eg, the



simplest one if CPU time is an issudn Section 6.6, we Acceleration-force schemes:
shall focus on the numerical tools used to solve these prob-
lems. ——

Detachment conditions (Delassus’ problem): In the  #(q)=V$'q+V¢'g=0, \=0, $'\=0. (10)
case of a single frictionless contact point, the detachment
condition can be watched by looking at the sign of the Itis important to keep in mind that the dynamics (&)
Lagrange multiplier: if\ =0, then a sufficient condition for With the position complementarity conditions is not equiva-
subsequent detachment is that the normal acceleration!®@t to the dynamics with the velocity or the acceleration
>0. Things complicate when several contact points persgmplementarity conditions. Actually, ikp(q(-))=0 on
on a nonzero time interval. It is well-known since Delassus=[t—€,t), then the position complementarity implies the
[18,69] ee also[7] for a simpler examplethat a priori ~ Velocity complementarity orl. If ¢(q(-))=0 and ¢(q
assuming(in an arbitrary way)certain values of the accel-(-)) =0 onl, then it implies the acceleration formulation of
eration (for instance, one decides that the contacts persi§ie complementarity conditions. And so on with the higher
may lead to a contradiction because the calculated multipierivatives. This yields the notion of Dynamic Complemen-
ers \;<0. Therefore, one is led to test all the possibltarity Problemg41]. As we shall see the index, reduction is
combinations—there are™combinations form active con- crucial in discretized schemes since it permits to formulate
tacts. Such enumeration is cumbersome! However, it isc@mplementarity problems at each step of integration. Index
simple matter to use the constrained Lagrange dynamicsPieblems in DAEs are major problerfig2]. The reader may
order to express the acceleratigiiq(t)) in terms of\, see expect that the difficulties will be magnified when unilater-
Eqgs.(10) and(35) below. Doing it this way and noticing that, ally constrained systems are considered. See also Section
pro\/ided them contacts have been active on the inteﬂya| 7.2.4 concerning the choice between pOSitiOﬂ and velocity
—¢,t), which allows one to state that the complementarigomplementarity conditions.
conditions in(2) imply the same conditions witkp being Remark 1 (Hyperstatic systems):When the system is
replaced by (see(10)), one is able to constructlanear hyperstatic(ie, rank(V#)>n, implying m>n) it may be-
Complementarity Problerar LCP, of the form: come necessary to solve an LCP at each indianthe nu-

merical integration)to manage the detachment events. In

AN+B=0, A=0, \T(AN+B)=0 (8) case of non-hyperstatic system, like when=1, the
) . Lagrange multipliers can be computed uniquely and it suf-
where the matricea andB genera,lly depgnd 00, andq, 9 fices to solve an LCP when they approach zero. As long as
respectively, and on the system's physical parameters. T, yeen their signs strictly positive and no constraint is

unknown of the LCP in E(8) is X, and we shall denote it s yained, the system can safely be considered as a DAE and

LCP(). When friction is present at the contacts and in dpeqrated as such. Unfortunately, hyperstatic systems are by

mension 3, one gets a Nonlinear Complementarity Proble}g} the more commonly met category in practice! An ex-

(NCP, or NLCP)due to the 3D friction cone, which is @z je s the rocking blockl8] when both contact points of
much more tricky object, see Section 3.3. Mordd0,71] o pase Stick7].

was the first to formulate the contact law this way, hence

greatly improving Delassus’ work. In case of friction it is . .

known that unexpected phenomena can occur, which are 032\% Qomplementgnty formulation

to the lack of physical modeling. However, these phenomeR restitution mappings

do represent the behavior of the system when the contActultiple impact occurs each time the system collides the

stiffnesses are high, and will occur when doing a simulatioRoundary JK at a singularity. If the codimension of the

For instance, a planar disc may remain wedged in an angléuck subspace im, the impact is called am-shock or

2« if the friction coefficient at both contacig satisfies ~M-impact. In the rocking block example, the shock is a

>arctang). This is related to the pointedness of the totad-impact. Multiple impacts pose deep problems: continuity

friction coneC,+C,, see[33]. Also, the LCP may not pos- of the solutions with respect to the initial data may be3ost

sess any solution. In conclusion, let us state that the contétgnce a high sensitivity with respect to the choice of the

status management is one of the major issues of multiboitial conditions), and even their formulatidie, how to get

systems simulation. But contrary to collisions which involv@n impact rule that maps the pre-impact velocities to the

a lot of physical modeling, it is mainly a mathematical probPost-impact onesjs not trivial. Various approaches have

lem. As we shall recall later, LCPs possess several equival®gen presented in the literature, some of which will be de-

formulations (quadratic programs, complementarity funcscribed in the sequel. We can already state that the problem

tions) that may be used for numerical implementation. of multiple contacts with or without friction is one of the
Notice that to form LCPs that will monitor the topologymajor problems of nonsmooth mechaniesthe date of writ-

or transition modifications, index 1 formulations are mori#g of this paper). Ivanoy58,73]argues that as soon as the

convenient(but this does not imply that higher index apcodimension of the struck subspace is larger than 3, impacts

proaches cannot be settled). Hence we focus on two cas&hould be modeled in a statistical way. This may be related to

Velocity-impulse schemes: the hybrid manner of designing the software by introducing a

\Y% ¢Tq2 0, A\=0, \V ¢Tq =0. (9) 2This is easily seen with a 2D particle striking in an angle. Sef5egSection 3.a.

5



tableau containing the probabilities of events to occur. Saew is how to write the generalized torq@€q,q,\) in (2)

Section 10 for more details. Actually, the study of multiplén order to recover a complementary slackness formulation

impact rules via the limit of penalized problems or the limithat includes both normal and tangential reactiphg1,79-

of sequences of simple impacts seems to be a hard task88]. Several particular cases have to be considered: 2D ver-

general[74,75]. Collecting statistical data from experimentsus 3D friction cones, and all possible transitions between

may be an alternative path. stick and sliding modes. Let us denote the tangential velocity
It is possible to formulate the restitution mappings Components at the contact poidtasV;, the normal one as

more generally the mappings that rule the re-initialization §f 5o thatv= (V ) and the reciprocal contact force as

the state vector when the system jumps from one mode to

another ond42]) through a complementarity law. The fol-F = N)- Considerm=1 in (2), ie, ¢(-) is a scalar func-

lowing plasticimpact rule: tion. If V,=V¢'q, then\=N. Then one ha§s2,83]:
q(t¢)=arg min o M(q)oy (11) Vi=0=|F|<fN
V¢Tz=0 Vi #0=|F|=fN, F=—aV,, a=0.

with oqéz—(j(t[), has been apparently first formulated
(with words) by Carnot[76]. Its link with Gauss’ principle Vi# 0=F=— NV /|V{
and complementarity laws has been first discovered by [\'/,[=0:|Ft|ng
Moreau[70,71], and used if27]. Actually, solving Eq(11) V=0

is equwalent to solving the following LCP whose unknown

is q(ty):

| V#£0=|F|=fN, Fi=—aV,, a=0.
(13)
) The first set of conditions describes dry friction at the veloc-
Vo'(ta(ty)=0, p(t)=0, ity level, and the second set at the acceleration level. The
. latter is used to monitor the transitions from stick to sliding
P (t) V' (t)a(t,)=0 (12) (rolling constraints[82,89]) in what we shall call event-
where p, is defined in(3). This can be shown using thedriven algorithms. The reader may notice that the way to go
algebraic shock dynamics {8), and the Kuhn-Tucker’s con- from velocity to acceleration formulation of Coulomb’s law
ditions (in which case the percussign is to be interpreted is exactly the same as for the normal direction when one
as a slack variable). Notice that for am-shock with replaces position by velocity or acceleration complementar-
m=1, T(tk)V¢>T(tk)q(tk) 0 is equivalent to ity conditions. Here we assume that there is only one contact
P; (tk)V(;S] (t)a(ty)=0 for eachj=1,--,m, with all m to avoid cumbersome notations, but the formulations can be
components of each vector non- negat(mnce the set of readily extended to the case of multiple contastse, how-
complementarity conditions in Eq12) is equivalent tom ever, Sections 7.2.2 and 7.4 for comments about the discreti-
1D complementary slackness conditipriBhen it is easy to zation of multiple contacts with friction The next two Sec-
see that in the one degree-of-freedom case, this correspotiers, 3.3.1 and 3.2.2, deal with how to transform the models
to a plastic shocle=0. The physical validity of these impactin (13) into complementary slackness forms, and Sections
rules is discussed iY7], where it is argued that some simplé&.3.3 and 3.3.4 describe how to repldg,q,\) by a set of
multiple impacts may not be described by such laws. Bagiomplementarity conditiondinear or nonlinearjhat enables
cally, this is due to the physical fact that impulsive forcegne to monitor all the possible mode transitions for frictional
may appear at contacting points that were previously lastiggntacting points. As we will see later, this enables one to
and which detach after the shock. Therefore, both the poéiscretize the whole set of dynamical equations and condi-
impact velocity and percussion are nonzero at the impdtns and construct an LCRr an NCP, or more generally
time, precluding any complementarity between them. Hovany set of equations and/or conditions that can be solved
ever, this rule may apply in other cases, as provefi7B] Wwith available algorithmsat each step, which permits us to
where the convergence of a penalized problem is studi€glvance the numerical algorithm to the next step.
Moreover, a proper definition of the pairs of complementag.3.1 Two-dimensional friction

ity variables allows one to treat detachment of previous|y this casev, e R. The transformation of the velocity con-

contacting pointson a non-zero time intervato describe gitions in Eq.(13) uses the fact that a relay characteristic

such motions as rockiny8]. between two variables andz (that may be expressed as
Notice that one can replaag(ty ) in (12) by a combina- —sign (z), with — 1<v<1 if z=0), can be formulated with

tion of g(t) and q(t) to allow for elastic impacts, ,Se€complementary slackness conditions2s79,81]:
Sections 3.4.1 and 3.4.8eg, replaceq(tk) by q(tk) 2

+eq(t,) and check that this implies tha ¢'(t)q(t,) 2=y1=Y2, v=3(Up=Up), UrtUp= (14)
=0 whenevelV ¢"(t,)q(t,)<0, e<[0,1]). uiy;=0, u;=0, y;=0, i=12.

) . o The result follows by observing th&t,=f.Nsign(—V,). In
3.3 Constraints with Coulomb friction particular, if V,=0 one gets—1=< F,/f.N<1. The quanti-
Let us assume that there is one active constraint where ¢igs y, and y, are the positive and negative part of
friction acts at a contact poindl. At .4 one attaches a local z(= —V,), respectively. This derivation can also be under-
frame in which Coulomb’s law is expressed. The problestood from(23) (see below)noting that the projectioD of
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the friction cone on the tangent plane .dtreduces to an yields Painleveproblems, see Section 8.1. Notice that there

interval, so that the results of convex analysis concerningno inversion of the matri¥ ¢"M ~1V ¢ in this procedure.
normal cones of polyhedral setsee [30], Ch 23 and

%:_%mplementaryfslackr]ess Cor;)dition? candbfe u?]ed direlcﬂ)BA Sticking (or rolling) contacts
'he same transformation can be performed for the accelefathe 3p case, one has to resort to the polygonalization of
::Zgaizyelgalzrﬁs. (015) [82,83,89]introducing the positive and the friction_cone t_o avoid nonlinear formulations, see Section
t 3.2.2. Obviously in the 2D case the cone is already polygonal
3.3.2 Three-dimensional friction (D is an interval)so we shall consider this case as a subprob-
This case is more difficult sincé, e R? and the friction cone lem of the 3D one once the cone has been polygonalized.
is not polyhedral. Consequenti23) is still true, but cannot Notice that the acceleration friction model is highly nonlin-
be transformed into complementarity conditions by introduéar in the contact force, contrary to the velocity formulation
ing additional slack variables as if14). The basic idea for sliding contacts. Various techniques have been employed
[33,79,80,82—88k to approximate the cone, ie, to perform an the literature to formulate froni2) and (14) or (15) an
polygonalization. Some more comments on this will be madéP whose unknowns are slack variableluding\ in (2))
in Section 7.4. Notice that this is the same as transformifigat allow one to monitor the contact stat(detachment/
the discD in (23) below into a(convex)polyhedral setD contact, sticking/sliding). The method proposed 78] does
[80,83]. The pyramid approximation obviously correspond®t accomodate hyperstatic systems. Glo¢keB3]uses the
to D being a squarg89]. A finer approximation correspondsformalism in Eq.(15) and the fact tha¥,=J,(q)q+h(t), to
to adding edges to the polygdh. Then a result of convex get at each contact point ar-t1)-dimensional LCP im
analysis([30], Ch 23 allows one to generaliz€l4) and to pluse slack variablesr;, ¢; taken in such a way that hyper-
express this approximated Coulomb’s law with complemestatism problems are avoided. No inversion of the matrix
tary slackness conditions of the forfwe choose the accel- J{M ~1J, is needed. A similar method is proposed &2,89]
eration formulation in(13)): for the pyramidal approximation, together with some exis-
tence result for the LCP. Without polygonalization, a Nonlin-
ear Complementarity ProblefNCP) of the form

(15)  y=0, g(y)=0, y'g(y)=0 (16)

0i=0, §=0, 0i§=0, i=1.e has to be solved for some slack variaplE83], or even some
wheree is a unit vector normal to thigh edge ofD, eis the non-standard NCP&eneralized complementarity problems
number of edges, ang are slack variables. A similar deri-[82,89-91], see Section 3.4.2. NCPs are more complex to
vation can be found if89] for the pyramid approximation, solve than their linear counterparts, see Section 6.6, and po-
where the variables; and & are directly the positive and tential users have to develop their own codes. However they
negative parts of the corresponding quantities, provided they involve less variables than polyhedral approximations
local frame andD are properly orienteghence thess sim- [90]. In [83], it is shown how to get a standard 4D NCP per
plify). Notice that almost all authors choose an outer agontact. The all-rolling contacts problem is formulated with a
proximation of the cone, although there does not seem to Qeiasi-Variational Inequality ifi90] and results on existence
any fundamental reason for such a choice that yields an ovef-solutions are given. The work if92] is not based on an
estimation of frictional effects. Actually the most importangpproximation of the friction cone and treats the acceleration
feature is to find out a formulation that involves as few slacks the unknown, see Section 6.7.1 for more details.
variables as possible, so as to simplify the subsequent nu-Remark 2: From a hybrid dynamical system point of
merical procedure. view [42] Coulomb friction adds modes or discrete-event

Let us assume that,= J,q+h(t). At this stage one has states to the system.
P(q,q,)\)thTFt, and Coulomb’g_law is gxpressed throug%.&5 Shocks with friction
complementary slackness conditions as in Ef4) or (15).

The next step is: how to get an LCP that allows one t'ghe problem of frictional impacts is complex, and we shall

calculate the unknowng&he normal and tangential contacant insist on it in this article, se@[8,93]_fo_r detglls. In the
forces)at each time? complementary slackness framework, it is of interest to ex-

tend the frictionless rule in Eq12) to the frictional case.
3.3.3 Sliding contacts Several authors proposed complementarity formulations of
The velocity formulation in Eq(13) holds, which is linear in frictional impacts[7,27,86,94]. The basic idea of tstedt
the contact forc¢89]. There is a direct relationship betweeh27]is to extend directly Eqg11) and(12) as:
F. and N, whatever the dimension. TherP(q,q,\) e Ter 1 T
=J37(q)f.NV,/|V{|. Itis therefore a simple matter to express MiNzPkM P+ Pia(ty) (17)
q as a function ofy, g, andN, then to replace in ¢(q) to ~0  —fou<p .<f
get a LCP ag8) with unknownN. In the case ofns<m P=", Pi=PricS TR
sliding contactshT=(N®,.-- \N(™)) in (2). Due to friction, wherep, is the normal percussion ii8), p;  is its tangential
the matrixA e R™s*™s (see(8)) is not symmetric in general counterpart, and®, denotes the total percussion vecta,
and it may also lose its copositivity property. Then existendhe right-hand-side of3) for frictional impacts). The second
and uniqueness of at timet may no longer be assured. Thidine in Eq. (17) is the direct extension of Coulomb’s law at

e
—vt=i§l a&, o=f.N—¢F,
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the percussion level, a model that may be energetically ihe subdifferential ofi«(-) generalizes the notion of nor-
consistent, see Section 7.1.2.fl&=0 then(17) reduces to mal directions toyK aty. Roughly speaking, this represents
(11) using Kuhn-Tucker conditions. There are different waythe outward normal directions to the boundarykoat some

to rewrite Eq.(17), using the dual QP an@), see alsq54). pointy, and if the boundary is smooth this is the usual out-
Some details on the works {186] will be given in Section ward normal half line. If the boundary is nonsmooth, it gen-
7.4. For 2D problems, it is similar to the one [ii], where eralizes to a cone, called tm®rmal coneand is denoted as
the collision is decomposed into a compression and restifNg(-). When y e Int(K), then dy(y)={0}, and when

tion phases. Concernirj@4] see Section 7.2.4. ye&K, then dyg(y)=0. One also definetangent cones
o _ V(y) as V(y)={v:V xeNk(y), x'v<0} when yeK.
3.4 Convex analysis in nonsmooth mechanics Thus if ye K, V(y) is another convex cone. In this case

In this section we present compact forms of the MDIs in Eqtangent cones reduce tinward) half spaces for differen-
(2) and (3). The formulations that follow in this section aretiable codimension one boundariék, see Fig. lac. If y
based on mathematical tools from convex analj@®95]. It e Int(K), then V(y)=R", and if y&eK, then V(y)=0.

is not our goal in this article to provide details on such mattWhenK is defined as irf1), one may define the tangent cone
ematical tools. However, it seems mandatory to make a shtwrtK at g as[96]:

presentation of these approaches, since they are used to de- o1 )

velop well-posedness and numerical issues of many aIgo-V(Q):{UER w'Vei=0, V iel(q); (18)
L e ot I e olow = i 200 =11, (@) <0). One notes tat i
vex functionf(-), denoted asf, is the set of Subgraolien,[Sdefmmon coincides with the original definition of the tangent

) o B T cone as long ag e K. The fact thal/(y) is given a meaning
of f aty, e, O.f vectorsy sat_|sfy_|ngf(x) f(y)?’f (x=y) outsideK is useful for numerical applications in which the
for all x. This is the generalization of the derivative for NON: i missible domain of configurations it) may be violated
differentiable convex functions. Let d_enote a convex set In order to motivate the reader, let us note that complemen-
(not necessarily the one {d), though this may be the case a?arity conditions between two scalar variableandy:
we shall see further). The functiafa(y) is called the indi- ’
cator function of the sekK, and is defined by (y)=0 if A=0, y=0, \.y=0 (19)
yeK, yx(y)=+x if ye K. The values inside and outside
the setK are consistent with the definition of subgradientzan be equivalently formulated as

y
T Y
K
Vi Ok (y)={0},[V(y)=Re A
yx -
0
X
Wk(y)=0
Yx
(@) (b)
N
k(q) NK(y) —

MWy( (v2)= {0}

()

Fig. 1 Tangent and normal cones, and the corner law
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—Ned(y), with K=R". (20) plain what the differential inclusion i622) means. The in-
terested reader may have a look[&8,96,100]for further
This means that the corner law whose graph is depicteddBtails and examples with figures. The 8&i(t)) is the
Fig. 1b, is actually the graph of-dyy+(-). Evidently the tangent cone t& (see(1)) atq(t). WhenV(q(t))=R" then
role of A andy can be reversed if20). This generalizes to the interpretation of Eq22) is obvious from Eqs(19)—(21)
the case of complementarity conditions ag2hwhenevelK  (this is, for instance, the case for a one-dimensional bouncing
is convex. In this setting(4) is equivalent to—M(q)q ball touching the ground a tim. The termdy gy (2) is a
+Q(q,9) € dic(q(t)). Both Egs.(19) and (20) are also subdifferential and can be understood as follows wér)
equivalent to any one of the formulatiofid0] page 215; dJK. If the vector z3 points inward V(q(t)), then

[97]: IPy(q)(2)=10}, so that (22) reduces to the time-
continuous Lagrangian equationszlbelongs to the bound-
AeK, V zeK, (\z-y)=0 (21) ary of V(q(t)), then dyyqw)(2) is the normal cone to

V(q(t)) atz. If z points outwardv(q(t)) (thus outsideK)
then diyq1))(2) =<: this situation is forbidden, and one
The first formulation in Eq(21) is a variational formulation sees that the implicit formulation i22) impliesthatv (t,)

of the complementarity conditions. This illustrates that there V(q(tx)). Now recalling that at=t,, the variablez is the
are several manners to express the same physical law, aagt-impact velocity, one obtains that22) becomes
such a flexibility is likely to be very useful for various rea— M (q(ty)) o, € &¢V(q(tk))(v(t;)). This is equivalent to a
sons(mathematical studies, effective dynamic formalisms iguadratic problem as the one (hl) or (12) and this implies
view of numerical applicationsQuite interestingly, the Cou- that v (t,") e 9K: this is a generalization of plastic impacts
lomb friction model can be expressed in a similar fashion, &r codimension one constraints. Another interpretation
we already saw. This comes from the fact that by introducing in  terms of proximation, that is o(t;)
slack variable$7,41]one can recast Coulomb friction into a— prox V(q(ty),v(ty)], where the proximation is to be

complementarity framework, see qua4) apd (_15)' The made in the kinetic metricv(t, ) is therefore the closest
same holds for many systems with piecewise linear chara

teristics[39,42]. Some work§64] rely on the parametriza- Element tou(ty ) in V(qn(tk)), in the kinetic metric. |fCI(t2]
tion of Eq.(19) by introducing an additional slack varialde < Int(K), then_V(q?=R S0 thatiy(q)(z) =0 for all ze R
These facts clearly indicate why the dynamicq2n can be and i (2)={0}: (22)is a classical Lagrange equation.
rewritten as a special type of differential inclusion, contain- Remark 4:
ing measures. This will give rise to Measure Differential Int From Egs.(19) and (20), one suspects th&22) implies
clusions(MDIs), as introduced by Moreaj®8]. complementarity conditions between the contact reaction
Remark 3: One very good reason for expressing the dy- anduv(t"). This is indeed the case, sg8], [96].

namics in terms of convex analysis is that it yields compatt/t ~is  possible to  show that the set
and powerful mathematical formulations and that these prop-2#vq() (v ") CNk(q(t)). This can be seen by drawing a
erties are preserved in the numerical schemes derived frorRD angle and plotting the various cones and half-spaces
them. For instance, the graphs of the complementddgty  involved, see Fig. lcwhere di(qy)(v1) CNk(q(t)).
Signorini)conditions and of Coulomb’s law are monotone. It This means thaf22) is not strictly equivalent t¢4).
has also been used to derive well-posed impact rulg8dh * It is possible to include a restitution coefficieatin this

, ) formulation by replacingy in both sides of(22) by an
34.1 Morgaus sweeping process ) averaged velocityu=v(t*)+ev(t7)/1+e [35,96], see
The theoretical setting exposed in this section has b_een desection 7.2. Itis equivalent to inclusion ofin Eq. (12), as
veloped by Morea96,98,100] we refer to[101]for a in- pointed out aftef12) (notice that in Eq(22), (1+e) in the

troduction to the sweeping process, including the first orderyenominator is needed to encompass continuous velocities
case and t102]for a general exposition of its mathematical as well).

properties). Moreau’s sweeping process is a velocity-impulseryq «_ sign in the left-hand-side o22) is only a conse-

formulation, and its main interest lies in its compactness.y,ence of some standard notations in convex analysis, see
This property has consequences for its numerical anaIyS|s,20)

see Section 7.2. Let us present it briefly in the case of frig¢-1ochanical systems with position constraints have index 3
tionless constraints. What follows does not pretend to POST25]. Indeed one needs to differentiate the constraint

sess any mathematical rigor, but is to be considered as introa(q)zo three times to recover a set of ODEs with state
ductionary material only. The starting point is: (9,9,\). Now consider the simple dynamicsiq=\,

—M(q)dv +Q(q,v,t) € dthyqeey(v(tH)) (22) #(q)=0. Let us w_rite it in at velocity-impulse form, ie,

_ o . o M(g—q(0))=p, with p(t)=S A (7)d7. Then one needs

The variabley satisfiesq(t)=q(0)+[ov(7)dr, ie, itequals  only to differentiated(q) twice (with respect to time}o
g(t) almost everywhere in the Lebesgue measure sense. NQget an ODE with stateq,p). Thus the constrained modes
tice that Eq.(22) is an implicit formulation inv(t™). In of (22) correspond to index 2 problems.
particular, ifv has a jumpo,=v(t*)—v(t7) att thendv

=0,6. Whenv(-) is time-continuous, then one Just re= g i e draws the sett)+ Ny (q(t)) instead oy (q(t)) [102], so zshould be
places its right-limit byv(t) in (22). Let us intuitively eX- understood as the vector emanating frq@t). Similarly for the other sets.

NeK, A=projk[A—py], for any p>0.
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It is important to notice that the essence of the dynamiggized friction cone. The velocity)) e R® at a contact point
in (22) is that the complementarity conditions (8) andin A; and the generalized velocity are related i)
(12) are stated through the subdifferential in the right-hand-".; . I .
side of (22), which is a function of the velocit{for fixed =3P(a)a whereas from the principle of vwij)JaI work
position). Velocity spaces are linear spac¢emngent to the =J0-T(q)F®, where in our notationE(“=(;‘(j)). JW(q)
configuration space at eadf), whereas configuration spacess 5 jacobian matrix.
are seldom linear. Consequently, the use of velocity spacesrRemark 5:

allows one to recover all the advantages of linear spéoes « More general frictional characteristics can also be written
instance the tangent cogq(t)) is always convex, whereas in a form as in(23). However, when the considered et
K'in (1) may not be). Mathematicians use such Nonsmoothis conyex one can rewrite E(R0) as a variational inequal-
Analysis tools in their existence and uniqueness of solutlons1ty as in(21). If K is not convex as it is the case for more

studies, which are of high importance for numerical analy5|s.comp|ex friction models, one has to resort to hemivaria-

Indeed, on _the one ha_md,_ Well-posedness_ results are Ofte{?onal inequalities, as introduced by Panagiotopoulos
based on time-discretization of the continuous dynamic

(similarly to the fundamental result for ODEs that uses ;[lhos]' d set of conditions (3) with V,=0 i .
Euler discretized scheme whose piecewise constant solutionl-g € second set of conditions wi =0 IS equiva-
ent to —V,edyp(F;) [83,92] and (15) < -V,

are shown to converge to solutions of the continuous dynam- ) o
ics when the vector field is continuo[&03]). This is whatis € ¢¥p(Ft). The acceleration formulation is then useful to
usually called thetime-steppingmethod and will be de- Qerlve the dynamics of rollingsticking) contacts, see Sec-
scribed later in this article. On the other hand, a necessar{!on 3.3.

first step(but not sufficient to get a robust simulatois to * AS we saw above, the disP can be approximated by a

establish the existence and uniqueness of solutions beforéonvex polytopeD [80,83]. This is an idea that is used in
designing a numerical simulator. some algorithms to be presented later, see Section 7.4.

However, the formulation in Eq23) remains valid, even
with the modified friction cone. The advantage is that one
deals with LCPs instead of NCPs. The case wiikis a
square(so that the cone is approximated by a pyramid
corresponds to the s&t in Fig. 1a. Actually basic results
from convex analysis can be used to derive complementary

3.4.2 Coulomb friction and the principle

of maximal dissipation

Moreau[104] has shown that a Coulomb friction model ac-
tually satisfies anmaximal dissipation principle. When there

is sliding between two bodies at the contact point, it is intu-

itively clear that this model obeys such a principle. Indeed it o o
says that the tangent reacti®h has to be in the opposite slackness conditionghe best way to understand this is to

direction to the tangent velocity,, see Eq.(13), and the 00k at[30] (Ch 23)corollary 23.8.1 and bottom of page

product — F{V, is maximal when one seek, inside its 226, and(83]) from the polyhedral apprOX|mat|on.o§23)

admissible domairD. Here one ha®={ReIl:|R|<f.N} or its acceleration formulation. Some event-driven and

wherell is the common tangent plane at the contact point.time-stepping algorithms that we will describe later hinge

Incidentally, it is understood here thiitis known. One sees 0N such convex analysis tools to derive suitalitem a

that D is the projection of a section of the friction coeon ~ numerical analysis point of viewformulations of contact

I1. In particular,D is convex, which allows one to use the laws.

tools presented in the introduction of Section 3.4, replacirgThe maximum dissipation principle is extended @] to

K by D. With this in mind, it is possible to shofsee, eg, more general friction laws. Some existence res(itighe

Egs.(14), (19), and(20)) that Coulomb friction can be for- quasistatic caseare provided for §,N,F,). As we shall

mulated as see in Section 7.4, some authors formulate the problem in
the configuration space, ai{q,q,\) in (2) is written as

~Viedip(Fy (23 bq)s. with g satisfying(8)=<f.\. The functiony(-)

and this inclusion permits encompassing the sticking modegthat definesD) should be convex. Then the maximum

as well. The reader may wish to check that the inclusion indissipation principle read®1]

(23) really represents Coulomb’s law of friction, using the  g—arg min [q(t")"D(q)z]. (24)

definition of the subdifferential of an indicator functigiinat Yz)<f.\

is nothing else but the normal cone @at Fy). Itis also  Thjs can be shown to be equivalent to

possible to rewrite Eq23) in terms of a dissipation function S

o(V)) = f.N.|V,| so that— F, e d¢(V,). The functione(-) is 0efD(@) a(t™)+ud(p)

called a superpotential or pseudopotenttat analogy with u=0, f.A=¢(B8)=0, ulfN=¢(B)]=0 (25)

the classical definition of forces that derive from a potential whereu is a Lagrange multiplieor a slack variable), and

F=VV, where this time the equality is replaced by an inclu- \ is as in(2).

sion). In generalized coordinates as used in the works deThe impact rule in Eq(12) satisfies, also, a maximum

scribed in Section 7.4, the maximum dissipation p_rinciple is dissipation principle, se€ll). Its expression within the

formulated asF,=argmax_.. (—2'd), whereFq is the  gweeping process framework has been recalled in Section

generalized contact reaction impulse af{d|) is the gener-  3.4.1. It can therefore also be transformed int@@nvex)
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quadratic program. Notice that bottil) and (12) can be by T(t,) the kinetic energy at an impact timg and define
written in terms either of the contact percussjgnor of |p|a‘(t):pTM_1(q)p, the norm ofp in the local metric of
q(ty), using(3). generalized momenta. One has:

When combined with a velocity-impulse formulation, the T(t,)= %|p(tk*)|;(%)
principle of maximum dissipation allows one to avoid some

inconsistency problems during the numerical integration that - %{IHqu)p(HO)l&?ﬁ (G Hq(t))p(t;)m(%)}

are encountered in rigid body dynamics with friction, see _1 V%2 a2 —\[*2
Section 7.4. Let us note th&23) is often formulated with Mg Pt iy * €101~ Tlgw) Pt g}
V,(t™) (the right limit of V,(t)), a choice motivated by nu- <T(t,) (31)

merical implementatiof94].
catimp 10hi94] and the equality holds if and only &= 1. Hence this model

3.4.3 Second-order formulations is energetically consistent.

The formulations presented below concern frictionless rigld the particular case of a constant mass matrix, we can
body dynamics, ieP(q,q,A)=0 in (2). The free motion of consider the generalized coordinates definedjls';yl\{ll’2 ,

the system is described in generalized coordinates by thbich makes sense sindd=MT">0. Thenp=MY2 and

ODE with this new coordinates the impact law reduces to
M(9)g=Q(q,p,t), u(ty ) =Ur(t) —eUn(t)
where p£M(q)q is the generalized momentum and =whenever the constraints are saturated (32)

Q(q,p,1)2Q(g,M ~Y(qg)p,t). It should be noted that this
equation allows dissipative terms. Let us assumediaj} is

a smooth function, iegK (see(1)) is a smooth codimension
one surface. Fron2), one gets the equation

whereu; anduy are the tangential and normal parts wof
with respect to the Euclidean metric. The set of admissible
positions is then described in terms of these new coordinates
by K={u:¢(M~Y2u)=0}. If K is convex with respect ta,
M(Q)d=6(q,p,t)+,u (26) We can replace the relatiori26)—(28) by the following dif-

. ferential inclusion:
where i is a measure such that

—U+f(t,u,u) e g (u) (33)
u=Vao(g)N, N\=0, almost everywhere (27
wheredi is the subdifferential of the indicator function of
and K and can be interpreted similarly as the right-hand-side of
Supp ) C{t: (q(t)) =0} (28) (22), replacingV(q(t)) by K and the right-velocity by the

position, see Fig. laTherefore, Eq(33) is a second-order
Roughly speaking, relatiof28) means that the contact forcesifferential inclusion, and the total dynamics is given(8g)
are switched on only when the constraints are saturated & (33), or equivalently(29) and (27), (28). Notice from
is therefore equivalent to the complementarity conditions {33) that the inertial forces are therefore a subgradient of the
(2). The measure differential equatié26) does not provide indicator functionyy (u). From(22), one sees that Moreau’s

a complete description of the motion and we must add @fea has been to consider them as subgradients of
impact law in order to describe the transmission of kinetig,v(q(t))(v(ﬁ)) instead.

energy at impacts. We assume a Newton’s law for general-

ized momenta. More precisely, whenever the constraints are

saturated, the tangential part pfis conserved while the 4 RIGID BODY VERSUS COMPLIANT MODELS
qo_rmal part is reversed and multiplied by a _restitution coejl—.1 Rigid body models: Some properties

ficientee[0,1]. Here the normal and tangential partpare o : )

taken in the sense of the local metric for the space of gen&frSt of all it is necessary to make it very clear what is meant
alized momenta, which is defined by~ %(q). Let us denote by rigid and byflexible, sed24]for a d|scu_55|pn. By rigid

by I14p the projection ofp on the tangent planH to JK at one may mean any model that uses velocity-impulse formu-

g with respect to the local metric, ie, Il p= lation for the collisions(like the Darboux-Keller or Routh
—V¢™ p/VE™M IV V. The complete forrr?ulation approaches). However, this does not necessarily imply an
is finally given by Eqs(26), (27), (28), and algebraic form of the shock dynamics as in Eg). In other

. - o words, what is called the rigid body approach does not pre-
p(ty)=Ilgp(ty ) —e(l— Iy p(ty) if ¢(q(t))=0  clude the incorporation of deformation effects, though the
(29) way they appear in the dynamics may differ from the usual

and spring-dashpot formulations. This is the case of the Darboux-
Keller's shock equation§l8]. Clearly, in general, a model
supp u) C{t:(q(t)) =0}, may mix rigid body modelling featureécomplementarity

conditions, restitution coefficientsand compliancedefor-
mation of the bodies that contact). In this section compliant
One notes that the impact law i29) is equivalent to the models are to be understood essentially as those models that
ones presented in Section 3[28]claim 6.1). Let us denote give rise to ODEs with switching vector field and constant

u=AVep(q), \=0, almost everywhere. (30)
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dimension, but not to MDIs as in EqR). Studies based on  One major and still largely open modelling problem is
continuous mechanics for the bodies modelling and contantt of multiple impacts with or without friction.
complementarity condition§60] therefore do not fall into
the type of compliance discussed here. 4.2 Compliant models

Hyperstatic systems:In the case of hyperstatic systemssping-dashpot model: A compliant model that is often
(95% of all real systemdhe Lagrange multipliers cannot beyseq is a spring-dashpot model. The linear spring-dashpot
calculated uniquely, as is well known. However, the accghodel possesses some strange properties which are often ig-

erations are uniquely determinp4B,70,71]. The reader maynored or tolerated in the literature. Let us consider the fol-
think of a chair on four legs standing on rigid groundiowing dynamics:

Clearly, for reasonable applied external forces—iestnange .

forces that create right-accumulations of impacts like in - | —kg—dq if q<<0 34
Bressan’s counter-examplel06]—the acceleration of the ma= 0 if q=0. (34)
chair is unique since it detaches if the normal force compen- . .
sates for gravity, or it stays at rest if it does not. This showt US considem=1, d=3, k=1, q(0)=0, q(0)<0. The

that if one is not interested in computing exactly the conta\é?lues of the pgrameters are chosen S.UCh that the mass
forces, such inconsistency is not bothering. crushes the spring-dashpot and there is no subsequent de-

Energetical behavior: The energetical coherence can bégchment: this is a plastic impact. Numerical calculations

in some cases guaranteed by the dissipativity propertiesycl)‘?Id .F kg —dq=6.86 exp( 2'6&. 0.14 exp( 9'3&
; . . nd this contact force can take negative values which would
the schemes. At least this holds for certain choices of the e . i
o - . . correspond to some “gluing” effectéwhich obviously are
restitution coefficientye=0 in case of sweeping process

: e ~~““not the goal of this model). However the impulseFdt) is
with f:'.ft'tc.m [96]’ﬁ9r. Sa?]? Viu?t of n(t:>rn|1[a7l asrﬁ_tangentlafl positive, which explains why this model provides a lirtas
& restitution coemcients for Amtescet all £,64]In case of 544 diverge to+« in a certain way)hat is compatible
multiple impacts). In [55], an estimation of tHeiscrete-

. . with rigid body collision modeling18,53].
time) energ(;jy 1S allso. gade for :ﬂe [0’13' . Compliance location: The first point is about which sort

i Impacl:t Iet.ectlorfL home scnemes .0 not require ar]: eh>i§f compliance is to be modeled: local deformation at the
plicit calculation of the Impact times: convergence of thg, ¢ point? Or global deformations distributed in the bod-

discretized solutions towards a solution of the continuouss ¢ in the kinematic chairfinite-element-like models

problem is assured so one does not need a special modulf6r6f,109'113_116], or elasticity at joirfts17] for instanceo
detection. Decreasing th@onstant)integration step auto- el the vibrational effects? Or both? A discussion on the
matically guarantees the improvement of the numerical Isjationships between compliant models and rigid body mod-
_sult. Th-|s is the case for the time-stepping schemes descriRgd can pe found ifi24]. In [118, the domains of application
in Sections 7.2, 7.3, and 7.4. In other words, such schemgs,arious rigid body(also called stereocontaatiodels and
do not requirgnor provide)the accurate determination of thecompliant contact/impact modelslewton’s, Poisson’s resti-
timest, and a specifi¢possibly time consumingprocedure tion, Hertz’, Saint Venant's impagdtsre discussed from
of local computation. They will therefore be suitable wheRheir respective time-scales. It is argued that multi-rate/multi-
one does not desire a very accurate knowledge of the dynagsthod integration codes provide better results. A simulator
ics at the contact points and/or the time of contact, but iRas been implemented that uses Gear’s multi-rate integration
stead is content with a global picture of the syst@g, de- [119]. This type of arguments is consistent w[th20] who
tection of particular orbits or attractors proposes to mix multi-rigid body with finite elements meth-
Restitution laws: The restitution coefficients need not abds, and also with the general message at the end of this
all to be constant. They can incorporate dependence wétirvey.
respect to initial relative velocity, material properties, shapes, Impact detection: Notice that the impact detection also
dimensions etc, which take into account the influence of glexists in compliant models since one has to compute the
bal and/or local deformations and sources of kinetic energgsition at which contact is made so as to switch to the new
loss during the shock. The derivation of such coefficients hasctor field. In case of stiff equations and too large integra-
been and is still the object of research works. In particulafon steps the energetical behavior has to be carefully
vibrational effects and transmission of energy in multiplehecked, because long run simulations may lead to wrong
impacts are quite fundamental issues. Some recent resultsraggilts(energy loss or energy gains).
very promising[107-109]. Integration step: The integration stefpp has to be chosen
LCPs: The resolution of LCPs may create some prolsatisfyingh< ©O(1/,K) wherek is the contact stiffness since
lems, however this is a topic that supersedes mechanikhe time of penetration(say, of deformation)is itself
[110,11] and which is the object of many research workg)(1/\k) [53]. If one wants, for instance, to calculate 100
see Sections 3.1 and 6.6. points during the shock and witk=10'° N/m (a physical
Global motion analysis: It is known that nonsmooth value in many instances like gears, pinions, systems with
complementarity modeling allows one to simplify the analyjoint clearancg121]), thenh=10"" s is required. If some
sis of motion and to permit the study of first-return 1D Poirreal-time applications are required omnifis very large(it can
caremaps, which would not have been possible with conbe =10* in granular matter, think of a mere sandpijléhen
pliant models of contadi112]. this may be an obstacle. Notice that some authors recom-
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mend the calculation of at least 1000 points for each colhocks(such as Newton’s cradleit can be shown that the
sion to assure a good accuracy of long run simulat[d®g. collision outcome is quite sensitive to such parameters val-
Clearly, real-time applications—or even fast enough numeries[18].
cal tests—are impossible with such integration steps, see exRemark 6 (Coulomb friction): The same type of discus-
ample 1 below for numerical values. Another important poirsion could be done about the friction model. All the algo-
is the fact that, in practice, impact times may be quite closghms described in this paper and which incorporate fric-
one to anothef107],[[54], Ch 4, due for instance to micro- tional effects use the Coulomb friction model. On one hand it
collisions. If one desires to approximate correctly such high already difficult enough to properly identify and discretize
frequency impacts, one is led to choose a sufficiently l&argethis model, so that there is no need, from this point of view,
in order to numerically detect enough impacts. Such a choitecomplicate things more. And, as we pointed out in Section
for k is often difficult. 3.2, the main problem that we face is not the complication of
Example 1: Numerical results are reported ii21]who the dry friction model for one contact, but its formulation
chooses a Hertz contact model with stiffneks=6.58 and time-discretization for multiple contacts. On the other
10 N/m*® (let us recall that such contact model supposégnd, this model, though simple, incorporates already a lot of
low approach velocities and is valid for central impactghysical phenomena and proves to be sufficient in many
only). A slider crank mechanism with joint clearance is simisases. In view of the large spectrum of mechanical systems
lated. A predictor-corrector routine is used based on Adanigat have been simulated with the simplest model, ranging
PECE formulas. The simulation is performed over 30 s arigPm granular matter to buildings made of blocks and deep
its duration is 3.2 hours. A Baumgarte technigsee Section drawing processes, there seems to be little need to use a more
5.2)is used to stabilize the kinematic constraints. The resugg@mplex model. In particular, the sticking modes are quite
are not compared to any experimental data, and they do fgportant in many applications . . the physics points to real
concern the long-term dynamics: how does the scheme géscontinuities, and there is little advantage numerically in
have on |Onger simulation times? Is such an approach rea]noothing the diSCOﬂtinUity. The diSContinUity is here to Stay
istic for long run prediction and for more complicated syd21]). The simulation of a pile of rigid blocks will usually not
tems with several clearances and other unilateral contad¢gguire anything much more complex than Coulomb’s law,
both from the simulation length and the outcome accuracf@cause the phenomena other than sticking and sliding do
(Let us recall that certain mechanical Systems H{EIp|e not play a ma.jor role in the motion. HOWeVer, it will neces-
circuit breakers may include from 15 to 30 unilateral corsarily involve complementary slackness conditions for both
tacts, and from 7 to 20 bars: the identification of contafrmal and tangential directions, and consequently the need
parameters and the sensitivity of a long run simulation odr complementarity problem solvers.
come with respect to their numerical value may be a big Any more sophisticated model than Coulomb’s law that is
problem). The simulation duration may be a serious obstadfePe incorporated in the framework of the developments in
in certain applications. If one wants to simulate the systefliS paper, should at least satisfy the principle of maximum
on several minutes—and this may be needed in sorfiisipation, both for physical reasofwhat is the physical
instances—then the simulation length becomes a real pr(yg_lldny of a model that is not dissipative with respect to the
lem. supply ratthTFt?), and for mathematical programming rea-
Implicit algorithms may be preferred to explicit ones as £0NS (underlying complementary slackness conditions and
is known that they often provide better accuracy and stabilifriational formulations). Models of this sort have been stud-
for stiff problems. When an explicit code encounters stiff€d in[122,123]. More discussions on friction models in non-
ness, the integration step needs to be decreased to keep¥pQoth multibody problems can be found[81].
bility ([25] page 21). Implicit schemes have the tendancy to
filter out the high frequencies and therefore treat stiff ODE&3  Conclusions
as DAEs. Larger integration steps are allowed for the sarfiae principal drawbacks of the rigid body approach are in-
accuracy. However, real-time applications may require fagéterminate and inconsistent configurations, plus the need
enough algorithms that preclude the use of implicit discrefier discovery of multiple impact rules. First of all, since the
zations(consequently of iterative algorithms rigid body model has to be seen as a limit mo@dela sense
Physical parameters identification: In practice, the itis the model that contains the least physical information on
identification of the physical parametgidamping, stiffness, the processthese peculiarities are not surprising: the less
or any other coefficient that appears in the contact mjodéhformation, the worse prediction. However, the other ap-
may be quite difficult. Furthermore it should be recalled tha@roaches are not perfect, either, and possess their own draw-
some well known models like Hertz hinge on a particuldsacks. In[57,124], calculations show that elastic impact of a
stress law and are valid only for central impacts, for a simpjgrticle in an angle with a penalization, implies essentially
shock between two bodie@e, the line joining centers of unpredictable results after two reflections. Moreover, physi-
gravity coincides with the normal direction at the contactcal details can be introduced in a rigid body model, through
Collisions may be far from central in some applications, liksuitable restitution coefficients that may incorporate vibra-
colliding kinematic chains. Moreover, the influence of théonal effects(global deformationslike in [107], local prop-
parameters numerical values on the long run simulation oefties at the contact point, etc. Sg&8] and references
come may be important. In certain simple cases of multipteerein. A lot depends on one’s goals and on the domain of
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application which most often requires finding a compromisg@mulating rigid body motion is inefficient and has unpredict-
between the model complexity and its tractability: eg, deble accuracy in dynamic setting.. Notice that compliant
signing a stable feedback control algorithm or simulating thend rigid body approaches may also be mixed, seq 12§
long-run motion of a complex kinematic chain using sophisvhere rigid body and finite element approaches are mixed
ticated compliant contact models seems unrealistic in mdet collision detection.

cases. On the other hand, fine calculation of contact forces is

impossible with rigid body approaches since they rely on®a NUMERICAL ANALYSIS OF BILATERALLY

two-time scale of the dynamics and do not care about force®NSTRAINED MECHANICAL SYSTEMS
during the shock but only about the impulses of forces and

their effect on the velocity. Notice, however, that for some &f.1  Introduction
the reasons listed abovphysical parameters identification,From a general point of view, there are two main classes of
unpredictable motion for multiple shocks, gtasing compli- impacting systems: the ones whose orbits undergo collisions

ant models may not at all solve this problem. at separated instan{ge, there exists6>0 such thatt,, ,
In summary, some reasons that may motivate one to usé¢,+ 6 for all k=0), and the ones for which this is not true
rigid body modeling approaches are: (see also Section 6).

« Stiff ODEs are to be avoided for real-time applications or In the first case, there exist time intervals of strictly posi-
all tasks which require fast simulatighecause stiff ODEs tive measure on which the dynamics are ODEs or DAEs.
usually require implicit algorithms The principal source One also finds in this category, eg, simple systems with pe-
of stiffness is the contact model. Hence, rigid bodsiodic impacting orbits(vibro-impact systemg6], bipedal
contact/impact modeling allows one to avoid stiff differenfocomotion systemg15], etc). However, even for very
tial equations. simple nonsmooth systems one cannot always simulate the

- Estimation of contact parameters for compliant modef§otion by combining contact detection with DAE or ODE
(stiffness, damping, etman be quite difficult in practice, solvers. Consider a rigid ball falling to the rigid ground,
and the collision outcome may be highly sensitive to suéthere one models the elastic collision with Newton’s colli-
physical parameter values. sion law O0<e<1. Then there exist an infinite number of

° S|mp|e Comp”ant models of contact may essentia”y b@”iSionS in a finite time-interval. In a variation to Zeno’s
useful for mathematical aimstudy of convergence of pe-argument, one can then argue that such a situation is impos-
nalized problenfd and justification of rigid body restitu- sible, since it requires an object to pass through an infinite
tion laws, [18,51,53,74,75,125], but not for numericanumber of collisions in a finite amount of time.
simulation due to some fundamental drawbalckas]. Obviously, the second class is the most general one, and

« Rigid models serve as a convenient model for control g€ one which creates the most interesting challenges in
sign purposebacklash, bipedal locomotion, manipulator&€™ms of mathematlpal anegS|s and modeling. We shall come
during complete robotic tasks, liquid slosh phenomenoR2ck later to which ingredients one needs to construct a good
etc) especially when the impact cannot be controlled bélmulatlon spftware. But it is useful in thls. setting to recall
cause the input values should then be chosen too lafjst the particular features of DAE simulation.

(consequently the collisions are autonomous . .

* Provide good predictions for long term motion simulations,'2 Simulation of DAEs: General methods
especially if one is not interested in details of local colliFor unconstrained dynamical systems, there are many dis-
sion (or contact)behavior that involve complex materialCretization methods available. Discretization formulas for
characteristics, but rather in the effect of collision on Bnear systems can be found[ih28]. For nonlinear systems,
global scale, for example the manner in which vibratiori§€re are many numerical methods available to solve Ordi-
progress from end-effector to base in a flexible robotRry Differential Equation¢ODEs), see, ed129,130]. This
manipulator due to impact forces or impulses. is not .the' case for Differential Algepralc EquatpmAEs):

« It can provide the basis for a tool that is easier to use §ptablishing solvers for DAEs is still a very active research
design engineers. area. Overviews of the theory can be found25,29].

« Whenn is too large(like in granular mattérpenalization Numerical simulation of the conventional formulation of

models with high stiffness become impossible to simulafe cOnstraineéd mechanical system exhibits severe stability
due to too long simulation timéo say nothing about first Problems, already, for simple systems. Since simulation of
and second items). multibody systems is an activity with a long history, several
computational procedures have been proposed to overcome
To end this part, let us cite Baraff {127]: Although the the stability problems. These include techniques where a dis-
penalty method is useful in some contexts (namely largeiiiction is made between dependent and independent vari-
static environments) it has become increasingly appareables (a solution is sought through singular-value-
that the performance of spring-and-damper systems faecomposition), equilibrium correction strategi¢$31],
penalty formulations[132,133], coordinate partitioning
“A fine examination of the planar impact of a particle in an afigk75]shows that a methods[62], predictor/corrector algorithnijd34], a differ-
penalized problenfdamped linear spring-dashpgtields Moreau’s rule Eqg,11) and ential algebraic a roac[66 67] and proiection methods
(12) for generalized soft impacts in almost all the casiesa measure theoretical g pp ! ! proj

sense). [135].
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In the literature on numerical integration, DAESs are ofterequire iteration processes to obtain values within a certain
characterized by their ind€e25,29,136]. Roughly speaking,predefined error level: a number of corrector steps must be
the index equals the number of times the constraints mustdggplied.
differentiated to arrive at a set of ODEs. The index can be
viewed as a measure of how far a DAE is from being af3  Application to mechanical systems

ODE. DASSL, designed by Petzold in the early eighties, Buring simulation studies of unilaterally constrained me-

capable of solving DAEs which have a low indéx37]. . . L
. . . chanical systems an expression of the Lagrange multiplier is
Constrained mechanical systems often have an index equ :

. . often used as a model for a force sensor, or simply as a
to three[29]. It is well known that index three systems “@onlinear expression for the contact force, expressed in terms
not be solved directly by standard ODE solv¢i85,138]. P » €XP

Thedhnamics i 7) have b usea 71 ecuce e 2 TSI, e Sonsrary renie ane e ool
index. A multistep(BDF) method with variable step-size,

. . _ _ . . T
combined with a Newton iteration root-finding aIgoritth In the right-hand-side. Under the assumption fat ()

. has full-row rank, and omitting friction terms, one can ob-
has been shown to converge. For constrained mechamﬁ;ﬂ )
ally

systems, stable numerical algorithms are few, and are usu '

available as research code only. A summary of DAES simu- _ _ _

lation algorithms applied to bilaterally constrained mechani- ™~ ~IVe @M (@VH@)] (VS (@M (g)

cal systems can be found [@6] (Ch 7.2).
In engineering practice, the constraint stabilization tech- X (w+0(4,0)+ VT (9)a).

nique presented by Baumgafte31]is often applied because

it is conceptually simple and easy to implement. Differenti- (35)

ating the position constraint twice gives(q)=0. It is well

known that the numerical solution of this equation can

In [66], it is noted that, although E@35) provides an ana-

- kWtical expression for the Lagrange multiplier, it is not al-
]lcms;able, r?nddcap Igad lto values¢a$]q) an%_‘?(%) that lare ~ways a good starting point to obtain a numerical solution.
ar from the desired value zero. The modified acceleraligf,e nresence of numerical errors leads to violation of the

. . . N 2 _ . B
equation:¢(q) +2a¢(q) + °4(q) =0, is (asymptotically) .onetraints and eventually leads to a drift-off from the con-

stable fora>0. The additional tgrms in the Ife\tter eq“at'or_%traint manifold. As a consequence, one obtains physically
can be seen to act as a proportional/derivative control with

i ) eaningless solutions. Usually, for consistent initial condi-
gains equal to @ and 5°. Baumgarte also presented thg;,,s it'\yill take a longer period of time for the drift-off to

proportional/integral counterpart, for the asymptotic stabilljecome noticeable. And if the drift-off remains small, then
zation of holonomic constrainfd39].  the corresponding approximate solution may well be accept-
One problem can readily be seen from the formulation %fole. But, generally speaking, a growing drift-off can not be

the stabilization technique: how to choose the coefficimtsaccepted_ Striking examples of drift-off can be found66]
and B? Since the stabilization term can be interpreted aSaRd[135].

proportional/derivative control law, it is noted that the use of Fq; ease of notation. let us examine drift-off in a first-

the stabilization term shifts the poles of the system and altgfgjer formulation(which can be obtained, for example, start-
its dynamic behavior. The choice ef and 8 is merely a ing from (6) by settingx"=(q",q")", and redefinition of
matter of how fast we want to damp out the constraint viggrms).

lations. Large values o and 8 lead to high-gain feedback
laws. Note that the choicae= 3 yields a critically damped ~ Xx=f(x)+g(X)w+g(x)CT(x)\
system. It is this choice that is commonly used when Baum- p(x)=0.

3 H H 1 2
garte’s method is applied. [1140], the gains & and 5" are Instead of finding a discrete-time expressionXatirectly

related to the step size that is applied in the numerical algl%m (36) another sequence of steps is advocatedi6s.
rithm. There it is remarked that their choice of gains tends is sequence of steps can be describedisaretize first
damp out constraint violations faster than any other choicsqjbstitute nextcombine later. This approach to simulation
but accumulation ofintegration)errors cannot be prevented.has been applied to restricted ODEJ@6] and to boundary
Furthermore, decreasing the step size results in larger gang, e problems of Partial Differential Equatiofl8DEs)in
As a result, the damping terms dominate the numerical Sot‘i'44]. But the original idea can already be found[145]

tiop pLocess: ';hey m?ke the system be(;ome numeri(f:ally Sillhere it is applied to index one systems with linear, station-
A further analysis of Baumgarte’s method can be found igty ¢onstraints in combination with the Forward-Euler inte-
[141]and[142]. In spite of these drawbacks, the constran&yaﬂon method

stabilization technique of Baumgarte is often applied since’it First the equations if86) are discretized. We will use the
avoids iterative solution of algebraic constraints. This is iﬁorward—EuIer method only to illustrate the concepts, al-
contrast to, for instance, a predictor/corrector algorithm agglo, 41 in general it is not advisable to simulate mechanical

some of the other methods. For instance, the prOjECtiggstems using the Forward-Euler method. This gives
method proposed ifiL35]uses a combination of the numeri-

cal solvers known as Backward Difference FormyBBFs) Xi+1= X+ h[F (%) + g0 )W; +g(x) CT(x)\ ]
and a Gauss-Newton projection method. These algorithms| p(x;.1)=0.

(36)
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Note that the constraint is treated in an implicit mannedsing Eq.(7) one also obtains:
The notation>\id is used to distinguish the discrete Lagrange ¢(q( )
multiplier from the analytical one in eg35). The idea now  u%=—[V¢T(q)Vh(q)] | Vo' (q)q+ . (43)
is to obtain a discrete formula foe? directly from Eq.(37).
Let ¢; denote the numerical error at stepand let us assume Observe that analytically the constraints are strictly satisfied,
here thate; is a constant. First assume that the matric€s and one haa =\ and uf= u.
and H= gp/dx are constant. The discrete generalized Using the “discretize first—substitute next—combine

Lagrange muItipIien\id is given by later” sequence of steps, a numerical method can be obtained
that has the property that it is robust with respect to errors in
A= —(CC) | H[ f(x)+g(x)w;]+ L) (38) the initial conditions, and stable with respect to errors made
I

during numerical integration. Moreover, the use of the dis-

We will refer to p(x;)/h as a compensation term in the reCrete generalized Lagrange multlpllarg and '“‘I does not

mainder. One can now obtaf66]: yield numerically stiff equations when the time-step is re-
duced: the termh in the denominator is canceled again.
p(Xi+1)=hCCe. (39) Since the compensation term is fixed on each time-interval, it

is easy to combine the method with variable stepsize meth-
ods (see[146,147for a variable stepsize method). The nu-
merlcal method can be extended to cover constraints
q?(q t)=0, ie, constraints that depend explicitly on time.
These constraints arise, for instance, in dynamic path plan-
ning of robotic manipulators, and also in flight-path manage-
ment of airplanes. Most of the theory remains valid, but in
i the case of, for example, Runge-Kutta-4 there are additional
p(xi+l)=p(xo)+hz C(xj)CT(xj)e,—. (40) requirements on higher derivatives of the constraints that
1=0 need to be satisfied. This still leads to stable numerical simu-
From the latter equation, it follows that once an error is mad@tion of bilaterally constrained dynamical systems.
the solution is not on the constraint manifold. Now again

consider the special case where=¢, Vie N, with e con- g NUMERICAL ANALYSIS OF UNILATERALLY
stant, and tha€ is a constant matrix. This gives CONSTRAINED MECHANICAL SYSTEMS

No error accumulation can take place. Indeed)-#0 one
hasp(x;,1)—0, as desired.

In contrast, if one used the analytical expression of th
Lagrange multiplier as in Eq35) it is shown in[66] (see
also[65], Ch 9 that one obtains, with neglect of the higher-
order terms:

P(Xi+1)=P(Xo) +t;CCe. (41) 6.1 General motivations for new specific schemes

Note that it makes no sense to let-0 sinceh does not The main problem in simulating DAEs is the stabilization of
even appear in Eq41). And if t;—c, for instance becausethe constraints. For MDIs, additional difficulties occur:
we are interested in an equilibrium solution, one even hasComplementarity conditions are an essential part of the
thatp(x; 1) —c°! Even if the initial conditions are consistent dynamics and have to be carefully incorporated into the
with the equality constraints, error amplification is inevitable numerical scheme. In particular, Baumgarte’s stabilization
due to the presence of numerical errors. Each error sourcéechnique is not suitable since the resulting multipliers’
will contribute to the drift-off. This is one of the reasons why signs are physically meaningless, and cannot be (esexh
many simulation codes project the state on a ttmg back  in the codimension one constraint cage detect release.
to the constraint surface for example using Newton-Raphsonpetection of contact instants and re-initialization of the
before proceeding the time simulation. state. In the case where one is able to detect analytically

The expression for the discrete generalized Lagrange mulwhat the precise impact point and time are, there are still
tiplier A¢ is useful also in combination with other explicit problems in the numerical approximation of these in-
and implicit integration routines, and for nonlinear con- stances. First, one must be sure that an impact is not
straints as well. For this one treats the compensation term agissed(see Section 6.5). Next, since machine zero is not
a constant on an intervalk; ,t;, ;) and evaluates all other identical to zero, there will almost always be a small mis-
functions in the points needed by the numerical method thamatch between, for instance, actual impact location and
is applied. For application to mechanical systems, the ex-simulated impact location. It must then be decided whether
pression for the Lagrange multiplier on intervdls,t; ;) a collision will take place or that the bodies remain in
now reads: contact with each other. Clearlg, priori determination of

all possible contact points, necessarily including the veloc-
)\;1: [V (M gV d)(q)]l( Vol ()M Y (q) ity information as done i||j148_]and[l49], is an asset. Last
but not least, one must decide whether or not, after con-

) strained motion a release takes place. Since zero force

) T o Valge))gq(ty) level can not be maintained numerically and since DAE

X(w+Q(q.4)+Velq)g+ ——F—|. solutions do not yield exact satisfaction of a constraint,
also in this case priori determination of all possible re-

(42) lease points, including the velocity and force information
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is a benefit{149]. In Section 6.4 we will come back tos The commutativity property of the vector fieldg(x)
these difficulties in relation to event-driven software R" iel,... m allows one to decouple the MDE

schemes. , =f(x)+g(x)w into simpler systems for which existence
* Accumulation point of the sequencé=o occur fre- ;4 niqueness of solutions are easier to prove. These

quelnttl_y. ﬂne han ttr? mposi F? _th(esholt[jlg (r)]derl\r/](_e rIlocalcommutativity properties are always satisfied for mechani-
analytical forms of the Impact Foincaneap —whic cal systems, but they do not at all solve the problem of

are similar to the bouncing ball dynamics. Foe=m=1, multiple impacts 18]
the transition to the permanently constrained mode can bEff f(f) andpa(x) i .Eq (45) are linear then the whole

decided via a threshold. Far=2 and/orm=2, things th tem is I I On th ¢ i
complicate because generally the coordinates are dynamirjonsmoo system IS finear as well. Un the contrary, lin-

cally coupled. If one constraint is decided to be saturatedt@lty Of the continuous vector field in a mechanical sys-
because numerically one is unable to detect rebounds an{f™M Subject to a unilateral constraint does not at all imply
longer (ie, computer accuracy may be attainethen the ~ linearity of the total systentsee[18], Ch 1.
overall motion may be drastically modified. In general, the The system in Eq(45) and the developments [156]do
methods based on impact detection will provide good re-hot allow for finite accumulation points of discontinuities.
sults for: e The productg(x)w is quite meaningful for unilaterally
—Periodic motions with finite number of impacts per pe- constrained mechanical systems becag¢e) contains
riod, for all n, m. only positions and only the velocities are discontinuous
—Periodic motions with finite or infinite number of im- [18,87]. Otherwise specific tools have to be developed to
pacts per period, fon=m=1 [151-153]. render Eq(44) meaningful. The formulation in Eq45) is
The multiplicity> of the shock is not easy to calculate, see a way to overcome such problems.
works on Newton's cradl§l54]and on impact of a particle « The abundant literature ofyapunov)stability properties
with an anglg/73,155]. of impulsive differential equations as in E44) deals
only with the stability of the fixed point af= f(x), where
6.2 MDIs are not concatenation of ODEs, DAES, MDES Fhe rem'aining terms are considergd as disturbgnces. Stabil-
T ) ) ] . ity studies of unilaterally constrained mechanical systems
It. is important to realize that an MD! asin EC) is quite require other tools. Mainly becau§é8—20]i) they are
different from ODEs, DAEs, Dls: la Filipov, MDES’ of the hybrid dynamical systems with different modés other
form words there is a natural Discrete Event part whose states
(44) correspond to the modes associated to the index sets of
sticking and sliding contactsji) the fixed point of the
wherex e R", and the control inputve R™ is of bounded  overall system may not at all correspond to the one of the
variation, and even MDEs as [A56], which are defined as: continuous dynamicéhink of the bouncing ball example
in which the vector fieldj= — g does not even possess any

x=f(x,t) +g(x,Hh)Hw, X(07)=X,

x=1(x) L fixed point!), andiii) the stabilization goals may be quite
X(tg)=x(t ) +a(x(ty)) if t=t, (45) different depending on the tasfstabilizing jugglers or
x(07) =X, hopping robotd14] is totally different from stabilizing a

manipulator along a time-varying trajectory including free-
for a sequencét,}y~o, wheret,— +~ ask—+=, ty may  motion, constrained motion and impacting phase%20]).
or may not depend 05(7. The fOIIOWing fundamental dis- . Nonsmooth mechanical systems as in Ea$and(3) have
crepancies between the last two differential equations andg|yutions which are generally discontinuous with respect to
our MDIs are[18,87]: initial conditions[51,39]. This is not the case for MDEs as

* It is clear that the overall dynamics with complementary- j, Eq. (44) as can be easily seen taking, for instance
slackness mechanical systems is far from being only a dif-g(x t)=g(t) [158].

ferential equation with impulsive inputs. The way the segt
of indices for active constraints and sticking/slipping con-
tacts are refreshed is a fundamental part of dmgorid)
system[157]. Only the very simplest dynamics of systems
as in Eqg.(2) seem to resemble E¢45). But they are of
different nature, as explained below.

A lot of work has been dedicated to simulation of bilater-
ally constrained mechanical systems, since they are index
3 DAEs(see[25]for further references and see Section 5
But as we said above for hyperstatic systems, LCPs have
to be solved at each step and integrating switching DAESs
is far from being sufficient. Baumgarte’s method is not

suitable since it does not guarantee that the sign of the
5The multiplicity is to be understood here as the number of shocks that the system

undergoes when it strikes in a neighborhood of the singularigkoflt should perhaps mU|tip|ier has any phySical meaning-

better be called the ord@ of the collision, which can be simple or multiple. In this .

sense, the ball falling on a ground undergoes, in finite time, a simple shock of order |n summary, the MDlIs in EC]S(.4), (22), (26)—(28), and
infinity. A 2D particle striking an angle undergoes a 2-shock of finite or infinite orde : f :

depending on the angle, initial data, restitution coefficients. Actually, these two notio(@z)—(33) are quite different in nature from the other types of

require more accurate definitions: @<+ then one just faces a series of simpleMDES. They are not a simple concatenat(@lxcept in very
shocks. So the only relevant caseds- + . .

SMeasure Differential Equations. simple cases)of ODEs and/or DAEs separated by re-
"Evidentlyk here is an index and has no relationship with the stiffness in Section 4Ritializations of the statéthe velocity). In order to reinforce
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these ideas, let us consider the following third order systdn€P(\) does not imply at all the stability of the overall
([39], Ch 7.3;[159]), which belongs to the class of Lineaintegration scheme nor convergence of its solutionhas

Complementarity Systenijg2,160]: —0. This fact is quite similar to what occurs for the
. continuous-time dynamicg,18] Remark 5.18. Another ex-
X1=Xz ample that demonstrates the importance of (tiscretized)

C complementarity conditions can be found @1]. It concerns
X2= X3 a bouncing ball, whose dynamics is in Hamiltonian form
$ Xz=\ (46) Wwith state @,p), discretized by a implicit Euler midpoint
rule. If one uses &\, L (q;,,110;)/2=0, then the effective
A=0, x,=0, Ax;=0 restitution is not elastic and the energetical behavior is de-
L x"(07)=(0,—1,0). sastrous. If one uses<O\;L (p; .1+ p;)=0, the energetical

behavior is perfectly elasti¢this had also been noticed in
The state has to jump initially to the valug'(0") [28,96]). P y ¢

=(0,0,0), and with\(0)=0. Then the system stays at rest |t has been stateld 61]that “Differential/Algebraic equa-
keeping the same state for &#0 (note that the DAE cor- tions are not ODEs.” We conclude thatteasure Differential
responding to Eq(46) reduces to the trivial system=0, |nclusions that represent complementary-slackness mechani-
A=0). Let us apply the following backward Eulémplicit) cal systems are not concatenations of ODEs and DAEs, nei-

scheme to the system {@6): ther MDEs.
Xi+1— X
%:Axwl"'B)\Hl (a7)
X1i+1=0, Nj41=0, Xgi+1\j+1=0. 6.3 Simulation algorithms

The matricesA andB are easily identifiable frort46) andx; It is difficult to classify the existing methods of numerical
denotes the discretized value wfat stepi. Roughly, one integration since there are many different criteria that can be

constructs a LCP whose unknownhis, ; by insertingxy . 1 _used to fulfill su_ch a task: acceIeration-force/velocit_y-
into the complementarity conditior{svhich requires thatl( MPulSe; computation of the contact forces or not; resolution
—hA) be invertible, which is true fdn small enough). This ©f LCPS/NCPs for all times, at certain times, never; friction-
way of doing is classical in time-discretization procedure!€ss constraints; Coulomb friction, regularized Coulomb;
see Sections 7.1 and 7.4. Under certain conditisasisfied Signorini conditions; polyhedral approximation; revolution
for this example)the constructed LCR() in Eq. (47) pos- cone of friction; 2D/3D order of the discretization, contact
sesses a unique solution for sufficiently sntallThe initial Point; finite-element methods, quasistatic/dynamic, inclusion
state jump is computed by solving the LCP at the first stepf complementarity conditions in the discretization; calcula-
and one finds>(1yo,)\0):(0,1/h2). Then the solution should tion of impact instants or not; proof of convergence towards
converge to the null solution. The application of the alga solution of the rigid body dynamics or not; inclusion of
rithm in Eq. (47) yields [39]: (xy;,\;)=(i(i+1)/2h,0) for multiple shocks; implicit or explicit form of the numerical
i=1. Moreover it can be shown that the nonimpulsive part scheme etc. Followin§l01], we choose the following clas-
x, satisfieg|x;|= Nn(N,—1)/2h%? whereN, is the integer sification in this papeKanother classification is chosen in
part of T/h for someT>0 and|-| is the Euclidean norm. [115]):
Thereforex, diverges ah—0! « Event-driven schemes: one integrates the DAEs between
Following [72], let us consider linear DAEs. If the initial state re-initializations. One needs some basgredients
values are inconsistenie, they do not satisfy the con- that we will describe below.
Straints), then fixed-steb-step backward differentiation for- « Time-stepping schemes: one considers a time-discre-
mulas (BDF) produce solutions which may diverge during tization of the nonsmooth dynamicéMDI) including
the first steps ab—0, for k<6. However, they ar@(h*)  complementarity conditions and impact rules. The whole
after a maximum of fh—1)k+1 steps, wheren is the DAE  set of discretized equations/conditions is used at each step
index. Therefore, the example in Eqd46) and (47) shows  tg calculate the future state.
that one should be very cautious when applying an impligt penalized-constraint schemes: the unilateral constraints are

results of convergence which are available for ODEs or

DAEs may absolutely fail when considering complementar- Consequently, we will first describe the main ingredients
ity systems. Indeed it is really the complementarity condthat any good event-driven software should incorporate, and
tions (and consequently the LCRy)) which create the diver- then we shall describe the most advanced methods that have
gence phenomenon. The initial jump drives the state awB§en proposed in the recent years by several authors and
from the constraint, but convergence is not recovered aftgvhich incorporate(implicitly or explicitly) such modules.
wards. Fortunately, this sort of problem is shown not to occévidently we do not deal with penalized schemes and stiff
for linear mechanical systems [89,159], and more gener-ODEs here, as announced before. The problem of discretiza-
ally for dissipative systemgee[117] for details on dissipa- tion of the continuous dynamid®©DEs or index 3 DAES)

tive systems theory). The example in EG&6) and(47)dem- has been discussed in Section 5, as well as the problem of
onstrates that the existence of solutions to(tfiscrete-time) constraint stabilization.

18



6.4 Overview of modules for event-driven schemes Depending on the characteristics of the numerical solu-

It is clear that there is a need for simulation tools that prdion, it may well be thaip(q(t;.1)) is significantly smaller
vide routines that can be used to simulate MDlIs. In the ran zero. This implies that even with a fixed step-size, so-
mainder of this section we will discuss some of the ingredfalled step back is necessary. Step back means that the time-
ents that should be incorporated in event-driven simulati§tePh is adjusted and the simulation is started again from
softwares. It must be stated that even for bilaterally cofime ti. This means that the same dynamic equations are
strained mechanical systems, commercial tools are not ab§fAlved again. And if the new estimate @ft; .. ;) is not sat-
dant and in many cases the numerical code that implemel$f@ctory, again step back is necessary. Clearly such an itera-
the transition rules and discontinuities due to uncontrolldtye procedure may increase computation time significantly.
collisions must be supplied by the user. In this section an The method of false position or regula falsi can be used to
overview of different modules is given. establish the time-instant where a trajectory makes contact
In order to simulate unilaterally-constrained dynamica¥ith the boundary set. Since we assume stable numerical
systems, one needs to know whether or not there will belregration, the numerical approximated trajectory and the
jump in the state or its derivatiVghe acceleration), and if so, analytical trajectory are related through the accuracy of the
how this jump is made. A simulation of contact must usBumerical ODE solver that is used, and to the approximaton
models for the collision maps, the transition rules and tigfror on the initial datgthat is needed after each impact).
dynamics. For affine nonlinear systeri85,149]give algo- This means that it makes sense to search for a time instant
rithms that compute all possible contact and release sets dfffat is close, but not necessarily equatto The step-size is
line. Using these sets, explicit expressions for the collisi@dapted to a valud e (0,h). This gives ¢(q(t;+h))~0.
maps can be made off-line as well. During simulation, oncehis approximation of the contact point may already be ac-
the contact point is known, a simple check followed by oneeptable to the user of the simulation program. And using
function evaluation then suffices to obtain the desired resultsis value ofh, a linear(or nonlinear)interpolation with the
Due to discretization however, there remain a number bfimerical value of the velocities at tim¢sandt;,; may
problems with respect to simulating uncontrolled and coive an acceptable value of the velocity component at con-
trolled contact. The problem witfun)controlled contact is tact. But we can go on by restarting the simulation from time
the approximation of the time that contact with the boundaty by usingh as the new time-step. Now the obtained numeri-
set is made. The problem with controlled contact is the valial approximation is checked again to seegifq(t;+h))
dation of the transition rules for contact and release. Sine€0. If this holds then the procedure outlined above can be
real-time simulation often involves trade-off between accuepeated until a point is reached for which the position con-
racy and computation time, if65] (Ch 9), parameters arestraint is not satisfied. The approximation of the time of con-
introduced to aid the user of a simulation program to cugact, t, is now set equal to, +h, whereh is the last update
tomize simulation to his/her specific needs. such thate(q(t; + h))~0. Next, the timet; +h is also used
The introduction of the Lagrange multiplier makes deted¢e approximate the velocity vector at the time of contact.
tion of contact and release during simulation studies no8ubsequently we set the time-step to its old vdluegain as
trivial, as pointed out in Section 3.1. For instance the dedhe time-stefh may be too small to maintain real-time simu-
sion that a release takes place cannot be based on a chatikn. A parametery should be introduced to set an a priori
whether or notp(q)>0, since an active Lagrange multiplierbound on the number of iterations. The trade off between
will ensure thatp(q) =0. It must be decided when tde)ac- accuracy and computation time is then put in the hands of the
tive the Lagrange multipliex. The transition from free mo- user. In[162,163],h is divided by two until ¢(q(ty)) is
tion to constrained motion, and vice versa, or plastic collsmaller than a given tolerance. Another adaptive step-size
sion detection can be based on the following analytical rulesethod is proposed ifi164]. Various methods similar to
[43,149] for codimension one constraints what is described above to computé are discussed in
[151-153]as well as their influence on the scheme order
when combined with Newmark, RK24 and Dormand-Prince
RK (the benchmark is a one-degree-of-freedom system with
(48) a single constraint).
Release rule: ifA<0 then deactivate. Even though the procedure outlined above is simple, it
still uses an iteration process. If the time needed to execute
First we discuss the problem of determining the time th#te procedure violates real-time simulation, the initial linear
a trajectory makes contact with the boundary set. Assunmerpolation step may be replaced by a higher-order interpo-
that at timet; there holdsp(q(t;))>0. If contact is made in lation method using information at velocity level. Another
the interval €;,t;.,) then this can be detected only ifpromising approach is to use in the iteration process itself
#(q(t)) - #(q(ti+1))<0. This also implies that if a con-only a part of the dynamics equatioM (q)q=w. This
trolled contact and a controlled release take place in the ithoice is motivated by the fact that the contact set is inde-
terval (t;,t;1), (and the motion stays on a boundary for @endent of the system matricks andQ and the importance
small period of time), this can be detected numerically onlyf the matrixM in calculating the impulsgl49]. This is still
if the time-step is small enough. We assume that this is the active research area for real-time simulations of unilater-
case. ally constrained robotic manipulatofsee also Section 6.5).

Contact rule: if ¢(q)=0 and

Vé'(q)g=0 then activatex
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Next it must be determined whether one is dealing with a As pointed out in Section 2.2, it may not be possible to
collision or not. In case plastic collisions are considered, adefine all the constraintg;(q)=0: there would be too
ter detection of contact, the Lagrange multipliers are actinany! Hence one usually employs procedures that eliminate
vated and the motion remains on the surface, see(48). uselessconstraints, ie, those bodies which are too far one
When elastic collisions are possible, there is another numersm each other to be likely to collide in the next future steps
cal problem sinced/dt{#(q)}(t*) will in general not be of integration. Consequently one implemerndagh testshat
zero numerically. This problem is similar to the problem igelect the bodies which may collide, afide teststo com-
bilaterally constrained mechanical systems when the reactisme the collision time§120]. Rough tests usually consist of
force is approximately zero. A heuristic approach is thsurrounding the bodies by simple volum@pheres, boxes)
following. If at a contact point one has that and watching whether they overlap or not. Concerning the
< d¢/dt(q(t*))=<0, for a user defined value of the paramfinest tests, the main approaches (@ee[166]for a review):
eterv, then the motion is assumed to proceed on the boundClassification of typical contacts and geometries
ary. If d/dt{#(q)}(t*)<v(=<0) then the motion is to pro- [163,168—172]. In other words, process the real surface of
ceed by the use of an uncontrolled collision map. To detectthe objects and the type of contagircle-circle, circle-
release from the surface a check is made whether okfiot line, angle-line etc). These methods are essentially studied
<0, where)\id is in Eq. (38). If this inequality holds true, in the Mechanical Engineering literature. They are re-
then the Lagrange multiplier is deactivated. Since the com-stricted to certain types of geometries contained in the
pensation terms are usually much smaller then the value ohvailablelibrary developed for the software. If the bodies
A9 itself, these compensation terms have no influence on thigurfaces are simple enough to be described by analytical
decision[65]. curves, one gets an explicit functiap(q(t)) (see for in-

There remains a problem when the desifsinulated)  stance the developments[i®3]for the derivation ofé(q)
contact force during motion on the boundary is very small. from a local frame at the contact poinThe next step is to
But then controller design is also difficult: the slightest de- solve numerically$(q(t))=0-which can be done with a
viation from the desired path will mean that release takesNewton-Raphson method or a polynomial root finding rou-
place, although control is aimed at maintaining contact. Thistine, since in case of several roots Netwon-Raphson may
is the reason that in practice a certain amountaoistant)  compute the wrong zero and there is penetration before the

normal force on the surface is chosen. algorithm decides that contact has occurred. Others
[162,163]use a time step halving process unti{q(t,))

6.5 Collision detection between bodies =0 is satisfied within a specified tolerance. We have al-

This section and the next one concern a very important modfeady outlined this problem in Section 6.4. For instance,

ule: the management of contacts status. for two bodies with parametric surfaces(u;,v;,t)=0,

Approximation of the shapes and approximate calculationi =1,2, one hasp(q,t)= ¢1(uy,v1,t) — $2(uz,v2,t) and
of impact times are generally CPU-time intensive tasksone faces a nonlinear 5-dimensional root-finding problem
[120]. Many works have been dedicated to collision detec-[148]. These methods are however less fast and more com-
tion, eg,[148,165—16710 cite a few. Roughly this module Plex to implement than the 2-dimensional on&g7].
requires to calculate, explicitly or implicitly, the expressions For 2D systems, one can approximate the bodgs i
for ¢(q) and solveg(q) =0 (ie, determinate the points that €{1,-*,N} by polygons made of edges and nodés
are going to touch—which are not necessarily the ones whiciwo main methods are us4d20]: the node-in-polygon
are the closest at the instant of the computation, so severdpst(NIPT) and the ray-crossing approa@RCA), see Fig.
pairs of points have to bavatchedsimultaneously). Even in  2a,b, respectively. Letn; be the number of nodel; in
very simple cases such as one degree-of-freedom systemBolygon i, and «;; the angle {;N;,N;N;. ;). Then if
various numerical methods may be used to calculate thenodesos,;@ii=0, the nodeN; & B, if Zpoges o, @ii =27,
timest, such that¢(q(t,))=0 [151-153]. Their influence then N;eB;: the bodies intersect. The RCA consists of
on the algorithm propertieconsistency, ordemnay be sig- looking at the numbem of intersections of a straight
nificant. halfline (a ray)emanating fronN;, with the polygongB; .

The main problem is that an exact analytical descriptionIf n is odd thenN;eB;, if n is even thenN; ¢ B;. The
of the objects shapes, even when this is possible, is quitdRCA is more robust than the NIPT. Both methods are
time consuming. Secondly one has to calculate with a suit-O(n;n;) for two bodiesB; andB;. However, their gener-
able numerical routine the timég. In case of accumulation alization to 3D systems is not eag20].
of impacts and for multiple contacts, the problem is harderApproximation of the objects surfaces and of the impact
because the influence of deciding the end of the seriesimes by bounding boxes methofds66]are more efficient
{ty}x=0 according to the machine accuracy, is not easy tofor 3D systems. These methods are essentially studied in
guantify. Micro-collisions phenomendd07]prove thatitis = the Computer Science literature. If the bodies are convex
possible in some cases that there is a large quantity of reand subject to gravityor more generally to any vector
bounds, but finite number of collisions, and an escape out ofield that is integrablejt is possible to approximate the
JdK after a finite time. Things even complicate for multiple distance¢(q) and to calculate a lower-bound on the im-
impacts. What is the influence on the long run motion if one pact time[165]. The approximation can be refined as much
decides instead that one constraint becomes active? as the constraint@lesired accuracy, speed of computation
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Voronoi cell for
node N;

Voronoi cell for
edge Nj+1Njs2

(c)

Fig. 2 Collision detection methods

permit to do it. IN[148], it is pointed out that just watching est distances during the simulafonThe change in
positions to determine collision times cannot work since Voronoi cells from one step to the next one is usually
contact may occur between two sampling instantand small, facilitating the calculations. An implementation of
ti+1 while ¢(q(t;))>0 and ¢(q(t;+1))>0. So including the Lin-Canny algorithm with a running time linear I,

the velocity information in the algorithm is mandatory. can be found if175]. Baraff[176] proposes a coherence
Adaptive subdivision of the bodies into simple volumes based bounding box test that@¥N).

(polygons or polyhedrfl20], spheregl65,166], rectangu-

lar prisms[148]) and incorporation of a Lipschtiz bound-6-6 LCP and NCP solvers

edness condition o(-) allows one to approximate the LCPs: As we saw in Sections 3.1, 3.2, and 3.3, the dynamics
collision times[148,173]. This method is calldzbunding in Eq. (2) with or without friction, can be transformed in a
box schemes: each object is surrounded by boundiggm involving LCPs or NCPs which is useful to cope with

bloxes. Wrt\en thk(]aS(tehbm_(rehs overlap, the obtjects".n"!ust (!P&achment, sticking-sliding, impacts. Notice from E§)
Close one (o each other. 1neén a more accurate collision t if B=0 (componentwise), then=0 is a solution to the

is made once more. Bounding box schemes allow one . .
. ! . 5 . LCP. Problems arise wheBy <0 for somei. The most popu-
avoid testing all possible contacts: O(N") for N bodies), lar algorithm used to solve LCPs, Lemke’s algorithm, is mo-

but to focus on objects in close proximity only. Roughly’ _ ) . o
speaking, the Lipschitz bounds permit to approximate ilivated by this observatiof110,177,178]. Basically this is a

next step motion of each simple volurfaer surfacejand to  Pivoting method that converges in a finite number of pivots
determine if a collision has occurred. A refinement of therovided the LCP matrixA in (8) is a copositive matrix. In
mesh can be used to increase the accuracy of the collistbe worst case, Lemke’s algorithm is exponential but is ex-
time computation, in an adaptive way. These methods gmected to be polynomial im. Lemke’s algorithm is initial-

ply well to convex bodies. Nonconvex bodies can be de-

composed Into convex parts to be tre_ateq. VOI’_OI’IOI r€gI08)S 6ronoi cell associated to an object consists of the set of points whose distance to
for polytopeg 167,174 ]are used to maintain a list of clos-this object is the smallest. The object can be a node, an edge, a face. See. Fig. 2
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ized using a so-called covering vec{8®], or supplementary « The packages are oftaslack boxesvhose codes are not
variable[178], or initial ray[177], that is chosen arbitrarily accessible to the user. The origin and remedy of numerical
or even randomly89]. Lemke’s algorithm is formulated in  problems may therefore be difficult to isolate.
[177]as finding the zero of a piecewise linear function, using ) o _
a homotopy method. Even in the nice case wheris cop- Algorithms for 2D frictional contact problems in the qua-
ositive, Lemke’s method is known to fail when the dimensistatic case have been presented and compafé@@]. It is
sion is too largebecause of accumulated errors of pivoling shown that this reduces to finding the zero of a function in a
or even for medium-sized problems if the diagonalfohas closed domain. Newton’s method seems to supersede interior
null entries[115]. Further interesting properties of Lemke'spoint ones.
algorithm have been proved [tt79]. Other methods to solveNCPs: The NCP in Eg.(16) is equivalent to solving
LCPs exist, such as Mangasarian which consists of usingmin[y,g(y)]=0. Such nonsmooth equations can be treated
nonlinear(complementarityfunction whose zero is the LCPwith nonsmooth Newton method&87]. As a generalization
solution[180], then a root-finding algorithm. Another homoys the variational expression in E€R1), (16) is also equiva-
topy method called Katzenelson's algorithm exjaB1]. jent to the variational inequalitii11]: find y e R* such that
Mangasarian’s method has been used.BR]. As we pointed Eﬁ_y)Tg(y)Zo for all ze R*. From a theoretical point of

|

out above, LCPs and Quadratic Problems under constrai . .
are equivalent whem is copositive(then the QP is convex w NCPs are still an active ! esearch artsee eg|188]
apd[189] and references therein).

and its solution satisfies the so-called Karush-Kuhn-Tucke
conditions which are complementarity conditions betwislen ) )
and a Lagrange multiplier—a slack variaplén [183], Inte- 67 Event-driven algorithms

rior Point algorithms are described that solve LCPs as QBasically these are algorithms which integrate the motion
under constraints. 1fi89], a comparison between Lemke'hetween eventgshocks or stick-slip transitionsand use
and a new specific Interior Point algorithm is proposed. 3pme event detection procedure. They are of the force-
different problems are tested, randomly generating 328 d@jgceleration type and require the computation of contact

sets, with LCPs of dimensions ranging from 2 to 170. The i,cas. The works therefore focus on the improvement of the
seems to supersede Lemke in terms of the number of prqﬁ

lems it can solve when Lemke’s covering vector is chos
arbitrarily. Sed115], [178], and[184]for a comparison be-

odules in Sections 3.2, 3.3, 6.5, and 6.6. The time-
iscretization problems are not treated explicitly, but the au-

tween Lemke, Gauss Seidel and augmented Lagranghbxf?rs gelgerallhyl mtrelrely L.Jsz'avanable [;AES or Str']ﬁ ODES”
methods, using distinct-element models of various mechanif Vers. Roughly, the main discrepancy between what we ca

cal systems: Lemke’s algorithm is shown to provide thgvent-driven and time-stepping schemes is that the former
smallest CPU computation time. are closer to the continuous-time description of the dynamics

Baraff developed a Dantzig algorithfa85]. Let there be in EQ.(2) with a two-time-scale dynamidsvhich is close in

m frictionless contacts with a set of complementarity condpirit to the hybrid dynamical systems point of vigd2]).
tions betweerv{) andN() at each contact. Initially the con- The latter are a real difference equation approach, and there-

tacts are classified into 2 sed{)=0 andV{’>0, whereas fore, better lend themselves to convergence analysis, a cru-
one setdN1(0)=0, Vje{1,... m}. Dantzig algorithm is a Cial property. On the contrary event-driven algorithms do not
pivoting method of the indices between the 2 sets. One sta#€M amenable for convergence analysis. This may have im-
by computing suitable values &f{"’ and NV, then one Portant consequences for the simulation of complex dynam-
passes to contact 2 and adjusts both contacts 1 and 2. Ind&&d The first three groups of algorithms in Sections 6.7.1,
modifying the dataN® and \'/(Nz) must in general modify 6.7.2, and 6.7.3 clearly supersede the others in the way they

N® andV(®), see Eq(8). Then contact 3 is adjusted, taking{ormulate the_nonsmooth dynamic;._They are briefly pre-
into account 1 and 2 as well. And so on until contacis Sented here since most of the specific material they contain

attained. Then all contacts satisfy the complementarity colflu"EIS been presented elsewhere in this paper.
ditions and the LCRX) in (8). The algorithm terminates &  6.7.1 Pfeiffer and Glocker’s formulations
is copositive. Extensions to frictional contacts are possiblghese authors proposed fii] a general formulation of the
in 2 or 3 dimensions. It is noted {1185]that in many prac- dynamics in Eq.(2), at acceleration-force level. The basic
tical casesV ¢ is constant, consequent in (8) is in the convex analysis tools described in Section 3.4 are used to
column space oA: this property may be used for singular derive complementarity conditions and write friction and im-
(eg, hyperstatic systems). Moreau uses a Gauss-Seigigtt rules with LCPs or NCH83]. Two-dimensional friction
method[ 78], see Section 7.2.2. (planar systemspre treated in7], Lemke’s algorithm is

In general, users may be tempted to directly connect theised. Extensions to 3D systems is studied88], using
software with available codes. However the use of packageslytope approximations of the friction cone and convex

has the following drawbacksl 85]: analysis tools which allow one to express such approximate
* Interfacing the numerical software package with the sim@oulomb’s law with complementary slackness conditions. It
lation software may not be easy. encompasses collisions with friction and tangential restitu-
» The available codes are often implemented as reseatitin, see Section 3.3. The work [82] uses the second for-
codes, especially for QPs. mulation in Eq.(21) to express the complementarity condi-
e The tuning of the package adjustable parameteusneri- tions in Eq.(10) and dry friction in dimension 3see(23)
cal tolerances, iteration limits etapay not be easy. and its acceleration counterpart). The dynamics in(Bgis
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transformed in an implicit equation for the acceleration artlis for instance not clear how the capture and finite accu-
N, F;, to be solved at each step by a root finding algorithmulations of impact timeg, are treated numerically. An ex-
(a subroutine NEWT fromi190]is used, and the dynamicstension of DASSL(called DASSLRT has been used [199]
are integrated with a RK-Fehlberg with automatic control db simulate several discontinuous phenomena that affect ro-
the integration step). Again convex analysis tools are at thet motion. Basically these authors consider that the dynam-
core of the proposed method. The numerical results are cogs in Eq.(2) is a time concatenation of DAEso mention is
pared to experimeni& planar mass on an oscillating obliquenade of inequality constraints and related notjodsroot
plane). In another work182]the same authors use an augfinding algorithm is used to compute transition instants.
mented Lagrangian approach to solve the same problddASSLRT and the ADAMS routine supplied in SIMULINK-
with a linearized friction cone. The numerical predictions fivith a coordinate reduction, see Section 2.2—are compared
well with experiments. on an exampléa double pendulum with a singular configu-
In most of these schemes, the integration of the continttion, ie,V ¢,(q) in Eq. (2) is not full column rank). Other
ous dynamics is done with a RK scheme. The existence fotitines failed. DASSLRT seems to be quite fa3¢0.1 s),
solutions of the obtained LCR®ainleveparadoxes)s dis- While ADAMS took 20 min, due to the singular configura-
cussed but not treated. Some of these results have b&en, in the neighborhood of which acceleration divefges
implemented in a commercial softwa£91,192]. No numerical result incorporating detachment and collisions
- is presented. The specific multiple contacts modelling prob-
6.7.2 Modified Moreau's scheme lems and complementarity conditions are almost totally ig-
The algorithms presented [#] and[5] may be seen as annored in most of these studies. The studyi61—153]Jmay
adaptation of Moreau's schemém particular the Gauss- pe a first step towards a better understanding of interconnec-
Seidel method to solve the multi-contact prOblem with fl’iCﬁons between the integra’[ors of ODEs or DAEs and impact
tion). They provide the user with the event occurences ag@tection algorithms, despite it is limited to a very simple

the contact forces values, which are of primary importaneme degree-of-freedom systefmith however possible finite
for engineers doing virtual prototyping. Due to these indugrccumulations of impacts).

trial constraints, an event-driven force-acceleration formula-

tion is more suitable than a time stepping velocity-impuls¢ 1M E-STEPPING ALGORITHMS
one. Also low-order algorithmé& uler) may not be very ac-
curate when applied to systems with sparse events, a dr
back that is well-known for free-motion systerf26]. The
algorithms have been thoroughly tested on the compaﬂg o ORI . :
Schneider Electric circuit breakeflsw and average tension)c nditions and state re-initialization modify the properties of
and have proved to supply the design engineers with mu ch schemes? In other words, many schemes are known to

more reliable results than the available penalty-based sdif. consistentie, the discrete piecewise constant solution

wares, see Section 9. In particular, a significant advantagec%werges_In a certain sense—towards the solution of the

that a change of topology in the mechanisms does not necEaeal dynamics). As we shall see further, many time-stepping

sitate a re-estimation of the contact parameters as it is t%c‘:}emes, though not all, consist of discretizing simulta-

case when sorina-dashoot contact models are used neously the continuous dynamics and the complementarity
pring P ' conditions, consequently forming a LCP or a NCP to be

6.7.3 Baraff's algorithms solved at each step. The simulation is then easily advanced in
Baraff, motivated by problems in computer graphics and artime by solving the LCP, using the available solvers, see
mation, essentially focused on the calculation of contagection 6.6. Additionally, state re-initializations are needed.
forces and development of specific methods to increase thee interest of time-stepping methods over event-driven
speed of calculation and the resolution of LCPs or NCP@nes, is that they aim at providing a difference-equation ap-
Many different aspects of rigid body simulations are diqaroach to the simulation problem, which is suitable for con-
cussed if179], like Painleveparadoxes, the formulation of vergence proofs. This may be quite important in case there
friction in 3 dimensions, as well as quite interesting devefi'® Mmany impacts, because it remains to be shown that event-
opments on Lemke’s algorithm. Lemke’s algorithm is used i#riven schemes are robust with respect to the accumulation
the early works, but Baraff developed a Dantzig algorithm igf initialization errors(after each impact). This fact com-

> have described above some varigaisd classicaliman-
ners to discretize DAEs and ODEs. The question one may
k to oneself is: how does the addition of complementarity

[185], See Section 6.6. bined with the problem of sensitivity with respect to initial
data, may render their use quite delicate.
6.7.4 Other schemes Actually the methods presented in this section all belong

The works in[64], [162], [163], [168—172],[191], and to the time-stepping schemes family. But as we shall explain,
[193-198]essentially focus on the dynamics formulation
(SeCtion 2-1), the collision deteCtid'SeCtion 6.5), the im- “Notice that this is an artifact. Indeed consider B85). Clearly, if one tries to compute
pact rule. The type of integrator that is used for the contintfe multiplier using this formula, difficulties arise whenever the inverted matrix loses
. . . its rank. However, as shown [d3]and[71], if V¢ e R"*™ has full column rank, then
ous phases of motion is generally not prOVId@(CEPt the multiplier vector and the acceleration are unique. If the matrix loses its column
[169,196]RK 4, [162] DADS 2D, [198] Newmark). The rank, then the acceleration remains unique, but not the multiplier vector. Loss of col-
. . . n rank may occur because of hyperstatism or at a singular configuration. Special
problems raised in Sections 3.1, 3.2, and 3'3_ are_ usuaIIy r@'hniques can be developed to cope with this projiém]. Some authorg83] rec-
nored, excepl71]and[193]who analyze multiple impacts. ommend to avoid inverting matrices of the typdM ~1w.
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there are significant discrepancies between the scherdgs ¢(q;). The coefficientsy; and 8 are determined from
within this family. For instance, the ones in Section 7.2 arah Adams-Bashforth family of explicit formulaf26], page
Section 7.3 do not explicitly require the calculation of th@50), denoted as AB; ,80 1, ,BK—O for all k=1,2,

contact forces, contrary to the ones in Sections 7.4 and 7The second equation i9) is a backward dlfference for-
Moreover the schemes in Section 7.2 and Sections 7.3, ¥dla, denoted BDF- Notice that the mass matrik is

do not rely on an accurate determination of the shock iassumed to be constatiience the Coriolis and centrifugal
stants: they work with constaht These schemes are, theretorques are zero), which restricts the application to simple
fore, true difference equations of the MDI in E@), with mechanical systems with Euclidean configuration syhlce
however, possible iterations within a step due to their inzollections of particles). It is however argued that this is just
plicit form. The schemes in Section 7.4 work withcon- a matter of convenience to allow for an easy factorization of
stant, but the shock equatiofis some of thempre treated M, and that the extension toward4(q) is possible([27],
apart when a velocity reinitialization is needed. The schemSectlon 6). The torqu®;=Q(q;,q;,t;) therefore contains

in Section 7.1 are based on an accurate calculation of tpavity, viscous friction, and external actioffiske control
times of contact with a linear interpolation, similarly toinputs). The integration step is chosen constant, equhl to
event-driven algorithms. The algorithms in Section 7.2 and WhenQ=Q(t,q), it is shown in[27] that a LCP whose
Section 7.4 are of the velocity-impulse form. This has somaknown is\; can be formulated fron49). As we already
consequences on the integration when friction is present, ggented out, this LCP can be rephrased as a quadratic pro-
Section 8.1. gram:

7.1 Lotstedt's algorithms 1. i e T .
In [27], Lastedt introduced time-discretization procedures, ;nlr(; NVAHM TV N+~ N[V o[ [bi+hM1Q;].
at the acceleration/force level. We choose to classify these (51)
algorithms into the time-stepping section, becauststealt

explicitly discretized the dynamics and the complementarityonsequently, the set of equations(#9) allows one to ad-
conditions(on the velocity)to form a LCP or a NCP whose yance the solution in time frofir- 1 toi. The methods AB-1
unknown is the multiplier\; at each step. However the (forward Euler)-BDF-1 and AB-2-BDF-2 are chosen[&7],
discontinuity instants(on the velocity—when there is awnhere it is recalled that it is useless to use methods of order
shock— and the acceleration—when there is a transition he3 (jinear multistep A-stable methods have an accuracy of
tween stick and slip phases-aje computed by an inverseprder <2, ie, at. mostO(hZ) [26] pages 250—251). After
linear interpolation, similarly to an event-driven aIgonthmd,SCOmmu,t,es ing; or q; (which are detected from the value
The detection of these instants is made by monitoring tl the impulse on one step-with a threshold under which it is
impulse(considered to be zero under a certain threshold asdgnsidered to be zero), the AB-1-BDF-1 algorithm is used
Section 6.4). Ltstedt's work can with no doubt be considguring two steps to restart the simulatititis known that
ered as an important pioneering work in the field of timenyltistep methods are not self-starting and require the help
discretization of nonsmooth mechanical systems. of a single-step algorithm initially

71.1 The frictionless case When Q=0Q(q,q,t), then the LCP formulation is lost.

Let us consider first the frictionless case. The following nd—]owever Lastedt proves that provided the matrix

merical scheme is proposed to compute the state ati step h 4Q
0i=—1b; 09
o
is full rank andV (;biTA*lV ¢; is positive definite, theri49)

still possesses a unique solution so that the algorithm can be
used to safely advance the solution in time. However this
Vé'gi=0, \=0, AV¢lg=0 time \; is generally the solution of a NCR quick look at
the second equation i@9) allows one to realize this). The
condition in(52) can be used with the implicit function theo-
. rem to express|;=g;(\;) for some functiorg;(-). The sec-

=hk20 B&Qi—k—gl a&qi—k ond condition is used to prove the existence of a solution to

B a (50) the NCP. A way to solve the NCP is proposed, based on
r ) functional iteration. Certainly this could be improved using
=h> BIM N Qikt VN — 2, afgiy. new tools, see Sections 3.1 and 6.6. In summarystedt’s
k=t k=t algorithm is given as follow$27]:

Clearly, the complementarity relations in E¢9) correspond ¢ Computeq; using AB-1 or AB-2, withh such that the local
to the active constraints at stepsee Section 3.1. They en- error ing; is smaller tharhe for a prescribed tolerance
compass the persistent contact as well as plastic impactévays to estimate suchtaare given in[27]).
phases. The formulas in Eq49) and(50) correspond to two « CalculateV ¢; to a prescribed accuracy and calculate
linearr-step method$§25] Section VII.3.V ¢,=V ¢(q;) and =M"Y(Q;+V¢;) andq; by BDF-1 or BDF-2.

=5 [NBIM(Q + Vb, 7] 49
0

where

r
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» Test whether velocities and accelerations are discontinugased in the algorithm, one has to add the tangential contri-
betweent;_; andt;, either due to an impacdidetected bution of the contact force in the right-hand-side of the sec-
from a nonzero value of the impulsey to the activation of ond equation ir{49). The contact force is split into two parts,

a new constraint¢,(t;_1)>0 and¢,(t;) <0 for somek), see Section 3.3VoA+P(q,q,N)=[G1(q)+H(q,q)]\;.

or to the deactivation of a constraint. The time of sucRoughlyG;(q)\; contains the normal generalized force and
jumps is calculated by inverse linear interpolation. After the contribution of the sticking contacts, wheré@&y,q)\
shock a new velocityy; , ; is computed by a collision rule accounts for the sliding contacts. The vectgrcontains the
(the rule in Eq.(12) is used). Then restart the algorithm attormal multipliers A,; and the tangential ones\;

the first step with AB-1 and the new set of active con=*f\,; for the jth contact. There are two features in the
straints. algorithm proposed ifi27]. The first one is the approxima-

« Test the detachment conditions by checking whether ofien of Ay ;, the second one is the calculation of the impulses
entry of the vectoi; passes through zero, and whether that the shock instants. Let us denote jkie component o ;
corresponding entry in the normal velocRyp] q; is posi- by A} and itsith iteration by\};. Then the approximated
tive. Then refresh the set of inactive constraints if neededalue is\}; =N} 1+ hi(\;_ ;=\ ;_,)/h;_4, for a vari-

e End. able step of integratioh;. A QP is constructed that allows

the computation of the ternG;(gq)\;. As noted in[185]
Remark 7 . _ ) (Section 9.2.1), it possesses the advantage of assuring that

* The algorithm is based on velocity constraints to redugfia angential force is opposite the tangential acceleration.
the index and form an LCP. The drawback is evidently 8¢ it has the strong drawback that sliding generally implies
possible drift away fromdK during permanent contaCty,e op matrix to be non-symmetric, rendering the problem
phases(DAE simulation). The stabilization on the Con-parger tg solve. It is clear that the introduction)df, in the

straintsdK during permanent contact phases needs specighamical equations modifies the subsequent calculations in
a non-physical manner right after the first steand should

attention[22,66], see Section 5.

* Lotstedt also shows that the LORJ can be reformulated o 4y gided. Special procedures are also used after a shock

as the minimization problem and a discontinuity in the acceleration. The error introduced
) ' ” . T in g; by the use ofA); in a permanent contact phase are
min IIKZ0 a?G_«—hM™1Q[lw, Va&'g=0. (53)  shown to bed(h3) whenh;,=h, a constant. They ar@(h)

N after a reinitialization of the velocity or of the acceleration.
The second pointcalculation of the impulse at a shock

instant), is formulated as follows. Taking frictional effects at
pacts into account, let us denote the right-hand-side of Eq.

. . . . ; (3) as P,=G(q)Ay, where A, is a vector of normal and

is easy to find), the QP in E¢51) is a particular case of 1, ontial percussions. Then ttedt proposes to calculate

th_e QP constructed for the case .With frif:ti(mee below o impulse from the QP in E417). The dual version of this
with comments), and it may be interesting to know th Pis:

value of\; explicitly, since\; can be used as a measure o
force. This is of interest for control design of real-world 1 e
systemg21]. min 5[q(t ) —alt )] MIato) —at)]
* Dissipativity of Egs.(49), (50), and(51) plus the impact
rule and convergence of the algorithm are not proved. WTo=GTq(t)), v=0, v"WA,=AIGTq(t;)=0

» The velocity can be calculated directly from E¢3).
However it is argued ifi27]that it is better to compute the
multiplier and then insert it in the dynamics because th
simplifies the initialization of the algorithrta feasible\ o

7.1.2 Constraints with 2D friction
As recalled briefly in the introduction and Section 8, the ' 0
dynamics in Eq(2) is much more complicated when friction  w=| fi5l —I (54)
is considered. Friction may create some unexpected phenom-
ena[18,96,200,201 ks the divergence of the contact force
(but with bounded impulsesdr so-calledimpacts without wherel is the identity matrix with dimension equal to the
Collisions. These phenomena are not to be considerednnber of active constraints, arfg,, can be considered as
artefacts due to the model deficiencies. Although ttisgp- an impulse ratid93]. The main problem with the calculation
pearwhen rigidity is relaxed, or when the Coulomb model ish Eq. (54) is that although it looks like the plastic impact
replaced by some regularized law, they really represedile Eq.(12), it is not like (12): there may be rebounds. In
physical phenomena which occur in real systems. More cogdition, if there is a tangential velocity reversal during the
ments are given in Section 8. Sincetstedt’s algorithms are shock(ie, the post and pre-impact tangential velocities have
acceleration/force sghemes, these phenomena should opgosite signs), then there may be a kinetic energy gain at
taken into account. listedt was perfectly aware of suchthe shock instantthis phenomenon is well-known in the
problemg202], and therefore, proposed a particular numeliterature, see ed18,93]).
cal procedure to avoid them.

The S_ame algo_rlthms AB-1-BDF-1 or A_B-_Z-BDF_-Z Ea‘remlndeed the state at step 2 is calculated vw_‘gn so the nexl?\j1
used as in the frictionless case. When 2D friction is incorp@rong positions and velocities.

fimpl 1

is calculated from
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Remark 8: +1, if there was no collision ont{,t; ;). This is easily seen
« Lotstedt discusses the issue of Section 6.5 for collectiofiem the equivalence between the inclusion in Esp) and
of polyhedral objects. He points out the need for a selec- B
tion procedure for the collision detection, but does not pro- Vi*1~ ProX,, [V (Am,).v1,i] (56)

vide many details on this part of his algorithm. where prox means the proximation operation in the kinetic
* The algorithm in[164]is close in spirit to Léstedt's one metric (with an underlying projection in the same metric
(time-stepping with accurate detection of contactinghe tangent con¥(q(t;)) is defined also outside the admis-
times). It uses a trapezoidal discretization of the contingihje domainK in order to cope with possible violation of
ous frictionless dynamics(implicit one-step scheme, the constraints in the course of the simulation, see(E8).
solved by a Newton method with an initial guess from g qeed if there is a contact event betwéeandi + 1, which
Euler’s discretizatioy) and an adaptive step size proceys detected by checking the negative signd(ig,,;), one
dure. Several simple examples shoyv thaMay.decre.ase uses Eq(56) to computev;. ;. This is a quadraticy program
to very small values as 16?s during the simulation. in the kinetic metricM ;. The reader may recognize again
Lemke’s algorithm is used to solve the contact force LCRiat the formulation in the last line of E¢55) encompasses
and the impact percussion LGBee Eqs(11) and(12)).  the whole dynamicgcontinuous motion and shocks). This
discrete-time inclusion is a discretization of the MDI in Eq.
(22) with dv=v;1—v;, v(t")=v;;; andv,; can be in-
terpreted as a left-velocity &t ;.
7.2.1 Frictionless sweeping process The general casefe<1 can also be handled, as we
We describe in this section and the next one the timebserved in Section 3.4[B5,96]. Letu=v(t*)+ev(t7)/1
discretization of the general MDI presented in Sections 3.44#le in Eq. (22) (with v(t™) in the right-hand-side o22)
and 3.4.2. It has been named tNenSmooth Contact Dy- also replaced by, see also Remark 4). Then E&2) can be
namics (NSCD) method by Moreau and Jean, and can bdiscretized as follow$35]:
considered as one of the results of the research led by
Moreau in_MontpeIIier on Convex Analysis and Nonsmooth Tre (tis1,0i+1,0i41) —M(Gjsq)
systems since the early 6@see eg,[70,95,104,203,204]). e
The presented methods constitute the first attef@pi of
time-discretization of MDIs as in22), ie, simulation of Ea‘ﬂv(qiﬂ)(
multibody systems without regularization of either the nor-
mal or the tangential friction laws of contact/impact. Thevhich is clearly an implicit formulation but is equivalent to:
Contact Dynamics method provides a very general and pow-

7.2 Discretization of Moreau’s sweeping process

Ui+17Uj
1+e

Vi+17T €vj

1+e (57

erful framework for the simulation of various nonsmooth vi+1—+evi:prox( V(Qis1),0i

mechanisms, including granular matte2,78,205], build- 1+e

ings made of blocks and monumefi8], deep drawing pro- h

cess [94,206,207], robotic systemg208] and kinematic +mQ(ti+l,qi+l,vi+1)). (58)

chains[5]. It so happens that the time-discretization of the

MDI in Eqg. (22) yields an intrinsic implicit formulation. But One notes that there are some differences between(&gs.

it can be transformed into an explicit scheme using basig8), and(55). This last formulation is used [82] and[35]
convex analysi$101,209]. We first concentrate on the disfor the study of convergence of the algorithm. This indicates
cretization of(22), then we indicate how friction is treatedthat mathematical convergence proofs and real implementa-
and finally we focus on the general NSCD method. Followion of an algorithm may lead to different discretizations.
ing [28,96]choose in Eq(22) at stepi: Equation(58) is an explicit form as long a@=Q(t,q) and
provided one chooses;,;=q;+hv;. Indeed in this case

- 1
tm,i =1+ 20 introducing g, ; inside the left hand side of Edq58) one
Om,i =0+ 2ho; gets addirgct way to cglculate+lab);1a proximation toolie

a quadratic programming approac
M, =M(Gm,i) Remark 9:
Qmi=Q(tmi,0m,,vi) (55) < Convergence: Proofs of convergence of the discretized
v =v+hM=10. . Moreau’s sweeping process can be found3g], using a
1,i— Ui m,|Qm,| . .. . _ .
discretization as in Eq57) ande=0. The scheme in Egs.

~Mmi(vici—v i) e ‘9’//V(qm,i)(vi+l) (57) and (58) is proved to converge globally forfe<1

_ 1 in [35] using techniques inspired frorf82], with JK
Qi+1=0m;it+zhvit1

e C#, B>1 and codimension one constrainte€1).
whereh is the integration stefthat might be varying from ¢ Impact calculation: The usefulness of the midpoint calcu-
one step to the next). One sees that the computation of th&ation in Eq.(55) lies for instance in the fact that, as one
values at step+ 1 depend on intermediate calculations at the easily calculates; . ;=q;+ 3h(v;+v;.,). Contact is de-
midpointt, ;. The midpoint velocity, ; is equal to the ap- tected if ¢(qn;) <O, while ¢(g;)>0. In the case of an
proximated velocity that the system would have at step elastic collision (think for instance of the simple one-
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degree-of-freedom bouncing ballone getsv; ;= —v;, sweeping process formulatior dv/dt € diic(r)(v(t))
since the velocity is simply reversed as can be checked with C(t) a moving convex set, cannot be discretized via

from Eqgs.(55) and (56): one has prd®& " ,v;+ h/2g]=0 any Euler explicit scheme of the form,—vi;q
for h small enough since;<0 at a shock instant; modify e é’l//C(ti)(Ui) since this is equivalent to v,
(56) in the same lines as E@58) to get the result. Thus =prox(C(t;),v;.,) which is nonsense. On the other
di+1=0;i, hence the ball rebounds exactt the machine hand,v;—v; 1€ dihoq,, H(vi+1) Makes sense since this

accuracy)to the same height, whatever the length of the g equivalent tav; ;= prox(C(t;),v;) which provides
simulation. This is also pointed out [91] who discusses an explicit way to calculate;,,. One notices that the
symplectic integrators and energy conservation problems integration step does not appear in these expressions:
on the bouncing ball example. As we shall see some tyjs s due to the fact that since the right hand side is a
schemes do not possess this property, and may yield ener- cone, multiplying it by any positive constant does not
getical inconsistencies. One sees that in the time-stepping change the inclusion. In the second-order sweeping pro-

scheme in Eqs(55)—(56), v, plays the role of the pre-  cess formulationh appears explicitly at the velocity
impact velocity, whilev;,; plays the role of the post- level, see Eq(57).

impact velocity. This is on contrast with some event-driven _ . o

schemes, where the impact rule is applied at $tephe 7.2.2 Constraints with Coulomb friction

midpoint Euler scheme is further justified [iB8] (Section At each contact4 ) the Coulomb friction law is formulated
6), by the fact that it assures a much more accurate e€t$[94,104]:

mate ofq; than a Euler algorithm. This fact combined with

the need of jumps detection led Moreau to choose a dis-

cretization as in Eq(55). Notice that(55) is a one-step ED  cp®). yvsepW s—EW. 1TV =0 (60
method, but is not a second-order explicit RiR6], page L= L 1 [STFULT VL, =0 (60)
247). Further sophistications of the algorithm are presented

below.

Constraint drift: When there is only one contact that i¢here the notations are the same as in Section 3.4.2. In par-
made, the proximation in Eq(56) is equivalent to ticular, Di(J):D(lei(J)!) has an obvious meaning from the
V¢;,ivi+1:0- This will generally result in a bad Stabi”_deflnlthn of D. The discrete form in Eq(60) is equwal_ent
zation of the constraints during persistent contact phases. F{),;=argmax_p0) (-2'V{},1), and to F{;

The approximation of the tangent col¢qg, i) can be re- — 5rg ma>gec_(n1(—zTVi(L5 1)- Inthe 2D case, Eq60) exactly

placed by (q;+ hv;). This may help in satisfying the Con'represents the Coulomb graph betw&é}ﬁ anngyji)/Ni(j) In

straint better{96]. In addition if the constraints are not o
the 3D case, one recovers a friction cone.

respected, then Moreéa[%] proposes to use a_projecti_on The Gauss-Seidel meth$d8,101]roughly consists of the
of Qi 1, d_enotgd agliy, onto 7K, computed in the ki- following Signorini Coulomb loop[94]. Suppose that for
netic metric as: contactl at stepi the dataF{)), N | v) v are known

C =01 (G WM Ve (59) : A
G 1=0i+1~ G+ 1) (VoM for all j>1 from the previous iteration, and from the current
iteration for allj <l. Then compute the status of conthdty

Transition phases and capture:As we explain in them- solving the Signorini Coulomb conditionsvhich monitor

pact rules paragraph of Section 7.4, the transition betwedR€_transitions at\(): sticking/sliding/detachment Iterate
free-motion and persistent-contact phases—ie, the probl&fifil the last contact. Then apply a convergence test, that
of capture—via a shock or a sequence of shocks, is ('@ be on the contact forces, &, *— F{{/|Fj| <e, where
tomatically treated by the algorithm in Eq&5) and (56) k is the index of the iteration of the Signorini Coulomb loop
or (57) and (58). This feature is actually shared by otheft stepi, or on the distance to the Signorini graph. If it is not
time-stepping schemes as the ones in Section 7.3, and cSfisfied redo the calculations for all contacts. One may also
stitute a serious advantage of time stepped al,gorithrﬁgoose to stop arbitrarily after a certain number of iterations,
(which are a truly difference equation approach to simulSince in some practicgl cases convergence is not at all guar-
tion, contrary to event-driven schemes which are in a ser&€€d and the algorithm could stuck at one step. The fact

closer to the continuous-time description for impact detefat the contacts are treated independently one after each
tion and collision effects Note however that in event- other, guarantees at least that Coulomb friction law is satis-

. . i (1) (i)
driven schemes contact/rebound happens at one time fi§d Py Vif+1 andF¢j., at each contact at the end of the

stancet;, whereas with time-stepping schemes there {teration process. This is not necessarily the case for other

always at least a time-deldybetween contact and releaseformulations, see Section 7.4. Such a cyclic procedure is
imilar to a nonlinear block Gauss Seidel algorittwich is

Incidentally, notice that replacing the left-hand-side in Eg'™
(56) by v; . ,+ev,/1+e does not change much the captur&" instance used tp solve QIPS]). Some convergence re-
problem oncey;~0. Here again one sees that,; plays SUlts can be found ifi113].

the role ofv (t*) whereas; plays the role of)(t~) when Remark 10:

an impact is detected &, ; . e The dynamics is written from the Lagrange equations as in
 Actually as shown by Morea[d00,101]the first-order  (2) whereas the dry friction law involves local quan-

where the last term is evaluatedat, ; .
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tities at the contact pointd; as in(60). Consequently one motion even for almost static systems, because they permit
has to calculate the Jacobiad4)(q) to relate both(see to simulate possibly sparse events that have a crucial influ-
Section 3.4.2). It is argued if94] that J)(q) may be ence on the final configuration.
evaluated at various |ntermed|§1te valuesqof(_eg,qi., or S5, Related algorithms
g;+ h/2q;, or even a value obtained from an iteration pro-
cess to approximate; . ; (in case of an implicit formula- NSCD methods: The work in [116], that is part of the
tion of the dynamics one needs to imp|ement a Newtoﬁl.SCD method, is dedicated to the simulation of a continuous
Raphson like algorithm to computg. ; andq;., at step medium, approximated by a mesh of nodes. This is called the
i). This is however related to the curvature of the contacdistinct elements methpdh order not to confuse with the
ing SurfaceS, which regu|ates the Changgm fromi to classical Finite Element MethOCFEM) The nodes collide
i+1. with the obstacle while the whole structure deforms. The
« A discretization of the sweeping process with friction thapertia matrix is constant. Various discretization procedures
generalizes that if82]is proposed if210], form>1. The based org- and 6-Euler methods are compared. Let us recall
inclusion (23) is merely written at each contact point.  that the 6#-method vyields ft:”f(t)dt”h[ﬁf(tiﬂ)+(1
* The sweeping processecond orderyiscretization does — ¢)f(t;)]. The ¢-Euler method consists of discretizing the
not resort to any calculation of the acceleration and thexgrange equation if2) by a #-method, and the position by
contact forces. Only velocitie@nd implicitly the contact a Euler method. A modified-method is also tested which
impulses)are calculated at each time step. This allows ongnsists of using @-method, then replacing;.; by g1
to avoid the problems related to Painleveparadoxes +h(1-6)q;., in the contact relations. In particular the in-
when friction is presenfsee Sections 7.2.2 and 8.1), ie, th@luence of the discretization of the complementarity condi-
computation of unbounded contact fordésr certain fric- tions (second line in Eq(2)) is discussed ifi116]. The term
tion coefficients and configurations of the systemdeed ¢{)(q(t)), which represents the local distance between node
as shown {200,201 ]Jon a simple example, the force im-j and the constraint, is discretized at each nodésaes Re-
pulse remains bounded when the orbit crosses so-calladrk 12):
critical points. The so-callesmpacts without collisions, or
tangential impactqwhich are of a different nature from () — () () T4, _
the contact force unboundedness problane handled via $rea= OV Al i a th(1=6)
the principle of maximal dissipation: at each time step, the x[vd)i(i)]Tqi . (#-method
tangential impulse is calculated so that it maximizes the
isSi frictional energy. . . ) )
dissipated frictional energy ¢01= P +N[V11Tq1. 1,
7.2.3 Simulation results
Extensive numerical tests haye begn performed by Moreau (-Euler and modifiedd-methods. (61)
on granular mattef78,205]. Simulation of granular matter

(sand piles, planetary ring® a difficult subject, essentiglly The reader will see that contrary to E¢49), (50), and(69),
due to the very large number of degrees of freedom. It is al )which base on the analytical form pY ¢1)(q)]7q and

d.'ff'CUIt. to make experiments and to compare th.em. WIthh the calculation of this expression usiggor g;. 4 and
simulations(try to follow the motion of a sand grain in a: :

. . iy1 Or g, the expressions in Eq(61) are a time-
sand pile!). Only macroscopic phenomena may be CheCk%:g retizatilon of¢)(t). As shown in[155] this may have
(resulting pressures, average stress tensors, distributioni

) ton Bhortant consequences on the numerical redts con-
reaction forces), and may be expepted o be robust W.'th rche'rning the calculation of Lyapunov exponentSor the 6
spect tc_) numericg94]. It IS even difficult to ”?ake numgncal and #-Euler methods, the complementarity conditions are at
simulations, and compliant models may simply be 'mpo?fodej: ¢i(,-+)120, Ni(L)le, ¢i(j+)lNi(j+)l:OI For the modified

sible to use, see Section 4.2. On the other hand, this isatoB—'ﬁ]ethod they are formulated withpl), =l +h(1
with major applications in industry and in theoretical phys- () 1 i bt
ics. In[78], a 2D vertically shaken cylindrical vessel is simu- O)ia- It s no(tj()ad that for thed-method, 7 =0 does

. . . not imply that[V¢,+1]Tqi+1=O, but this is the case for the
lated. It contains 3999 beads with diameter 0.2 cm and og_ uler and modifiedd methods. In[94], it is pointed out

bead with diameter 0.5 crtie, n=4000 in (2)!). In [205], . . - i)
another test is made with 2000 beads with diameter 0.2 cﬂr}”nat the position complementarity conditions Ww{’“ are

and 200 beads with diameter 0.02 cm. A 3-parameter imp ncqtt recomm_ended for large collections of bo_cﬁhis_e granu
. ; : . Mlar matter withn=1000), because the correcting impulse that
law is chosen&,, e, f), wheree, is a tangential restitution . ) )
- L . is calculated after a penetration to send back the system in
coefficient[93]. The numerical integration allows one to te - . )
) . nt(K) may be a non-negligible numerical artifact. Then a
the influence of the physical parameters on the global behay- . o
velocity complementarity formulation is preferable.

ior, and to verify if some phenomena like clusterization, flu- Remark 12: The idea ofconsistency of the gap approxi-

idization, bulk segregation, convection effects, occur and UNation with unilateral conditionis introduced in[94]. It

der which conditions. means thatp{’=0 and¢{),=0=(V4"),)Tq;, =0 is sat-
Remark 11: isfied. For instance if one chooses simgly ¢, this consis-

The dynamical effects can be quite important in the overd#incy is satisfied only wheé=1. Other choices are possible
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as the ones above. When this consistency property is sittiations are like this. The simulation of a Couette granular
satisfied, some artificial numerical oscillations may appefiow with 2400, 4000 and 16000 polydisperse disks can be
[116]. The choice of the gap approximation is not importanfound in [94]. An implicit Euler scheme has been used
provided it has the consistency property. ~ =1inEq.(61)). The NSCD method seems to be particularly
For the 2D case, dry friction is transformed [ifl6] via g jitale for granular matter simulation and has been also
veloqty slack variables into a set of two complementgrltxsed to study stress transmission and granular prefsite
;eslsg%lslezeg;% r;t{ahc;, t?rr? :-sEtgpAfp:i.n-grhsecr;]grfe;vi?\c’lseei:ilgml;, Pifferent quasistatic examples are presenteld irb|: a dove-
"tail assembly(4345 nodes, 49 contact nodlea block sliding

technique already used ji14]). Lemke’s algorithm is used
to solve the LCP if116]. Inelastic impacts with friction are on a plane(4193 nodes, 65 contact nodes), and a pressure

treated in94] by combining the resolution of complementaY€SSel674 nodes, 54 contact nodea high presssure screw
rity conditions between the normal quantitigs”/h +Vv{) press(11933 nodes, 250 contact nodes), the extrusion of an
andN'), , and the resolution of E460). In a compact form, aluminum cylinder(105 nodes, 21 contact nodes). Emphasis
they might be written as SignCoily)),,F{1),). Using the is put on the efficiency of various LCP solvers in terms of
second formulation in Eq(21) it may be shown that the CPU times. Some preliminary results have been obtained for
mapping ¥,F)—SignCoul{,V,F) is piecewise affine in kinematic chaind208]. However such systems differ a lot
2D, and continuous raywise in 3D. from granular matter and distinct element systems, so that
Simulation results: Due to its implicit formulation and other algorithmgmore accurate, with explicit contact forces
the Signorini Coulomb loop, the NSCD method consists @fhg events calculatiompay be preferred, see Section 6.7.2.

two nested iteration loops at each time stgP4]. Although  The contact Dynamics method has been implemented in a
large integration steps can be used, it is therefore time CO5¢rware called SimemR06]

suming, which renders its use for real-time applications less . . _—
9 PP 3-parameter impact law: A numerical scheme inspired

easy. The numerical results obtained by the three discreti%%—

tion methods above, are compared to the exact solution in {hm [78] and[96] has been proposed [@12]. It applies to

case of the impact of two identical elastic bars moving on% 2P "19id body hitting a wall. Its focus is on the proper use
line. They are further compared to a Newmark method wifpf LCPs for impacts with friction and tangential restitution,
y=0.5 andB=0.25 (these values are the smallest ones thgP that 3 parameters are uséte 3-parameter impact law
guaranteeA-stability [26] Ch 7.1.5). The Newmark and(f.€n,€) is one of the most used in the literatures] for
6-method with#=0.5 generate oscillations during the conimpacts of spheres). A contact with Coulomb friction is
tact phase. Takingd=0.55 damps out the oscillatiorg- treated with two LCPs, see E(.4). The LCPs are solved by
creasing ¢ renders the algorithmmore implicit, and it is a pivot algorithm. Experimental results of a rubber ball
known [94] that implicit schemes behave nicely when apthrown in a box with wooden walls and steel plate are re-
plied to nonsmooth problems, although their implementatigfbrted. The real motion of the ball between two impacts is
is more complex). The transition contact-non contact is t¢@corded by a high-speed camera. The coefficiéraade,
slow with the 6-Euler method. So the modifie@tmethod is were measured off-line arg fitted afterwards to get a good

the best one for th's.' 1D case. For more complex case Stquﬁgtching between experiments and simulations. The choice
the 6-Euler method is said to be a good compromise between

the #-method (too smooth velocity)and the modified €n= € (which assures some energetical consistéad4])is

g-method (oscillations). A 2D example froni211] @ disc made in most experiments, althoughis ;ometimes varied .
colliding a rigid ground)is simulated with theg-method @ to get a better result. Further comparisons are made with
—0.55). The mesh has 99 nodes. The oscillations obtain@{Perimental results available in the literature. The conclu-
with a Newmark scheme and an impact detection proced§iens are mitigated and it is pointed out that a more complex
as in [211], and which cannot be explained by acoustiipact model including moment impul$@3] could improve
waves propagation, are damped out. Evidently in these catles results. The work is extended to 3D problem¢am3],
only a comparison with experimental results would really belying on an impact rule proposed by Moredid8].
telling (although the validation of a code cannot be made Roughly, it uses a variational formulation of this impact rule
comparison with experimental resu[tsl5], but by compar- and of Coulomb friction(similar to the variational inequality
ing varipus numgrical schemt_as tesfned on benchmarks, or_ile) and to(60)) to express the dynamics as a nondiffer-
comparing the discrete solution with the analytical one igntiapie equation, inspired by the works for quasi-static fric-
simple cases). In [13], buildings made of blocks are SiMyznal contact in[214]. The problem is solved using a

lated (an arch gnder vanouslloads). _Each leCk 'S appro Jlewton-type algorithm specially devised for such nondiffer-
mated as in Fig. 3. Comparisons with experimental results

with wood blocks led in the Ecole Siypeure de Meanique entiable equationf215]. We Qote thaF such a procedqre to
de Marseille(F) are encouraging. It is important in this setformulate the complementarity relations from EQ1) is

ting to recall that Coulomb friction is the main effect thafluite similar to what is used if92,182]for the acceleration
prec|udes the existence of a unique equi”brium deﬂ- calculation. Similar experiments as [ﬂ12] are made and
spite its dissipativity, se¢18] pages 207-208), so that thecompared to the numerical results, showing good agreement
obtained state depends on the history of loading. Physieéhene,=e¢,.
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7.3 Discretized second-order MDI pends on the step Here the set of projection is the same at

A numerical scheme especially suited to the second-ordg@ch step: one always projects kinAnother common point
formulation presented in Section 3.4.3 is proposed by PaBftween the schemés5)and(62)is that they do not require

and Schatzman if54-56,216,217]. the calculation of contact efforts.
o It should be noted that the constraints are satisfied at each
7.3.1 Description of the scheme time step by the average positiap=gq; ,+eq_,/1+e.

The scheme is written in terms of positions only. So theloreover, ifg; belongs to IntK), equation(64) reduces to
relevant local metric is defined locally by the mass matrix of +h2E (65)
1 i

the system. Let us use the same notations as in Section 3.4 F+1720—qi-
If we assume thatK andg—M(q) are smooththe second which is a classical second-order approximation for the equa-
property being satisfied in most cases), it is possible to defitien of the free motion of the system. Furthermore, the con-
locally a projection orK relatively to the Riemannian metric straints on positions and the impact law are taken into ac-

defined byM(q). count at the same time by using the average posgjorDue
Let F be a continuous function, consistent wi ie, to the choice foiF; in Eq. (62), Eq.(64) is an implicit equa-
1= tion as soon af) depends orp=M(q)g. In such a case
F(t,0,0,0,0=M"(@)Q(a,M(q)v,t) V(q,0,1). some iteration(Newton-Raphson like algorithyrhas to be
The scheme is given by: used at each step to compute. ; (see ed109]). Notice that

) the formulation(57) and (58) used in the convergence proof
20i—(1—-e)qi-1 +h°F; of the discretized Moreau’s sweeping process is also an im-
1+e plicit formulation. For ODEs or DAEs implicit methods are
62) known to possess larger domains of conditional stability

_ ([218], page 239). What about MDIs?
Mh> As pointed out above the scheme in E§2) does not

2h require the systematic detection of impact times and does not
provided that; , ; is uniquely defined in a neighborhood ofeed to refine the time step when the discrete positions are
K. The projectionPy is done in the kinetic metric. close to the boundary df. As an example let us consider

In order to understand how this scheme approximates g 1D model problem described y=1", Q(q,p,t)=0

system(26)—(29), we must say a few words about its conand the initial dataj(0) =1, q(0) = — 1. The motion is given
struction. Let us consider the simplest formulation whicRY
corresponds to the case of convex constraints with a constant . : _ .
mass matrix. The dynamics in E(3) is approximated by q=1-t if te[0.1, q(t)=e(t=1) if t=1.
the implicit algorithm

Qi+1—ZQi+Qi—1+ Qi+1teg- E
h? K 1+e =i gi+1=—€g_+maf2q,—(1—e)qgi_1,0].

Remark 13: Let us chooselp=1 andqg;=1—h. Fori=1, letw;=2q;

The reader may notice the similarity between EB) and —(1—€)di—1. Fori=1, we have

the last equation if55). However this time the positions are

involved, not the velocities. Notice th&; is premultiplied

by h? in Eq. (62) whereas the same term is multipliedbyn  andw,;>0 if and only if h<(1+e)/2. From now on, let us

Eq. (55). assume thath<(1+e)/2. We define n=inf{ke N*:w
We can transform Eq(63) by using a result of convex <0}. We haven=2 and for allie{2,... n} we get

analysis. It can be shown that i is a honempty closed

subset ofRY (d=1), then withy e R% andA>0 given, the ~ di~Gi-1=di-1~Gi-2=—h

equation

X+NIh(X) 2y

Q1= _GQi—1+(1+e)PK(

Fi=F|t.d,0i-1,

(66)
The algorithm(62) yields
(63)

wW;=20;—(1—e)go=(1+e)—2h

admits a unigue solutionx=Py(y). Taking X= Qi l
+eqg_,/1+ein Eq. (63) one gets:

20— (1—-e)q;_1+h?F,
Gis1=—€G_1+(1+e)Py| — 1+e| : l ‘

(64)
which is exactly the first equality in E¢62). ®
Remark 14:
Notice that the proximations in Eqé6) and (58) can also
be formulated as projections in the kinetic metric but the set
of projection(ie, V(Qn;) in (56) and V(q;. 1) in (58)) de- Fig. 3 Elementary block

@ Candidate for contact
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henceq;=1—ih.

One can also observe that, >0 since w,_;=(1
+e)g,_1—(1—e)h=0. Since w,<0, we have g1
=—eQ,-1<0. Let us computev,, {:

most of the cases, it is possible to describe the system with a
choice of generalized coordinates such that the projection
term is easy to compute exactly or to approximate. This
scheme has been implemented on different examples. In

[54],[219], and220], a 1D model of tight joints is consid-
ered; in[54]and[220], the discretization of a guided beam is
examined; and if109], the motion of a slender bar is stud-
ied. For the two first cases the mass matrix of the system is
constant, but not for the last one since a model in large

Wp1=20,11—(1—€)gy=—2eq,-
_(l_e)(_eqn72+wnfl)

=-e(20,-1—(1-e)qy_2)—(1—e)w,_;

=—W,_;=<0. (67) deformations is considered. The results are compared to

It follows thatgq,,, ,= —egq, and other numerical results obtained by systematic detection of
impact times for the first and last examples and to experi-

Wn+2=20n+2~(1-€)0n11= —2W,=0 (68) mental results for the last two examples. For instance in

[109] free-motion dynamics is discretized with a Newmark
scheme(implicit algorithm) with y=0.5 andB8=0.25 (such
Moreover, a straightforward values guaranteA-stability [26], Ch 7.1.5), and impacts are
+eh(i—n-2) foralli=n+2. detected by a root-finding algorithta Newton scheme ini-
The approximate positions; do not satisfy the con- tialized by the values computed at the preceding)stepall
straints at each time step, similarly to the discretized sweepe cases, the performances of the scheme in(@&2).were
ing process. Of course, the average positi@ns=qii1 satisfactory: the scheme is substantially faster than the detec-
+eq-1/1+e belong toK for all i=1 but not necessarily jon methodaimost 40% faster ifil09], three times faster in
Gi+1 andg;—,. In this 1D example, at least one and at m0§b191) and gives good approximation of the motion even
two approximate positions are outsitle with rather large time steps and/or on long time interyate
IP§19]). This scheme has also been implementef1Bil—
153]. Therein they consider a spring-dashpot system with
||Qi_a||$h”qh”L°°:0(h)- one degree-of-freedom. They compute its motion for two
sets of data leading to periodic motions, by using the time-
Moreover, modification has been proposed 155] that stepping schemé62) and different event-driven schemes.
assures penetration on one step only. It follows that thgyey compare the numerical results to the analytical solu-
scheme is at most of order 1. This fact is not surprising sing8n. In the two cases the schert®?) is of order 1 and is
we approximate a second-order differential equation in tergster than the event-driven schemes for a given time-step.
of positions only. Such a choice means that we prefer ¢, ihe other hand, due to its low order, the sche/®)
propose a fast scheme than a very accurate one. We shquitljires a larger computing time than the event-driven

remind that we have to deal with highly nonlinear problem§cheme3, in order to approximate the solution to a given
that are often very sensitive to initial data. Thus the accuraeB}(e cision

of the scheme may be less important. But its convergence IS
always a crucial property.

— —_ a2
On+3= —€0h+1+Wpip=€ qn—1+Wn+2>0-

induction givesg;=0, 1>

with respect to the time step since

7.3.2 Convergence 74 Velocity-i Ise f lati
The convergence of this scheme is proved. The result hds elociy-impuise formuiations

been established first in the case of convex contraints withfBese works have been performed by a group composed of
trivial mass matrix in[54] and[216], then an extension to Stewar33], Trinkle[84], Pand85], Anitesci{86], and Po-
non convex constraintéut still trivial mass matrixis pro- tra[87]: different formulations have been proposed by Stew-
posed iN217], finally the general case is studied®]and art et al following the works of Moreau and listedt. They
[56]. The proof follows the sketch described in Section 7rf8ay be seen as variants of the semi-implicit Euler method
and is based on a rather natural geometrical idea: with for DAEs (which are very attractive for systems as in Eg).
appropriate choice of local coordinates we can describe {i#5], page 524). Some details have been given concerning
set of admissible positions by an half-space and obtain afriction formulation, see Eqs24) and (25). In Eq.(70), a
simpler expression of the constraints and the projection @alyhedral approximation of the friction cone is used, so that
K. Nevertheless, the change of coordinates introduces otfi@s conditions in Eq(25) are modified. The algorithms have
quadratic terms in the algorithm due to curvature effecthe general form:

These new terms interact with the constraints and create se-

rious difficulties in the study of the scheme.

7.3.3 Implementation

The scheme could seem to be difficult to implement since it
requires to solve at each time step an implicit equation in-
volving a projection orK for a Riemannian metric. But, in

M (@i 1) (@i 1= ) = |
V¢(Qi)Ni_+1+ D(qi)Bi+1+hQ(q;,q;)
Qi+1=0ithdiyq

(69)
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(N.,=0, V =0, N,V - In relationship with Section 3.4.2, let us note that the
'H CULTE TALCUL T complementarity conditions in E70) are equivalent téA
Bi+1=0, \i.1e+D(q) g4 1=>0, is the generalized impulse in coordinatgs
T T, _ .
\ Blialhir1e+D(g)gi1]=0 Agis1=argmaX—2z"q;, ). (72)
Ni+1=0, fNi,;—e'Bi =0, zeC(q)
L Nisa[fNi 1 —€"Bi1]=0. If they were formulated withV ¢(q; ;) and D(q;. ) then

(70)  one would get\q; , 1=arg max g . ){—2'i,1}, yielding

It is clear that the complementarity relations in EG0) however a NCP instead of a LCP to be solved at each step.
apply when the constraint is active onfincluding impact Remark 15: The polyhedral approximation @f hampers
times), ie, if ¢(q,+hq)<0 If N;,,=0, theng;, ;=0 as to have the tangential velocity in a direction exact opposite
well. In Egs.(69) and(70),e"=[1,1,...,1] e R® wheree is to the tangential force, since the latter belongs to one of the
the number of edges of the polyhedral approximation of tie@rners of the polygof89]. If the number of faces of the
friction cone, andf denotes here the friction coefficient.polyhedral set is increased, this effect is decreased, but the
Hence B < R® as well. Indeed the friction cone is approxi-number of LCPs to be solved at each step is increased as
mated by the polyhedral sé(q)={NV¢+D(q)3,N=0,3 well. Hence the interest of looking for solutions that do not
=0,e' B<fN}. The columndD' of the matrixD(q) are vec- approximate the con€ and minimize the number of equa-
tors that span the tangent subspace at the contact point. ig8s to be used83].
also assumed that there is alwalysand j such thatD' In case of multiplem contacts, thégeneralizedJriction
=—D!. For instance in the case of a planar point-mass syene(see eg[18,28,201]js taken as the sum of the friction
tem D=t andD?= —t, and the tangential part of the con-cones at each contact, i€=={"C; (in other words an ele-
tact reaction is given by (q) 3=D'B;+D?B,, wheret is mentReC can be written aR==["R; with eachR, ().
the tangent direction at the contact point. gét=(x,y) with  The vectorsV¢, \, 8, N, are then simply constructed as the
X the tangential coordinate. The two sets of complementaggncatenation of the vectors for each contact. In the multi-
slackness conditions in E¢70) then becoméin continuous contact casdsay 2), it may therefore occur tha’;H and

time, so drop the indices): Aq i+1 are computed from Eq(72) |nS|decl+Cz, whereas
_ VoWT(q)qi.1>0, ie, there is detachment from constraint 1
O<(A+x)LB1=0 att;.;. However as we pointed out above this implies in
. turn thatN{?;=0 andg{}; =0 too. Thus the impulsé g ; 4
O=(A—x)LB>=0 (71) is calculated insideC,(q;). It is not clear at this stage
0=(fN— B~ B,) L A\=0. whether this formulation would allow to get satisfaction of

~ Coulomb law a$— 0 or not. It seems that the main obstacle

Assume for instance that there is a sliding motion with towards such a result is the possibility of Painkiike ef-
>0. Then since=0, one hasB;=0. Now necessaril\\ fects, which have not yet been understood for several con-
>0 sincex=x>0. ThusB,=fN. If x<<0 one would find tacts. Another problem that might occurtas: 0 is that there
B1=fN and B,=0. Consider nowx=0. One finds that if may be someyclic situations in whichC switches infinitely
A#0, thenfN=B;+ B,. Sincex>0 the third relation im- fast between several values, &4+C,, C; andC,. What
plies B;+ Bo=<fN: the contact reaction is inside the frictionhappens in the limit then? This problem is—at least at the
cone. Such a reasoning generalizes to 3D cases and the pyghalosophical level—of the same nature as that of multiple
mid cone formulation. The conditions in E@®5), when dis- impacts. Interestingly enough, the conclusionglid5]about
cretized, yield a highly nonlinear complementarity problerthe relationship between the limit of a penalized problem
[91]. _ with Coulomb friction and the LCRas constructed in Sec-

It is assumed tha®(q,q) derives from a potential energy.tion 3.3.3), hold also only for the one-contact sliding mode.
It can be shown that iIM(q)=M then the set of discretized Singular perturbation analysis is used and the stability of the
equations in(70) can be transformed in an LCP whose unso-called boundary layer is no longer equivalent to the exis-
known is the vector N; ,A;,8;), and this LCP possesses d@ence and uniqueness of solution to the OPwhen mg
solution. Thus the algorithm can be advanced in time. Notice2.
that\; andB; are to be considered as impulses since they arelmpact rules: The impact rules are chosen according to
proportional to forces timek. The last two sets of comple- Moreau’s maximal dissipation principld104]in [33] and
mentarity conditions in70) represent an approximation of{34], ie, Egs.(69) and (70) represent a plastic generalized
Coulomb model, where the friction cone is replaced by immpact as in Eq(12). In [84,86], the collision rule of Pfeiffer
polyhedral set(a pyramid if e=4). They are the Kuhn- and Glockel[7]is chosen, ie, one solves a LCP to compute
Tucker conditions for the maximum dissipation principle ithe velocity at the end of the compression phase, and another
Eq. (72). This is what allows one to express this model aslZCP for the velocity at the end of the expansion phaseall
LCP, using tools from convex analysis, as pointed out ihat such an approach relies on Darboux-Keller’s model for
Remark 5. Otherwise in dimension 3, one would end up wittollisions [18]). Poisson coefficients of restitution are cho-
a NCP to formulate dry friction. The tangential impulse isen. Energetical consistency holds when all coefficients are
represented bys, while \ is a slack variable. chosen equal to a unique valeg. Roughly one considers
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the same set of discrete-time equations a®#) and(70) at Several ways to formulate Eq&69) and (70) have been

di, replacing all quantities indexed by- 1 byi+1/2 for the proposed by this group of authors. [86], M(q)=M and
compression phase, ie, one writeM(qi 10— 0i)) Vé(Qis1)disq is used. IN[33], Vé(qi)qi1 and M(qi 1)
=Vp(qi)N;+1o+D(qi)Bi+12. For the expansion phase,are usedwhich in practice leads to solving a NGbut the

one replaces; by ;. 1, (ie, one writesM (g4, —qi+1,)) Work is essentially aimed at convergence proofd.85y, the

and the right-hand-side of the Lagrange dynamidg®rmal constraint is formulated a@8¢(g;+hq)q, =«
becomes Vé(di)Ni 1+ D(0i)Bi+1+ep(Ve(a)Ni 1,  Which assures the respect of the constraints for the linearized
+D(q;)Bi+12). Finally, qi+1=qi+hqi+1/2 after these two dynamics. It is argued that the various quantitiegss ma-
half-steps. Let us note that the scheme in &®&) incorpo- trix, V¢, matrix D(q)) can be calculated witly; +hg; or
rates the ternhM ,iQ,,,; in the calculation of the postimpactdi+1 OF Gi+0i+1/2. But the last two approaches yield NCPs,
velocity, see Eq(56). This is not the case for the algorithm$0 longer LCPs, consequently more difficult to implement,
in [84,86]. The termhQ(q;,q;) is however present in the aIthoggh perhaps more accurate. These variations are not
right-hand-side for the compression phase calculation $iatuitous, as they may have strong consequences on:

[87]. Actually adding this term permits to better handle the 1he implementation of the algorithms and their speed, ac-
problem posed by the capture of a constraint after an infinitecuracy, robustness, etc.

series of rebound§ike the classical ball that rebounds orr The mathematical analysis needed to prove their properties
the ground), which is not the case if one applies an impact(consistency, stability, etc).

rule which neglects all non—impulsive terms. This can b?hese influences may have opposite effects! Some of these
understood with the 1D bouncing ball. In this case, one ha?o erties are discussed in the related papers. With respect to
Vi+1=ProV(dmi),vi— h/2g]. When v; becomes very prop Papers. P

small, thenh/2g dominates|v;| and there is no numerical L'otste.dt’s schemgs, Stewa&t al have improved the algo-
problem in continuing the calculations. Since the terfithm in several directions: _ _ o
—h/2g is <0, v;,,=0 in the subsequent steps. So th& Fr|9t|on: 3-dimensional and 2-dimensional frictigRain-
threshold parametey introduced in Section 6.3 is directly leve paradoxes for one contact are treated without resort-
incorporatedvia h. On the other hand this numerical trick ing to any numerical trick).

hampers the simulation eéversedaccumulations of impacts ¢ Dissipativeness of the numerical scheme:Stewart
[49,106] & situation that might occur with a particle at rest [33,88] proves that the algorithm in Eq70) with the

on a table subr.n.itted to some excitation). However, such d?maximal dissipation principle, is dissipative M(q) and
tachment conditions are met much less often than capture ify(q,q) are constantlinearized dynamics, or affine poten-

practice. . . . tial energy). The same is proved for the schem¢g88]
There is, therefore, a significant difference between theprovidedK is convex and(q;)=0 for all i (no violation

schemes i33] and[86]. Indeed in the second case, one of the constraints). Anistescu and Poft&6 ] prove a simi-

inte_grates the motion and a_tpplies the impact rule yvhen Rar result whenM (gq)=M. However Stewart proves that
collision has been detected, i(q;) <0. Then the algorithm 0 it of his scheme is dissipati@vhich makes sense

computest; 1= + ...y, after the wo steps of the colli- - g0 Gherwise it could not be a solution of the original
sion rule. When applying the maximal dissipationi athe problem)

algorithm computeg, th? qu_ant|t.|es at 1 by modifying Convergence: Convergencegbut not uniquenessof the
abruptly the velocity direction if needed, but the forces . .
: . . , solutions of Eqs(69) and (70) towards a solution of Eq.
Qi(g;,q;) are part of the calculationas in Moreau's .
scheme) (2) has been proved only for the one frictional contact case
' [33,34,87], encompassing Painleya@adoxes. In the mul-

Remark 16: . . e
S . ticontact case, it seems difficult to prove the convergence
» Similar backward Euler methods are used for the simula- . . .
of the piecewise constant solutions of E@0) towards a

tion of complex electrical circuit§160,221,222]. Notice solution of Eq.(2) that satisfies Coulomb friction law. It is

that event-driven algorithms have also been used in thiSnot clear whether this problem comes from the formulation
framework[223,224]. The discretization of so-called Lin- P

ear Complementarity Systenjd8,39,40]with an initial Z;g?#éomgx?rfg;n o;;[ssseilfgzgzorggr]?rctﬂs &eenﬁlrfel ;?:E[jiocnogz
state jump as in Eq(46) is studied in[159]. Sufficient P

o . . . tween the discretization and this formulation. In any case
conditions for consistencife, convergence of the discrete- . . - . .
: . . . .~ the problem of multiple contacts with friction still requires
time solution towards a solution of the continuous-time . C . .
. investigations. No convergence proof is available for the
system)are given. schemes i84,86]
» Concerning multiple shocks with friction, it seems that B
both the algorithms in this section and Section VII A yield Some questions need to be still investigated: why solving
similar results, in the sense that the outcomes they providEPs at each step when the constraints are independent?
are rather unpredictable: although they are formulated a¥\#hat happens when systems are hyperstatic? Which prob-
generalization of the frictionless plastic impact in EtR), lems does the multiplication of LCPs for solving Coulomb
they may yield rebound depending on the parameters afnidtion (polyhedral conekreate for real-time applications?
data. The extension of the maximum dissipation principle the formulation of generalized friction for multiple con-
and the generalization of Gauss’ principle towards multipkacts equivalent to Coulomb friction at each contact? Is it
collisions with friction, is far from being a trivial matter. possible to recover sticking and sliding contacts from the
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multicontact generalized formulation, in all cases? Solutiotisis is quite understandable since it may simplify the con-
proposed for treating Coulomb with the revolution cone argtruction of this LCP. However there is another reagbat
new methodghomotopy etcto solve NCPs need to be com-is also known in the DAE literature for problems with incon-
pared carefully with Moreau’s Gauss-Seidel method. Mowsdstent initial data[29]): after each collision the order de-
generally it seems that there is a strong need for clarifyimgeases to one. So if the system undergoes many collisions,
the domains of application and the performance of the vatity using higher order and/or multistep algorithms? Here
ous methods that allow to solve LCPs or NGBemke, NCP comes into play the nature of the system to be simulated. It is
or LCP-functions and homotopy, nonsmooth Newton alg@rgued in[86] that Runge-Kutta methods could be used,
rithms, QPs, interior point See comments above and in Rewithout further argumentation however.[I26] (page 264), it
mark 9. From a general point of view, there is a lack df indicated that multistep BDF methods result in a severe
available numerical studies concerning the time-steppingduction of the step sizg when a discontinuity in the state
schemes in Section 7.4 and comparisons with other methogscurs, because it tries to fit a polynomial through this jump.
Reinitialization techniques must be used. This, however, may
7.5 Convergence studies apply to systems that consist of switching DAESs, but cannot
A very important mathematical study is the proof of convereasonably constitute a general method for MDIs simulation.
gence of the approximat@iecewise constantjiscrete solu- The problem of drift away from the constraints is seldom
tion, towards a continuous function that is the solution of thdiscussed in these works. [85], (see alsd27]) it is pointed
continuous dynamics. These are the results of Monteirout that the normal complementarity conditions could be
Marques, Stewart, Mabrouk and Paoli and Schatzman tiséated asp(q;)=0, N;=0, ¢(q;) "N;=0. However this yields
we have outlined above. Let us define the approximate sobuNCP. It can be solved as a series of LCPs, but this may

tion q,, by drastically increase the number of LCPs to be solved at each
Gis1— 0 step (if one considers the ones coming from approximated
an(H) =0+ (t—t;) % if te[t tig). friction). In [91], it is pointed out that using the conditions

0<¢(q;; 1)L N;;1=0 does not work because the behavior

The goal is to prove that one can extract a subsequenisethat of a random impact when a shock occurs. Projection
still denotedqy,, which converges uniformly to a solutiap of ¢;+; back on the constraints is also alluded to as a remedy
of the Cauchy’s problem. One shows first that the sequerteedrift. Lotstedt[27] points out that the velocity comple-
(gn)n is bounded independently f Hence, Ascoli's theo- mentary slackness formulation in EG9) may vyield drift,
rem implies that there is a subsequencéaff, which con- and proposes to use Baumgarte’s method as a remedy.
verges uniformly. Moreover, one establishes that the total The integration step can be chosen as time-varying. Actu-
variation ofqy, is also bounded independently lofand with  ally, the scheme in Eq$69) and(70) is of order 1 therefore
Helly’s theorem it follows that the sequenag,},, converges not very accurate unleds is decreased a lot. Similarly as
pointwise(except perhaps on a countable set of poitdig), Moreau’s scheme, it should therefore be preferred for sys-
and @), converges weakly tg in the space of vector val- tems with a lot of events only.
ued measures. Notice that it may however be argued that such modifica-

Remark 17: This notion of convergence is needed for théons of time-stepping schemes may make them lose their
acceleration, because it allows one to get convergencebafsic interest, which is to remain simple enough but robust.
functions towardgsingular) measures like the Dirac mea-In other words, they should be able to detect the main char-
sure. This is not possible with other convergence notiorecteristics of a systelfstrange attractors, periodic orbits etc),
This is clearly explained ifi87]in a way accessible to non-without necessarily providing very accurate resufts in-
mathematicians. . stance if the solutions are very sensitive to initial data, it may

Then one has to check that the limif,) satisfies the be hopeless to get accurate numerical results).
constraints(ie, ¢(q(t))=0 for all t) and the impact and  However the reader should keep in mind that some of the
friction laws. Convergence ensures that a scheme givepra@sented time-stepping schemes provide a new value of the
good approximation of the continuous motion even whegiate and contact forces, at each stefn many cases, the
there is an accumulation point in the set of impact timegesolution of LCPs or NCPs passes through a fixed-point
This is a great advantage of the time-stepping methods pegdculation(Newton’s like, smooth or nonsmooth), similarly
sented in Sections 7.2, 7.3 and 7.4 over all other methods,the proximations or projections operations. Except when
especially over the event-driven algorithms based on a sySere is an abrupt change in the system topol@hgjetion or
tematic detection of impacts which may fail whenever theggtivation of a constraint, which implies a change in the in-
is an infinite converging sequence of impacts, without spgices sets and consequently in the LCP dimensithe root

cial attention to such phenomena in the schemes. at stepi should not be too far from that at stép 1. Hence
the apparent complexity of having to solve LCPs or NCPs at
7.6 General comments each step may be greatly simplified and accelerated in prac-

We have seen that Moreau and the NSCD method usdiae, providedh is taken small enougliand provided the
first-order discretization, the works in this section and ialgorithm used permits to fix the initial conditions at will,
Section 7.3 as well, whereas tstedt chose multistep meth-which is for instance not the case for Lemke’s). More gen-
ods. Actually, if the goal is to build a LGR) at each step, erally it is of interest to reuse the data of the previous steps to
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decrease the computational efforts in all the modules of theessed if a penalized scheme is adopted. But in the course
software, like contact force calculatidi85] and collision of a simulation with a large stiffness, the contact forces may
detection[225]. The combined BDF-Newton Raphson algdsecome very large as well and create subsequent numerical
rithm proposed iff67] for systems as in Eq7) uses itera- inaccuracies. The rigid body analysis allows one to better
tions to calculate; , X, ; andx, ; that satisfy the two equality understand such a phenomenon, and consequently to better
constraints. Interestingly enough, it is pointed outdid]that circumvent it.

one iteration of the Newton-Raphson seems sufficient to get

stability, from numerical experiments. 8.1 Is Painlevea real obstacle?

What is it that leads the authors to use one discretizatigf) . <hould not think that Painlevparadoxes(ie, non-
pr.ocedure or another one? We already pr_owded the reai"ffstence or non-uniqueness of solutions to the LCFgK)
Wlt.h some eIementls of an answer, concerning Moreau"s Mfictional contacts)occur only for unrealistic friction coeffi-
point scheme. This may be the ability of constructing

- &ent values. This depends a lot on the contact geometry
LCP(A;) or NCPQ\)) at each stefiLotstedt, Stewaret al), 201]. From the results ¢B3]and[200], the Painleveara-
the combination of a second-order ODE discretization wi " :
. . oxes are better understood, at least in the simplest case of
shock dynamicg¢Paoli and Schatzman, Eq®5) and (64)). P
Recall also that the four classes of time-stepping schen}s

%ion principle allows one to impose a velocity jun{the
so-calledmpacts without collisionsthat prevents the system
from penetrating into the zones of non-existence of a solu-
tion to the LCP(N), even if force-acceleration schemes are
4584d. Notice that a penalized problem with high stiffness will
necessarily yield the same problem, ie, computation of very
ge interaction forces. Once again the study of the rigid

. . o y case allows one to highlight some crucial properties of
with more practical goal¢compare Eqs(57) and (55)). the models which have an important consequence for nu-

Moreau[28] (page 33noted thamultiple step methods S€€Mperical applications. In other words, a compliant contact

a prion |.nadequat.e since one |ooks for algorlthms allowin odel with Coulomb(or any variant of Coulombfriction
to take impacts into account. Consequently it seems t

ine something else could be bettei25], page 481. BDF
combined with the reduction index in EG/) has been ap-
plied to bilaterally constrained mechanical systemg6i]

and has been shown to converge. This also may have be
motivation for the choice in Eqg49) and (50). There may
also be significant discrepancies between the schemes

structed for mathematical convergence proofs, and the o

bounded. It is only the study of the limit case that reveals the
underlying structure and the fundamental nature of the prob-
8 MATHEMATICAL ISSUES lem. A comparative study of compliant models behavior
Even for simple ODEs it is known that numerical method&hen the stiffness is largevia singular perturbations analy-
that converge do not necessarily yield stable and robust sis)and the LCP(Nhas been made if125]. Since in many
sults (see eg[218], Chs 3 and 5). For instance an ODE asractical applications the contact stiffnesses are finite but
simple asx= —ax must be simulated with care whenbe- quite large(gears commonly possess contact stiffnedses
comes largg218] (page 238je, when the problem becomes=10' N/m or higher)such studies are far from being of
stiff. Then implicit methods are known to provide much betpure theoretical interest. Results[R26]and[227]show that

ter resultg25]. For ODEs analysis of round-off errors influtheimpacts without collisionare the limit behavior of solu-
ence, problems of conditional stability, are understood. Fions of penalized problem@&vith finite but high stiffness):
MDls, things complicate so drastically that mere convethere are configurations in which the velocity varies very
gence is in general very hard to pro\@2,33,54,55]. If one rapidly whenk<+ and jumps in the rigid body limit as
wants ultimately to avoid ad hoc tricks in the course of thie— +. Though the results ifi33,200]are for the moment
simulation, schemes with strong mathematical foundatioessentially limited to the casa= 1, they look quite promis-
seem mandatory. Additional problems arise with the nomg. Some numerical results can be found[227] for the
uniqueness of solutions: uniqueness is assured only if theheme in Egs(69) and (70). As we pointed out at other
data (constraints, external forces and mass matsatisfy places of this paper, one big challenge in multibody dynam-
some stringent conditions like analyticit§4,45,49—52,106]. ics is a better modeling and understanding of dry friction in
Coulomb friction may also result in non-uniqueness of solthe multi-contact case. Painlelike phenomena require fu-
tions [59,200]. We reiterate that such phenomena, althouglre investigationgsuch as the influence of the friction mod-
they are due to the rigid body assumption and/or the frictiais, extension to multi frictional contagts

model, are not to be considered as artifacts. Rather, theséFor the classical Painlévexample(a slender rod that
simplified models allow one to highlight physical phenomslides on a rigid groundn=1 andn=3), the last problem
ena which otherwise would have remained hidden. For ithat remains to be solved is uniqueness of the solutions. In
stance, the unbounded force/bounded impulse phenomeparticular as shown ifi200]there exists in the phase plane a
of Painlevés problem (see Section 8.1)kan hardly be critical point that some trajectories may cross with un-
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bounded velocitiegbut bounded impulses). However, justand a dampetie, the dissipative parthat is added between
after this point, two solutions are possible: additionsles the two contacting bodies, in order to model a visco-elastic
are necessary to decide which one has to be chosen. Ib&havior of the materials. The normal contact force is then
possible that studying penalized problems is going to proviégpressed in the following form:

us with such ruleswhich could hinge for instance on a cer- F—F =

tain relationship between the friction coefficient and the tan- ~ "~ elastic™ " dampen

gential and normal stiffnessed his is reinforced by the fact Felastic=Ky*
that mathematical workg44,45,49,51,52]conclude that with . if y=0. (73)
unigueness holds only under very restrictive conditions on Faampe=CY

¢;(q) and analyticity of all data. Since analyticity is much Herey denotes the penetration between the contacting
too stringent for practical applications, adding informatioBodies(positive means in contact), andits first derivative
into the model(but keeping the rigid body approackgems as a function of time. The parametdtsand a can be esti-
mandatory. This should be done in a way similar to what hc’f:ﬁated using Hertz theor@see’ eg[S]) It must be remarked

been done for collision rulefsl07,108]: use a better underthat this theory is only valid under the following conditions:

standing of the physical process and lump these informations ) ) , ,
in some model parameters. e Central impact with the gravity centers of the contacting

bodies and the contact point on the same line.

8.2 s the discontinuity with respect to * Quasistatic phenomenon.
initial data a real obstacle? * Elastic impact.

Such phenomenon seems unavoidable and part of the dyEven if Hertz theory is not generally valigiue to the
namics. From a mathematical point of viewell- preceding hypothesis), it can give a rough idea of the values
posedness), this does not necessarily preclude to get ewisparameter anda. K is sometime considered as a con-
tence and uniqueness of solutions, §4@]. For stability of stant paramete(see for example Adams, MDI softwarer is
trajectories this may be an obstaclé is known that calculated as a function of the geometry of the contact bodies
Lyapunov stability is equivalent to continuity with respect t¢see for example Mechanica Motion, PTC softwaréhe
initial data[103] (page 124uniformly int overR*). Thisis normal elastic contact force can be considered to be as a
the reason why the available results on control of systemsgsod approximation. Things are much more complicated for
in Eq. (2) remain until now restricted to codimension one othe normal damping contact force. In fact, each software
to orthogonal constraints, s¢&8—20]. New notions of sta- with a penalized contact model proposes its own formula for
bility have to be studied. For numerical simulations, there the damping factorC. We report here some expressions
no way to strike right at the singularity ofkK due to the given in some widespread simulation tools that are valid for
finite accuracy of the calculations, so one can always applya 0.
sequence of simple impacts and treat possible accumulations )
as usual. Evidently when getting close to the singularity the | Fdamperreguld,Cy)y
outcome becomes randq[rﬂ4,7$,126]. This point added to Faamper C,Ky32y
the fact that even low-dimensional systems may possess a .
chaotic behaviof228,229], raises the question on whether it | Faamper=Cay"%
is useful to focus on the accuracy of the numerical algo- K _ 3
rithms. In this setting, the numerical computation of Fdamper 2€;M \/iy’ with K= E\/mgK .
Lyapunov exponents is of primary importance in many stud- \ m
ies, since they are used to detect chaos. As shoyh56], The function regul is plotted in Fig. 4,, C, andC; are
the discretization procedure has a strong influence on ttigmping factorse, a parameter homogeneous to a restitution
numerical result. coefficient, andm the equivalent mass of the contacting
bodies.
9 COMMERCIAL SOFTWARE PACKAGES The expressions in Eq74) are used respectively in Ad-

Commercial softwares can be classified in two categories%.@s(MDl)' Mechanica Motion(PTC), SDS(Solid Dynam-

a function of the frictional contact model they have adoptebc.s) and Dads(LMS). All these expressions verifg=0 for
a zero penetratiog=0. Moreover, the normal contact force

» Software packages with a penalized contact model. s continuous as a function of the penetratioriThe expres-

(74)

» Software packages with unilateral contact model.  sjons in Eq(74) can lead in some cases to energy gains. For
In this section, we will briefly discuss these two categorié@xample, in case of the simple example of a ball bouncing on
(and the contact models). a plane, the dynamic equation in the direction normal to

The penalized contact models are the most widespref@ Plane can be writtefusing Hertz theory for the elastic
mainly because these contact models are very easy to immgmponent):
ment. Contact forcegnormal and tangentiabire considered
as external forces, so they are just added to the right hand _
side of the dynamic equations. The normal contact forceighereF,=Ky®?+ Cy is the normal contact force. Whed
usually modelled by a non-linear sprifiig, the elastic part) equals a constant value &= Cyy*? the contact forcd,

my=—F,+mg, (75)
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contact detectiortin 2D and in 3D). It uses a Newton resti-
tution coefficient in order to model dissipation during im-
pacts (which may cause in certain cases energy gaio-
gether with a fifth-order Runge-Kutta integration scheme
(Kutta Merson). We assume that this program is an event-
driven scheme, but are not sure that each edé impact,
lift-off or stick-slip transition)is accurately located. No pre-
cise informations could be obtained on the formulation of the
frictional contact problem and on the way it is solved.
More recently, SDSSolid Dynamics)has also adopted a
Fig. 4 The function regul 2D frictional contact model based on unilateral contact
theory. Unlike Working Model, the contact model used in
SDS is fairly well documented. Its general description can be
can be negative, that is to say attractive. As a consequenfegind in[5]. It uses a Poisson restitution coefficient with a
the formulation of the normal contact force is changed, faifth-order Runge-Kutta integration scheniBormand and
example according to: Prince). Each event is located accurately using a dichotomy
F.=abgKy¥2+ CYy), or procedure. The_problem is_written on the fqrm of two
B 2 (76) coupled quadratic programming problems and is solved us-
Fn=max0,Ky**+Cy). ing the famous Moreau relaxation methtd, Gauss-Seidel

It is remarked that already in the case of the bouncintjth a projection method).
ball, for the same ball movemelie, same velocity before ~ The two preceding softwares are widely used in the in-
and after the shockthe normal contact forces predicted bydustry. Of course other programs exist that support unilateral
the preceding models are very different. So the impact force@ntact theory, like for example Simpafk92], but it seems
must be considered with care and cannot be used as a pretigé it is less complete than Working Model or SDS. For
estimation for structural analysis. The determination of inimpack, only one reference could be traced on this software
pact forces is still an active research area. To end this dibat only describes frictionless contacts. The problem is for-
cussion, let us state that the parametérse, and C are mulated in the form of a DAE and it is solved using a trial
difficult to predict and cannot be measured easily. and error methodwhich may in practice be untractahle

For the tangential contact force, penalized softwares usu-All the commercial software packages are using an accel-
ally adopt a regularized Coulomb laggee Fig. 5a or the eration formulation(ie, event-driven formulation, with event
sign function (see Fig. 5b In Fig. 5, F, is the tangential detection). This kind of method is fast and reliable for prob-
contact forcep, the relative tangential velocity of the con-lems with less than, say, a hundred of frictional contacts. If
tacting bodiesu the friction coefficient, andeltol a param- one plans to treat problems with thousands of contacts, one
eter specified by the user. should use a time-stepping schelim® event detectionjo

Some recent softwares have started to implement unilget an idea of the behavior of the systdfven a rough idea
eral contact models as an alternative to the penalized contetause these time-stepping formulations are usually based
model. It is not easy to get reliable and precise informatioas a first-order integration schemeBut time-stepping
on these contact models because vendors do not, in genegahemes are research codes like LMGC of Moreau that has
share implementation details with users. Consequently, Wween extensively used for 15 years for the simulation of
report here some very general informations concerning sogr@nular material§13].
of these softwares. In conclusion, the penalized and the unilateral contact

Probably the most famous software is Working Modehodels have some advantages and some drawbacks, and the
(MSC). One of this software’s particularities is its automatiaser has to be aware of them in order to choose the software
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Fig. 5 Examples of tangential contact force approximations
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Table 1. Advantages and drawbacks of a number of softwares

Unilateral contact model

Penalized contact model Event-driven schemes Time-stepping schemes
Most famous * Adams(MDI) * Working Model 2D & 3D * LMGC (Moreau)
softwares e Dads(LMS) (MSC)
* Mechanica MotionPTC) * SDS(Solid Dynamic$
Advantages * Model easy to implement  Restitution coefficient can be estimated
* No problem of redundancies « Sticking effect taken into accoufiteal Coulomb law)
* No problem of impulse propagation * No oscillations of the contact forces
(see also Newton cradle example « Effective for less than  Usable for thousands
100 of frictional contacts of frictional contacts
(good CPU time) (huge CPU time)
« \ery accurate « Can give a rough idea
of the results
Drawbacks » Contact parameters unknown » Redundancy varies during simulation
(K,a,C) * No impulse propagatiofsee Newton cradle example

« Sticking effect not modeled
« Stiff differential systems
« Oscillations of the contact forces

to solve the problem at hand. To close this section on com-purecontinuousdiscretization of the dynamics in EqR)
mercial softwares, let us summarize these advantages and(3) is not sufficient in general. A possible path is to resort
drawbacks in Table I. This has to be considered as a compehybrid simulators which incorporate not only the classical
ment of informations with respect to the material in Sectiovent-driven or time-stepping algorithms, but also some
4. high-level rulesthat would guide the user in the choice of
Remark 18 (Vehicle crash dynamics and simulatioi: future e_vents{detachmept, impact, sticking etc): Thls can _be
The general problem is quite different: find how to reconstlon€ via the construction of a tableau containing possible

tute the motion of accidents from some dgihysical param- choi(_:es and their prpbability to occur. SUCh. data may be
eters, estimation of dissipated energies)efetails and ref- ggﬁ'g?e&rggiﬁéﬁg'Tneggz"r;rghs’n;nﬁﬁrﬁgﬂégtyitae S%r\r']\':{o;?c
erences can be found [®3] and[230]. '

included in the softwarg65] (page 175)The determination
of the qualitative properties of a system may be sufficient in
10 GENERAL CONCLUSIONS certain applicationgie, one requires only to detect some dy-

«_..unilateral problems are slowly noticed by the scientifi@@mical invariants in the system, like attracjofBhus those

community, but are migrating fast into industrial appnca§chemes with less accuracy but high robustness and consis-

tions” [231]. It is clear that the development of a reliable antirrzceym;e;u'ésutm%éli?;g:’/g qugteerg(sagf(rlrl]l;e ﬂr(;]tel;setespua:‘ri]cgilent'
efficient software for nonsmooth multibody systems is th ) q prop Y '

: : uantitative ones can be crucial in industrial applicati@us
result of assembling various modules. We have chosen not{Q o - tics where long-run simulations may be needed

incorporate numerical examples in this paper. The main regsmetimes one wants to observe the evolution of a system on
son is that it is not our aim here to classify the approacfies seyeral hours or days). Notice that the length of the simula-
this is possible), but to introduce the reader to the field @bn has to be modulated by the number of events occurring
numerical analysis and simulation of nonsmooth multibodyuring the simulation: some very short motiafige in cir-
systems. Despite the many open problems that remain todut breakersgan involve a great number of events on a very
solved before getting a satisfactory software, the rigid bodynall time interval. Hybrid schemes that switch between
approach is quite interesting. One of the reasons is that covarious integrators depending on the phase of mdi32]
pliant contact models may really fail in providing reliablenay also represent a promising path for simulation of com-
schemes. plex multibody systems.

In this article, the state of the art about numerical simula- L€t us end this article by citing some of the important
tion of unilaterally constrained mechanical systems has be@ipblems which still deserve deep research st(itlis list
described. The general message is that the analysis of sdegs not pretend to be exhaustive):
systems(mathematical, numerical, system theoretidgalby * Comparison and determination of the domains of applica-
far not a simple extension of that of DAEs. Also the inter- tions of complementarity problems solvers.
connections between modeling and these topics is an imporiMore generally, determination of the domains of applica-
tant point. It is not possible to decouple the mathematical,tions of the algorithms on suitable benchmarks allowing
modeling and numerical problems. For instance multiple im-one to detect their capabilities with respect to various dy-
pacts create deep modeling problems. Even the frictionlesgiamical situationgperiodic/non-periodic motion, sensitiv-
case has not yet been solved in its generality, although thdty to initial data or not, large or small, etc)
work in [108]seems quite promising. As pointed out above Better understanding of Painlelike phenomena in higher
in this article, some authors argue that statistical modelingdimensions and multiple contacts.
should be investigated. In regard to this point, it could be thatModeling of mutiple impacts with or without friction.
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* Incorporation of more sophisticated dry friction models
that satisfy the principle of maximum dissipation, in 322]
mathematical programming framework.

[23]
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