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Numerical aspects of the sweeping process 
J.J. Moreau 

Laboratoire de Mecanique et Genie Civil, case 048, Universite Montpellier II, 34095 Montpellier Cedex 5, France 

The sweeping process, introduced some time ago by the author with motivation in plasticity theory, today remains an object of 
mathematical research. It is considered in this paper as the prototype of an evolution conditioned by inequality constraints. Since the 
governing differential requirements are only of order one with respect to time, this provides a simplified setting for analysing some 
numerical and theoretical features also present in unilateral dynamics. The latter is governed by differential inclusions of order two, for the 
numerical handling of which the existing literature proposes diverse strategies, briefly discussed. The paper is especially intended to offer an 
introduction to the numerical approach called 'contact dynamics'. 

1. Introduction 

The numerical dynamics of collections of bodies treated as perfectly indeformable, subject to the constraints 
of non-interpenetrability, with friction taken into account in the event of contact, is currently an active domain 
of research. Applications include the dynamics of machines [50], in particular robots, the dynamics of masonry 
works submitted to transient actions (earthquakes, gusts of wind or impacts) [20], animated computer graphics 
[4] and the vast area of numerical simulation in granular mechanics [15,45,46,59]. In all these applications, 
assuming the perfect indeformability of each part of the system leads to efficient numerical procedures which, in 
many circumstances, satisfy the needs. Possibly, some variables are added in order to also account for a certain 
deformability of these parts (see the contribution of M. Jean in this volume), without essentially changing the 
computational strategies. 

The techniques described in this literature may be classified into three categories. 

e Event-driven methods 

The methods so qualified are practical, mainly when the concerned time-interval equals the union of not too 
many subintervals, a priori unknown, over which the status of the various contacts remain unchanged, i.e. no 
collision which would create new contacts occurs, no contact either gets loose, nor any critical situation needing 
a change in the analytical expression of the Coulomb law of dry friction is met. On each of these subintervals, 
the same numerical techniques as in the investigation of machines with classical bilateral, possibly frictional, 
constraints may be used [ 18]. As integration proceeds, there is need only to watch the evolution of some 
indicators. In particular, the contact forces will be calculated. If, after a certain instant, some of the computed 
values for these forces are found to have directions incompatible with the unilaterality of the non-inter­
penetrability constraints, the programme decides that the motion has to be otherwise calculated. But one should 
keep in mind that the contacts which get loose after the critical instant are not necessarily those for which an 
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unfeasible contact force has just been evaluated [10]. A popular approach to such discussions consists of 
reducing them to complementarity problems [2,4,22,26,50,56], similar to what is commonly met in constrained 
optimization, an aspect that we shall discuss in the sequel. Anyway, as far as it is admitted that contacts involve 
no adhesion (gluing) effects, determining which of them persist is a mathematical matter. 

A much more difficult issue is the calculation of the new velocity in case the critical instant is that of a 
collision. Only poor phenomenological information is available about the physical circumstances inducing 
velocity jumps. Even in the simplest case, that of the collision of two otherwise free members of the system, the 
traditional coefficient of restitution is known to depend not only on the materials these bodies are made of, but 
also on their shapes and relative orientations at the collision locus [55] (only the case of spherical beads appears 
relatively comfortable). Worse, if some of the colliding bodies belong to clusters of already contacting system 
members, percussional reactions should be expected at all existing contact points. Though rigid body collisions 
are currently an active domain of research (see e.g. [6]), computation has to rely on pragmatic rules whose 
validity has to be checked in each domain of application. 

The event-driven approach becomes much simpler when the assumption is made that interactions only consist 
of instant collisions, between which each body moves in free ballistic flight. This may prove realistic in the 
dynamics of loose granulates [47], but here again, sufficiently reliable collision laws are wanted. Incidentally, a 
trick to simulate persistent contact in this line consists of introducing an artificial agitation [ 16]. 

e Smoothing methods 

'Nonsmoothness' is the salient feature of the problems in view. In fact, after the set of possible positions of 
the investigated system has been parametrized through an element q of R ", the geometric restriction that the 
non-interpenetrability constraints impose on q are expressed by a set of inequalities. Hence, instead of running 
in a smooth submanifold, as in traditional analytical dynamics, the point q is confined in a region of R" whose 
boundary is made of a lot of pieces of hypersurfaces (millions or billions of them in current applications to 
granular materials): this is nonsmoothness in space. Furthermore, collisions are expected to induce velocity 
jumps: this is nonsmoothness in time. To end, the contact forces or 'reactions' associated with the non­
interpenetrability constraints are governed by highly irregular laws. These forces vanish as soon as the 
corresponding contacts break while, if contact holds, the commonly stipulated mechanical conditions do not 
express them as functions of q. If, in addition, dry friction is taken into account (most usually in the form of 
Coulomb's law), it introduces some irregular relationships between contact forces and the sliding velocities. All 
this may be called nonsmoothness in law. 

In such a state of affairs, a natural move is to replace, approximately, the nonsmooth governing relationships 
by some regularized ones. First, the non-interpenetrability constraints will be replaced by some stiff repulsion 
laws which take effect as soon as two members of the system come close to each other. This automatically 
handles the possible collisions, as far as one considers them as 'elastic', while the dissipativity of collisions may 
be accounted for by adding some damping actions or also by using different repulsion laws in the episodes of 
approach and of separation [15]. Similarly, frictional contact may be somewhat regularized through the 
introduction [9] of local elastic micro-deformation (in favour of which some experimental evidences exist [48]) 
and of viscosity-like effects. The dynamics of the approximate system is then governed by differential equations 
with sufficient regularity to be handled through standard numerical techniques. The drawback is that the need for 
precision requires the use of very stiff appproximate laws. Hence, the time-stepping procedures applied have to 
resort to very small step-length and possibly also have to enforce numerical stability by introducing artificial 
damping or artificially increasing inertia. When treating dynamical applications, the effect of such an artificial 
alteration of the mechanical data may blur the picture. Significant simulations of loose (collisional) flows of 
granular materials have been obtained in that way, but when dense collections of bodies are concerned (pieces 
of masonry or compact granulates) the method is mainly applied to quasi-static evolutions in which only a 
succession of equilibrium states is looked for. Dynamical computation is then used only as a way of attaining 
each of these equilibrium states, a strategy referred to as 'dynamic relaxation'. 

The pioneering work of Cundall [8] was precisely based on the regularization strategy, today implemented in 
the majority of commercial pieces of software intended to handle non-interpenetrability. The denominations of 
'discrete element methods' or 'distinct element methods' (DEM) are commonly used to refer to this approach. 
Also, because the computation techniques applied in such implementations are close to those of molecular 

2



simulations, the denomination of 'molecular dynamics' (MD) method is also used, specially in the domain of 
granular mechanics [59]. 

e Contact dynamics 

This is the method advocated by the author, to which the present paper is meant to provide an introduction. It 
originated from Moreau [42,43], where the (unilateral) contact, possibly frictional and/or collisional, between 
rigid bodies received a formulation in terms of elementary convex analysis which proves suitable for 
computation. Mathematically, the resulting evolution problems are governed in smooth cases by differential 
inclusions. General information on the latter concept may be found in [3,11], but the need for also treating 
non-smooth evolutions calls for its extension to that of a measure differential inclusion. The sweeping process 
introduced earlier by the author, with motivation in the quasi-static evolution of elastoplastic systems [34,35,38] 
seems to have provided the first occurence of measure differential inclusions in literature. This process and some 
related evolution problems are still today the object of mathematical research [17,24,25]. In the present paper, 
the basic facts of its theory have been estimated sufficiently clear to make a tutorial introduction to the 
specificities of the handling of unilaterality in mechanics. 

The directing idea of the contact dynamics approach is that the main object of computation is the velocity 
function t ~ u ER". Time-stepping algorithms essentially have to determine the evolution of this function, by 
applying the principles of dynamics and the specified force laws. The position function t ~ q is only to be 
updated at each step through adequate integration (possibly also, some members of u are 'pseudo-parameters' 
such as the components of the spin vector of a solid, instead of the time-derivatives of position parameters). 
From the geometrical standpoint, one should observe that, in analytical dynamics, the position q ranges in some 
differential manifold, while for every q the possible velocities are elements of the tangent space to the manifold 
at this point. The latter is a vector space relative to such concepts as linearity, convexity, etc. make sense, while 
no algebraic concept of this sort is generally available in the position manifold. 

Contact dynamics procedures rest on drawing the balance of momentum of the investigated mechanical 
system over each time-step. No estimation of the acceleration is needed and the burden of mathematically 
calculating the curvatures of the involved surfaces is avoided. These curvatures are simply accounted for by that, 
from one step to the other, the normal directions to the detected contacts vary. The method results in 
time-stepping schemes which, at least in what concerns the velocity function, are of the implicit type. Recently, 
several authors have undertaken the treatment of multibody dynamics in similar lines [2,53,54]. 

In principle, the contact dynamics algorithms are ready at each step to treat collisions on the same footing as 
persistent contacts but, of course, the need of physical information about such phenomena is not overcome. 

2. The sweeping process 

2.1. Definition 

Let H be a real Hilbert space and let 1 be a real interval, viewed here as an interval of time, containing its 
origin t0 • A moving set is given, i.e. a multifunction t~C(t) (this is also called a set-valued mapping). It is 
assumed, for every t in 1, that C(t) is a nonempty closed convex subset of H. 

For x in Hand for an arbitrary convex subset C of Hone denotes by Nc(x) the (outward) normal cone to Cat 
point x, in the standard sense of convex analysis, namely with the dot denoting the scalar product in H. 

{
{yEH IV gEe: (g-x).y<O} 

N (x) ·= c . 0 
if xE C 

otherwise. 

Recall that, except when specified differently, by a cone is meant a homogeneous one, i.e. with the zero of H 
as apex. 

If x E C, the cone Nc(x) contains at least the zero of H and, in particular, reduces to this single element if x 
happens to be an internal point of C. If x lies at a regular point of the boundary of C. the cone consists of the 
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half-line emanating from the zero of H, directed as the outward normal to Cat x. That Nc(x) should be empty if 
x ~ C is not an ad hoc trick of notation, but is consistent with the general concepts of the 'subdifferential 
calculus' [19,32,51]. 

By a strong solution of the sweeping process by the moving set C over the time-interval I, one means a 
function u: I~ H, locally absolutely continuous (i.e. absolutely continuous on every compact subinterval of/) 
verifying for every t in I the differential inclusion 

(1) 

Recall that the assumption of local absolute continuity for u implies the existence of a function u with values in 
H, defined in I with the possible exception of a Lebesgue-null set }( and locally Lebesgue-integrable, such that 

V t E 1: u(t) = u(t0 ) + r u(s) ds. 
1 () 

By duldt in the left-hand side of (1), we mean u(t); the function u may be extended to}( with zero value, an 
extension which trivially satisfies ( 1 ). 

This conception of the derivative of a function as 'what allows one to retrieve the function through 
integration' reflects the familiar approach to existence questions for ordinary differential equations, namely 
seeking fixed points of integral operators. In our view, this practice meets most of the needs in mechanics, 
possibly by resorting to other 'base' measures than Lebesgue as we are to show later. In addition, one has to 
recall that, for almost every t, the function u possesses a derivative in the local sense, equal to u(t). All these are 
standard facts of integration theory when real or R" -valued functions are concerned. For their extension to 
functions with values in a reflexive Banach space such as H here, one may refer to [13,14]. 

Inclusion (1) ensures that u(t) E C(t) since otherwise the right-hand side would be empty. If, fort ranging in 
some subinterval, u(t) happens to lie in the possible interior of C(t), this point remains at rest since NC<n(u(t)) 
then reduces to {OH}. It is only when caught-up with by the boundary of C(t) that the point takes a motion, in 
normal inward direction, so as to go on belonging to C(t). 

The convexity of a set C classically implies that the multifunction x ~ Nc(x) is monotone in the sense of 
Minty [5], i.e. if xi' x 2 are elements of H, if y 1 ENc(x 1) and Y2 ENc(x2 ) one has, 

(2) 

Let t ~ u 1 (t) and t ~ u 2 (t) be two functions verifying (1 ). Through the expression of the derivative of the real 
function t ~ llu 2(t) - u 1 (t)ll

2
, property (2) readily implies that this function is nonincreasing; in other words, the 

flow of the possible solutions to the differential inclusion (1) is non-expansive. Consequently, in spite of the 
right-hand side of (I) being multi valued, at most one solution can agree with an initial condition u(t0 ) = u0 • The 
existence question, which of course is conditioned by some regularity assumption regarding the motion of C, 
will shortly be reviewed in Section 5. 

If the assumption of the convexity of C is dropped, some other definitions of the normal cone remain 
available (we shall come back to this in Section 7), giving a more general scope to the above differential 
inclusion [57 ,58]. Short of property (2), the uniqueness of solution to the initial value problem may fail. In this 
connection, let us mention another mechanical image of the sweeping process, suggestive when dim H = 2. 

Picture the product I X H as the physical three-dimensional space, with I corresponding to the vertical 
axis oriented downward. Imagine the set {(t, x) E I X HI x E C(t)} as an underground cavity and the curve 
{(t, x) E I X HI x = u(t)}, namely the graph of the unknown function u, as a tiny waterstream falling down this 
cavity. Condition (1) is equivalent to the following statements: (i) any arc of this stream which happens to be 
detached from the cavity wall is rectilinear and vertical; (ii) when water is running over the wall, it follows a 
line orthogonal to the level curves of the wall surface, i.e. a line of steepest descent; this agrees with 
hydrodynamics under the simplifying assumption that inertia may be neglected, comparative to wall friction and 
gravity; and (iii) the minus sign in (I) precisely expresses that such a contact with the wall may take place only 
on a part of this wall exposed upward; if it crosses the rim of a possible overhang, water gets loose from the 
surface and falls vertically down, as described in (i). 
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2.2. More about convex cones 

Let the polar cone of an arbitrary cone P C H be defined as 

P*:={yEHi VxEP: x.y~O}. 

This is a closed convex cone in H. If the cone P itself is closed and convex, one proves that it equals in tum the 
polar cone of P*, making what is commonly called a pair of dual cones. 

Dual cones provide a vivid setting to examplify some duality features of what is called 'quadratic 
programming', i.e. the minimization of quadratic functions over convex sets, and in the same line of thought the 
equivalence of a pair of dual problems to what is usually named a 'complementarity problem'. The specific 
quadratic programme considered here is to determine, in a nonempty closed convex subset C of our Hilbert 
space H, the nearest point to a given z E H, that we shall denote by prox(C, z). In fact, this determination 
amounts to minimizing in C the quadratic function x~llx - zll 2

• 

For every z in H, the existence and uniqueness of x: = prox(C, z) is classical, as well as the following 
characterization of this point 

Z -x ENc(x). (3) 

The dual cone decomposition lemma [30,32] reads: 
Let P and Q denote a pair of dual cones in the Hilbert space H. For three elements x, y, z of H, the 

statements (4) and (5) are equivalent. 

Z = x + y, x E P, y E Q, x.y = 0. (4) 

x = prox(P, z), y = prox(Q, z). (5) 

Among the numerous elementary consequences of this lemma, let us observe this. In view of ( 4 ), one has the 
equality llzll 2 

= llxll 2 + IIYII 2
, through which any upper bound of the distance of z to one of the two sets P and Q 

generates a lower bound of the distance to the other. 
One also readily derives from the lemma a characterization of the normal cone to one of the cones P or Q at 

any point. In fact, by taking (3) into account, one finds for every x 

y E Np(x) <=> y E Q and x.y = 0 (6) 

and symmetrically. In particular, this shows that Np(x) C Q and Np(OH) = Q. 

3. Two examples of moving convex sets 

3.1. A set moving by translation 

Let C0 be a fixed closed convex subset of H and let a :1 --'t H be given, locally absolutely continuous. Define 
C(t) = C0 + a(t) and consider a solution u to ( 1) in this case. 

For every t in J, the moving point w(t): = u(t)- a(t) remains in Cw Let t 1 E /; the definition of the normal 
cone to C0 at point w(t 1 ) makes that 

V tEl, 

In other words, w(t) - w(t 1) belongs to the polar cone N~ (w(t 1 )), hence the same is true for the right-derivative 
0 

. + . w(t)- w(t 1 ) 
w (t

1
):= hm----'-

r-1-r 
1 

t - t 1 

if it exists. Generally speaking, N~ (x) is called the tangent cone to C0 at point x. 
0 
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The left-derivative w- (t 1 ) is symmetrically found to belong to - N~ (w(t 1 )), hence the (bilateral) derivative 
() 

W(t I ), if it existS, belongs tO 

a linear subspace of H called the tangent space to C0 at point w(t 1 ) (possibly reduced to the zero of H). 
The above are merely kinematical consequences of u(t) belonging to C(t) for every t. Taking into account the 

governing condition (1) of the sweeping process and the obvious equality of the respective normal cones at the 
corresponding points of translate sets, one has - u(t 1 ) E Nc (w(t 1 )). Clearly, all elements of the set Nc (w(t 1 )) 

0 () 

are orthogonal to Lc (w(t 1 )), hence at every instant t 1 such that the considered derivatives exist (bilaterally), the 
0 

scalar product u.w vanishes, i.e. u.(a- u) = 0. By putting this equality together with the inclusions u E - Nc 
and a-u E - N~, one brings to light the familiar ternary pattern of a system of complementarity conditions in 
precisely the form displayed in Subsection 2.2. Here, - Nc and - N~ are dual cones, therefore the dual cone 
decomposition lemma yields 

a-u= prox(-N~, a). 

By using translation and symmetry about the origin, one transforms (8) into 

u = prox(a + N~, OH), 

(7) 

(8) 

(9) 

i.e. u equals the element of minimal norm in a + Nr In the foregoing, what was said of the motion of 
w = u -a in the fixed set C0 , implies that a + N~ equals the set of the values of the right-derivative u + 

kinematically compatible with u(t) remaining in C(t) for every t. We shall refer to this set as the admissible 
right-velocity set, (ARVS). 

As for (7), it implies, in particular, the inequality llu II< lki 11. The definition of the moving set C(t) as the 
translate C0 + a(t) allows one in the present case to interpret the sweeping process as a driving mechanism 
tending to make u accompany the given motion of a, but suffering some clearance. The above inequality 
expresses that the instant speed of u cannot exceed that of a and, by integration over a time-interval, that the 
length of the path of u cannot exceed that of the path of a. Establishing a priori some inequalities of this sort 
plays a central role in existence proofs. 

3.2. Finite intersection of smoothly moving regions 

Let us now consider the case of a subset C(t) of H defined by a finite collection of inequalities 

C(t) = {x E HI c)t, x) ~ 0, a= 1,2, ... ,K}, (10) 

where the functions c":IXH~R are continuously differentiable, convex in the argument x. Their x-gradients, 
elements of H denoted in the sequel by Vc", are supposed nonzero at least in neighbourhoods of the respective 
hypersurfaces c" = 0. At a fixed t, the convexity of c" classically implies that, for every x and u in H, the 
inequality 

(x- u).Vc"(t, u) ~ c"(t,x)- c"(t, u) 

holds. For every t and u, put 

K(t, u) :={a E{1,2, ... ,K} I c"(t, u) = 0}. 

(11) 

(12) 

Inequality (11) yields that, for every a in K(t, u), the element Vc"(t, u) belongs to the normal cone Ncu/u). 
Whether the totality of this normal cone is generated by nonnegative combination of the said elements is an 
issue of the 'subdifferential calculus' [19,51]. We shall assume in the sequel that Nctn(u) possesses this 
generation property. A standard sufficient condition is that C(t) possess a nonempty interior. 

Define 

W(t, u) :={wE HI 'V a E K(t, u): ac"/ at+ w.Vc" ::50}, (13) 

a closed convex polyhedral subset of H (in particular this equals the whole of H if K(t, u) = 0). 
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Let t ~ u(t) denote a moving point belonging to C(t) for every t and let t 1 E /. If a E K(t 1, u(t 1 )), the right 
derivative at point t 1 of the real function t ~ c,(t, u(t)), if this derivative exists, is necessarily :;;; 0. Using the 
chain rule, one concludes that the right derivative ti + (t 1 ), if it exists, belongs to W(t 1, u(t 1 )). The latter set 
constitutes in the present case the ARVS. 

Symmetrically, the left derivative ti- (t 1 ), if it exists, belongs to the set defined by replacing :;;; 0 by ~ 0 in 
(13), hence, if the (bilateral) derivative ti(t 1) exists, it verifies 

(14) 

By substracting these equalities from the respective inequalities involved in the definition (13), one sees that, in 
the present circumstance, W(t 1, u(t 1 )) is a (non homogeneous) cone admitting ti(t 1 ) as apex. Up to the translation 
- ti(t 1 ) in H, this equals the polar cone of the cone generated by the elements Vc ,(t 1, u(t 1 )), a E K(t 1, u(t 1 )), 

namely Nc(t,>(u(t 1 )) in view of the assumed generation property. Owing to (6), this also equals the normal cone 
to W(t 1, u(t 1)) at its apex ti(t 1 ). Hence, if u is a solution to ( 1 ), one has 

Due to the characterization (3) of proximal points, this is equivalent to 

(15) 

i.e. analogously to what was stated in (9), ti(t 1) equals the element of minimal norm in the ARVS. 
The elements of H which, similar to ti(t 1 ), satisfy (14) form an affine manifold, say W,,(tpu(t 1 )) (possibly 

reduced to the single element ti(t 1 )), contained in W(t 1, u(t 1 )). Any element of W)t 1, u(t 1 )) constitutes on the 
same footing as ti(t 1 ) an apex of W(t 1, u(t 1 )), so the normal cone to W(t 1, u(t 1 )) at this point also equals 
Nc(t, >(u(t 1 )). In the proximal characterization (15), W may be replaced by W,, and this makes of the determination 
of ti(t 1 ) a linear problem. 

Incidentally observe that, owing to the generation property, condition (1) implies the existence of nonpositive 
real numbers (Ap ... ,AK) such that ti = L, A, Vc,(u). On account of (14), should a belong to K(t, u) or not, in 
all cases one has 

(16) 

a system of complementarity conditions. 

4. Approximation 

At the stage of computation, the Hilbert space H naturally has finite dimension, i.e. it equals a Euclidean 
vector space, possibly viewed as R" equipped with the standard scalar product. 

4. I. Event-driven strategy 

Such a strategy naturally applies to the situation described in Subsection 3.2. If, instead of ( 1 ), the governing 
equation of the process is taken in the form ( 15), the task becomes that of integrating an ordinary differential 
equation, with the difficulty that the definition of the function in the right-hand side is subject to switches. The 
'events' to be monitored are the changes in the contents of the set K(t, u(t)). At the corresponding instants, the 
function u remains continuous, so its value provides the initial condition from which integration should be 
continued over a subsequent interval. Theoretically, however, the availability of such an interval is not secured: 
even if the solution u has been proved to exist, with high regularity (say continuous differentiability up to a 
certain order), the possibility remains of an accumulation of switches on the right of the primarily detected one. 
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4.2. Smoothing strategy 

Denoting by C a nonempty convex subset of H, one shows [32] that the real function x ~ (dist(C, x))2 /2 = 
llx- prox(C, x)ll 2 /2 is Frechet-differentiable everywhere in H, with gradient at point x equal to x- prox(C, x). 
Choose a constant A > 0 and define the penalty function 

A o 
p(t, x) := 2(dist(C(t), x)t. (17) 

This function takes the value 0 if the constraint x E C(t) is satisfied; otherwise its value may be interpreted as 
the 'fine' one has to pay for the constraint violation. If the given motion of C satisfies some of the regularity 
assumptions we shall formulate in Section 5 below, the ordinary differential equation 

du 
- dt = Vp(t, x) (18) 

possesses a unique solution for every initial condition u(t0 ) = u0 . It may be shown [23,35] that this solution 
converges to a solution of (I) when the penalty coefficient A tends to infinity. The differential equation ( 18) 
expresses that the velocity vector of the solution u equals A (prox(C, u)- u). Intuitively, this tends to bring u 
back into C(t) with speed proportional to the magnitude of the violation. 

4.3. Catching-up strategy 

Devising a time-stepping scheme for the numerical approximaion of ( 1) involves covering the interval I by a 
succession of adjacent subintervals. Let [t;, trl be one of them ('i' as initial, 'f' as final), with length 
h : = tr - t; > 0. Denoting by u; and ttr some estimates of u(t;) and u(tr), one approximates the time-derivative in 
the left-hand side of (I) by Cur- u;)lh. 

The differential inclusion (I) cannot a priori generate any Euler scheme of the explicit type: expressing that 
the negative of the above estimate of the derivative belongs to the normal cone at point u; to C; : = C(t;) does not 
allow one to calculate up even if the requirement that ur should belong to Cr := C(tr) is added. In contrast, the 
natural implicit approximation scheme merely consists in writing u; - ur E h Nc(ur), where the real positive 

I 

factor h is immaterial, since the right-hand side is a cone. In view of (3), this is equivalent to 

(19) 

Starting with some initial data u(t0 ) E C(t0 ), the numerical procedure consists in a succession of well-defined 
proximations, which we call the catching-up algorithm. 

The following extension is of importance when the above ideas are transported into the dynamical setting. 
Choose a real number () > 0 and construct t a:= () tr + (I - ()) t; (where 'a' stands for average), Ca: = C(t,), 
ua : = () u r + (I - ()) u;. Then, u; - u 1 = (u; - uJ I(), so if one tries to approximate (I) by writing that an estimate 
of - du/dt should belong to Nc (u"), one finally obtains 

a 

ur=(l- ~)u;+ ~prox(Ca,u;). 

5. Some existence results 

The existence of solutions to the initial value problem for the sweeping process, as formulated in Section 2, is 
naturally conditioned by some regularity assumptions regarding the data t ~ C(t). For instance, in the example 
presented in Subsection 3.1 of a set whose evolution is defined by applying the translation t ~ a(t) to the fixed 
set C0 , the assumption of a being locally absolutely continuous may be proved sufficient. Extending to more 
general evolutive sets the concept of absolute continuity rests on the definition of some (pseudo)distance 
between subsets of H. 

Observe that a regularity assumption regarding the evolution of C is needed only if, in a space-neighbourhood 
of the current position of u and in a time-neighbourhood on the right of the current time, the set C recedes. In 
fact, if C locally expands, the sweeping process leaves u unmoving. 
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Generally, let E be a metric space, with distance denoted by 8. For two subsets A and B of E, put 

e(A, B):= supaEA infhE 88(a, b), (20) 

called the metric excess of A over B. Here, 'sup' and 'inf are understood in the sense of the ordered set [0, +ex:], 
entailing in particular that e(0, B)= 0. Clearly, e(A, B)= 0 if and only if A is contained in the closure of B. 
Though e does not properly constitute a distance, it may be proved that, for three subsets of E, the 'triangle 
inequality' holds [36] (attention has to be paid to e lacking symmetry). 

Using e as it was a distance, one may introduce [36] a concept similar to that of bounded variation. Of 
course, no assumption of convexity for the multifunction t ~ C(t) has place in this context. Let [s, t] denote a 
compact subinterval of I. By considering all the finite sequences ( 7j) of the form s = r0 < · · · < 7,, = t and 
taking the supremum of~;'= 1 e( C( 7j _ 1 ), C( 7j )), one defines the retraction of the multifunction C over the interval 
[s, t]; notation: ret(C;s, t). This is zero if and only if, with respect to the ordering C in the subsets of E, the 
multifunction T ~closure C(r) is nondecreasing everywhere in [s, t]. If ret(C;s, t) is finite for every [s, t] C /, 
the multifunction C is said to have finite retraction over/. Equivalently, the nondecreasing retraction function 
r:T~ ret(C;t0 ,T) has finite values and, whenever s:::; tin/, one has ret(C;s, t) = r(t)- r(s). 

In the same context, one classically introduces the Hausdorff 'distance' between two subsets A and B of E. In 
the present notations, this is h(A, B):= max(e(A, B),e(B, A)) (with values in [0, + x]). By using h instead of e in 
the above construction, one defines for every [s, t] C I the variation of the multifunction C over the interval 
[s, t]; notation: var(C;s, t). This is zero if and only if the multifunction T ~closure C(r) is constant in [s, t]. If 
the variation is finite for every [s, t] C /, the nondecreasing finite-valued variation function v :r ~ var(C;t0 , r) 
yields var(C;s, t) = v(t)- v(s). In any case, ret(C;s, t) ~ var(C;s, t). 

The multifunction C is said to have locally absolutely continuous retraction (resp. variation) if the real 
function r (resp. v) is absolutely continuous on every compact subinterval of/. More specially, the multifunction 
is said Lipschitz with ratio k if such is its variation function. 

The above concepts are made practical by results like the following [35-38]: Let t ~ A(t) and t ~ B(t) be 
two multifunctions of a compact interval K to a normed linear space E, with convex values. Suppose that, for 
every t in K, the set A(t) has nonempty intersection with the (thus nonempty) interior of B(t) and that the 
diameter of A(t) n B(t) is finite. Then, if both multifunctions are absolutely continuous (resp. Lipschitz), such 
also is the multifunction t ~ A(t) n B(t). 

Coming back to the sweeping process, the intuitive assumption to make in order to establish the existence of 
the solution to the initial value problem is that the multifunction C has, locally, absolute continuous retraction. 
The proof is developed constructively in [38] by establishing the convergence of the catching-up algorithm. 
Recall also, that the approximation through penalty differential equations such as (18) is a standard method of 
establishing existence results for large classes of evolution problems [5]. This technique is applied to the 
sweeping process in [35] under the assumption that C has absolutely continuous variation. Incidentally, some 
unusual features are displayed: by making the penalty coefficient A vary with t, the regularization approach is 
also used to prove the convergence of the catching-up algorithm. 

6. Weak solutions and discontinuous processes 

The catching-up procedure of Section 4 consists in constructing inductively a sequence of points through 
successive proximations into a sequence of sets, without reference to the corresponding values oft. Going to the 
limit when discretization is refined, one infers that the sweeping process itself should associate the successive 
positions of the moving point u to the successive positions of the moving set C in a way which does not depend 
on the timing. In fact, let TT:t' ~ t be a nondecreasing locally absolutely continuous map of some interval I' 
onto/. The derivative of u':t' ~ u(TT(t')) is expressed through the chain rule as (duldt)(dtldt'), with dtldt';;,: 0. 
Because the right-hand side of (I) is a cone, one sees that u' is a solution of the sweeping process on the 
time-interval I' by the moving set t' ~ C(TT(t')). Generally, in mechanics, governing relations which enjoy a 
property of this sort are qualified as rate-indifferent. 

The convergence proof of the catching-up algorithm (more precisely, the convergence of a net of step­
functions similarly constructed) works under the mere assumption that the moving set C has locally bounded 
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retraction [38] (a fortiori if it has locally bounded variation) and its retraction over every subinterval of I is 
found to majorize the corresponding variation of the limit function u. The latter may be called a weak solution to 
the sweeping process. The following explains how this generalization remains connected with the primary 
formulation ( l ). 

Recall that, with a function u: I~ H of locally bounded variation, an H-valued measure on I is associated, 
called its differential measure (or Stieltjes measure), that we shall denote by du. The function u is locally 
absolutely continuous if and only if this vector measure admits a density function relative to the Lebesgue 
measure in I, which is nothing but u [13,44]. If one denotes by dt the Lebesgue measure in I (it in fact equals 
the differential measure of the real function t ~ t), the symbol du/ dt in ( 1) may be read as the density function 
of the vector measure du relatively to the positive real measure dt. 

Suppose now that u is a weak solution. Since it has locally bounded variation, some non-negative real 
measures on I are known to exist, among them the differential measure dr of the retraction function of C, 
relatively to which du admits density functions. Restricting oneself, for simplicity, to the case where the 
retraction function r is right-continuous, one establishes [27,38] that the density function du/ dr verifies the same 
inclusion as in (I) with the possible exception of a dr-negligible subset of I. Because the right-hand side is a 
cone, this inclusion is preserved if one replaces dr by any non-negative real measure on I relatively to which du 
possesses a density function: this reflects, in the present context, the rate-indifference property mentioned in the 
foregoing. For more precision about such changes of 'base' measures and the technical handling of possible 
negligible sets, one may refer to [44]. It is thus natural to avoid mentioning any specific base measure and to 
formulate the sweeping process in the form 

- du E N0 n(u(t)), (21) 

called a measure differential inclusion. Governing conditions of this sort play a significant role in 'nonsmooth 
dynamics'. 

Observe that, if the right-continuous retraction function r is discontinuous, a weak solution u (it is also 
right-continuous) may exhibit jumps. If this occurs at some point t 1 of I, the vector measure du possesses at this 
point an atom with mass u(t 1) - u- (t 1 ). Through the characterization (23) of proximal points, one derives the 
jump law u(t 1 ) = prox(C(t 1 ), u- (t 1 )). 

Concerning the initial value problem for weak, possibly discontinuous, solutions of the sweeping process, 
uniqueness rests on the same non-expansion property as in Subsection I, but instead of the elementary 
differentiation of the real function t ~ llu 2 (t) - u 1 COII 2

, one has to base the proof on the Calculus of differential 
measures. What follows is established in [44] as a special case of some rules of this Calculus. 

Let u: I~ H have locally bounded variation. Then, the H-valued functions t ~ u- (t) and t ~ u + (t) (the left­
and right-limits which, classically, are sure to exist) have locally bounded variation, as well as the real function 
t ~ llu(t)ll 2 and the following inequalities hold in the sense of the ordering of real measures on I 

1 
u -. du ~ 2dllull 2 ~ u +_ du. (22) 

Concerning the approximation of weak solutions, a useful tool for assessing the discrepancy between two, 
possibly discontinuous, functions is the Hausdorff distance of their graphs (or of certain completed sets), as 
subsets of the metric space I X H [28,39]. 

7. Going to dynamics 

7.1. Parametrization 

Let the possible configurations of a mechanical system be parametrized through generalized coordinates, say 
q : = ( q 

1
, q2

, ••• , q"). This, at least, holds locally: the parametrization of the whole set of the possible 
configurations commonly requires the introduction of several overlapping charts; when each of these charts is 
used, the element q has only to range in an open subset of R". For brevity, no further allusion will be made to 
this. 

The construction of such a parametrization is a standard step in the dynamics of rigid body collections, 
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possibly by taking profit of the presence of frictionless linkages, in order to make the number n as small as 
possible. This being done, one takes here into account the constraints of non-interpenetrability whose geometric 
effect is assumed expressed by a finite set of inequalities 

fa(t, q):;;;: 0, a E {1,2, ... ,K}, (23) 

where~, f 2 , ••• , t are given functions. Equality J;. = 0 corresponds to the occurrence of a contact. Through the 
presence of t as an argument of J;., provision is made for the inequality to describe the confinement of a part of 
the system by some external boundary with prescribed motion. 

As an example, one may consider a pair of members of the system whose positions in a chosen reference 
frame are well located as soon as the value of the element q of R" is known (together with the timet in case of 
a 'rheonomic', i.e. time-dependent, parametrization). Then, one may take as fa the expression, as a function of 
(t, q), of some measure of the overlap of the two bodies. This overlap should be understood as a directed 
quantity, so that it becomes negative in case the bodies lie apart from each other. The convention applied in 
(23), of characterizing the permitted configurations through the :;;;: 0 inequality, comes from convex optimization 
theory, where such a sign convention offers technical advantages. No convexity hypothesis is made here 
concerning the functions J;.: since such an assumption would not be preserved under a change of parametriza­
tion, it cannot, in general, have any mechanical meaning (note, however, that the assumption of a convex 
feasible set in R" proves mathematically fruitful in [49]). If one prefers to deal with the ;;:O symbol, there is 
only to consider, instead of the overlap the opposite quantity, usually called the gap between the considered 
bodies. 

The above formalism is not limited to collections of strictly rigid bodies, since q may also include parameters 
accounting for a finite-freedom approximation of deformability. Such additional parameters possibly arise from 
some modal representation of the deformation dynamics or from the Finite Element discretization of deformable 
parts (see e.g. the contribution of M. Jean in this volume). 

The geometric characterization of non-interpenetration through a finite set of inequalities such as (23) is 
operative in most practical situations. For instance, it is still valid in the case of a body touching the smooth 
surface of another one by a sharply pointed asperity. In contrast, non-interpenetration cannot be described 
anymore in that way in the neighbourhood of a configuration where two sharp asperities come into contact by 
their points. In practice, algorithms based on (23) are found to still perform acceptably in such irregular 
circumstances. 

In all the sequel, it will be assumed that each function J;. is cg 1
, with afa/ aq =I' 0 at least in a neighbourhood of 

the hypersurface fa = 0 of R" + 
1

• 

For every imagined motion t ~ q(t) and fort such that the derivative u := dq/dt exists, the kinetic energy has 
a generic expression of degree 2 in u, say 

1 . . . 
<tk(t, q, u) = 2 Aij(t, q) u'u' + B;(t, q) u' + C(t, q), (24) 

where A is a symmetric positive definite n X n-matrix, B ER" and C E R. In the common case of a 
'scleronomic' (i.e. time-independent) parametrization, A is constant in t, while B and C vanish. 

The equations of dynamics, to be invoked in the sequel, involve both unknown functions t ~ q and t ~ u. We 
have just introduced the latter as the derivative of the former. Actually, in existential studies as well as in the 
CD approximation technique, the emphasis is primarily placed on the velocity function t ~ u, to which the 
position function t ~ q shall be related through 

q(t) = q(t0 ) + f u(s) ds. 
to 

(25) 

Practically, it is sometimes advantageous to describe the velocity state of the system by a velocity function 
connected with q in a more complicated way. For instance, when dealing with 3-dimensional rigid bodies, it is 
usual to attach to each of them a frame of principal axes of inertia emanating from its center of mass. Then, one 
may choose to enter, as members of the R"-valued function u, the components relative to these axes of the spin 
vector of the rigid body, instead of the time-derivatives of some directional parameters. This brings considerable 
advantage of generating a contribution in the matrix A which is diagonal and constant with regard to t and q. 
Retrieving from the spin components the evolution of the directional parameters of the rigid body is only a 
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matter of integrating some standard kinematical formulas. Incidentally, observe that in the dynamics of a 
collection of k isotropic spherical beads, a popular model of granular system, the proper orientation of each bead 
is immaterial: only its spin vector counts. Hence, if the above procedure is applied, computation involves a 
velocity function with 6k components while the position function has only 3k components. 

7.2. Contact kinematics 

In order to enter into the equations of dynamics the available phenomenological information concerning the 
contact interactions, one has to connect the local description of contact in physical space with the 
parametrization introduced above. 

Suppose that inequality fa~ 0 express~s the non-interpenetration of some pair of members of the system, say 
!?J3 and !?J3 1

, so that equality fa = 0 corresponds to these bodies touching each other at some point of space 
denoted by M". We shall assume this to be an isolated contact point, but other contacts, associated with different 
values of a, may also be in effect between the same bodies at the same instant. For every imagined motion 
t ~ q(t) bringing the system through the considered contacting position for some value oft, the velocity vectors 
"Y" and "Y : of the respective particles of !?J3 and !?J3 1 passing at point M" let themselves be expressed as affine 
functions of the value u E R" of the velocity function. The same is thus true for the relative velocity 
U!L" = "Y,, - "Y ;, of !?J3 with respect to !?J3 1 at this point, say 

(26) 

where G":R" ~R3 denotes a linear mapping, depending on t and q. No attention is paid at this stage to the 
imagined motion preserving contact or not. The term 'W" E R 3, a known function of t and q, vanishes in the 
familiar case of a scleronomic parametrization. 

Assume that the contact actions that body !?J3 experiences at point M" from body !?J3 1 are described as a 
simple force rfi" (there would be no conceptual difficulty in adding to this description some local torque, 
accounting for a resistance to rolling). Then !?J3 1 experiences from !?J3 the force -rfi". The standard machinery of 
analytical dynamics needs a representation of this pair of forces, in regard to the chosen parametrization, 
through its covariant components (or 'generalized components'), namely the element r" of R" expressed as 

(27) 

with G! :R 3 ~ R" denoting the transpose of Ga. 
The convention of implicit summation will never be applied to Greek indices. 
Similar formulas are found to hold if inequality J;, ~ 0 expresses the confinement of a part !?J3 of the system by 

some external boundary with prescribed motion. Assume that equality fa = 0 corresponds to contact taking place 
at some point, here again denoted by M". The local velocity, at this point, of the body !?J3 with respect to the 
boundary has the same form as oua in (26), where 'Wa now takes into account the known velocity of the 
boundary. This makes r" in (27) consist of the covariant components of the force rfi a alone, acting on !?J3. Its 
counterpart exerted by !?J3 upon the boundary is not a force experienced by the system. 

In both cases, the following relationship is found to hold [43] between the element afa/aq of R" and the 
normal unit vector n" at point M" to the contacting bodies, directed toward !?J3 

3A ;;:o 
a such that G* a= -A afa 

an a aq. (28) 

The proof of this rests on a 'unilateral' version of the algebraic theorem of Lagrange multipliers, known in 
Convex Analysis as Farkas' lemma [51]. 

In all the sequel, we shall assume that the mapping G" is surjective of R" onto R 3
; equivalently, its transpose 

G! is injective of R 3 into R". Then, A" in (28) is nonzero. Some special positions of certain linkages may give 
rise to 'wedging' effects which contradict this assumption. 

7.3. The equations of Dynamics 

The expression (24) of the kinetic energy allows one to write down the dynamical equations of the system by 
using the Lagrange technique, possibly adapted in order to accept, as explained in Subsection 7.1, the handling 
of velocity parameters not equal to the time-derivatives of position parameters, 
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du "' a A(t, q) -d = F(t, q, u) + LJ r , 
f a 

(29) 

an equality of elements of R". The expression F comprises standard terms of the Lagrange equations and the 
covariant components of some applied forces, supposed given as functions of the time, the position of the 
system and its velocity. The elements ra,a E {1,2, ... ,K}, are the covariant components of the contact forces as 
defined in (27): ra can be nonzero only when inequality fa(t, q) ~ 0 holds as an equality. 

To the above equation, the geometric conditions (23) of non-interpenetration are to be adjoined and also some 
phenomenological information concerning each possible contact, called a contact law, for which we assume the 
form 

(30) 

The local relative velocity OU, and the contact force fYt" are respectively connected with u and r" through (26) 
and (27). 

The simplest example of such a law is provided by frictionless contact. 

8. Frictionless contact dynamics 

8.1. Basic formulation 

Traditional mechanics grants precedence to the special case of ideal i.e. frictionless constraints. In the present 
setting, this means that, at the contact point denoted in Subsection 7.2 by M,., the contact force Pit" has the 
direction of the normal vector n". In addition, it is assumed that the contact exhibits no cohesion (gluing) effect, 
hence 3 Per~ O:fYta = p,n". In view of (28), this is equivalent to 

3 f-ta ~ 0 such that (31) 

Here, it is implicitely assumed that the contact with label a is effective, i.e. the constraint inequality f,(t, q) ~ 0 
holds as equality. Otherwise, the contact force is essentially zero, so one may understand that I-ter = 0 iff, < 0. 
As such an alternative is offered for every a = 1, ... ,K, one recognizes once more the familiar pattern of a 
system of complementarity conditions. In the context of formulating contact laws, these are commonly referred 
to as Signorini 's conditions [52]. What follows amounts to developing the same in different notations. 

Let C/J(t) denote the subset of R" consisting of the positions q agreeing at time t with the non-interpenetration 
inequalites (23), called the feasible region at time t. For every t and q, put 

J(t, q): ={a E {l, ... ,K} I fa(t, q) ~ 0}. (32) 

If q E C/J(t), this equals the set of the values of a such that (23) holds as an equality, i.e. the subset of {1, ... ,K} 
corresponding to effective contacts. But, in existential studies, as well as in numerical computation, it proves 
useful to apply the definition (32) also to positions implying some violation of the non-interpenetration 
inequalities. 

Concerning the elements n" and G, introduced in Subsection 7 .2, one may similarly agree to extend their 
definitions (in a smooth way) to values of q not belonging to C/J(t), i.e. to define them at least on a neighbourood 
of the hypersurface fa= 0. This extension may even be constructed in a way which preserves (28). 

When q in C/J(t) belongs to the hypersurface fa= 0, i.e. when a E J(t, q), the n-vector ~fj i:lq (we have 
assumed it to be nonzero) classically defines the normal direction in R" to this hypersurface at point q, directed 
outward of the region C/J(t). The situation differs from what we have met in Subsection 3.2 by that no convexity 
concept applies to the functions f, nor to the region C/J. In the convex analytic definition of the normal cone 
recalled in Subsection 2.1, the convex set C was involved globally. But in the manifold of the system positions 
only local operations make sense, so we shall resort to a different conception of a so-called normal cone. In 
contrast, the convex analytic standpoint prevails when we work in the space of velocities, which is a linear 
space. 
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Let us agree to denote by N<P<n(q) the convex cone generated in R" by the vectors afalaq, a E J(t, q) and call 
it the (outward) normal cone to the region </J(t) at the point q of its boundary. If q lies in the interior of <P(t) the 
set J(t, q) is empty so, according to standard conventions, the generated cone reduces to the zero of R". 

When evaluating the term ~a r" in the dynamical equation (29), it is enough to make a range in J(t, q) since 
otherwise f?lla vanishes. Thus, in view of (31), the negative of the sum ~a ra belongs to N<P<Jq). Conversely, 
every element of R" whose negative belongs to this cone admits a decomposition into the sum of the covariant 
components of forces flJ2 a which are feasible as reactions of the corresponding frictionless contacts. So, the 
traditional goal of analytical dynamics, namely the elimination of the unknown reactions of ideal constraints, is 
attained by rewriting the dynamical equation (33) in the form of the differential inclusion 

du 
F(t, q, u)- A(t, q) dt E N<Pul(q) (33) 

to which the non-interpenetration inequalities (23) have to be adjoined. A notational trick allowing one to 
incorporate the latter in the writing (33) is to agree that N<Pul(q) is empty when q£</J(t). 

REMARK. Since in defining N<Pul(q), we depart from the convex analytic standpoint presented in Section 2, 
the connection of this cone with the possible motion of points in the region </J(t) is left to be discussed. At a 
fixed time t, let us consider a chain of points 7 ~ q( 7) E </J(t) with q(O) = q (in traditional analytical dynamics, 
this is called a virtual motion at time t). A simplified variant of the reasoning developed in the next Subsection 
shows that the right-derivative of qat 7=0, if it exists, necessarily belongs to the polar cone (N<P<tl(q))* in the 
sense of the standard scalar product of R". It is natural to call this the tangent cone to the region </J(t) at point q. 
However, in the absence of additional assumption (the usual one is that (N<Pul( q))* have nonempty interior, a 
fact equivalent to N<P<n( q) possessing a bounded section) an element of this so-called tangent cone does not 
necessarily correspond to a chain of points in </J(t) as considered above (see [41] for a counter-example and [1] 
for the sufficiency of additional assumptions). Anyway the investigation of variants in the definition of normal 
or tangent cones to a point set is a vast subject (see e.g. [7, 19]). 

8.2. Handling non-interpenetration in terms of velocities 

The differential inclusion (33) is found uneasy to approximate. The move we are to make now is crucial in 
the elaboration of the contact dynamics method. 

Let us consider, at time t 1, a position q 1 such that the contact with label a is in effect, i.e. fa(t 1, q 1 ) = 0. If a 
motion t ~ q(t), starting from this position, complies with the non-interpenetration inequality f, ,;;; 0 for every 
t ~ t 1, the right-derivative at point t 1 of the real function t ~ fa(t, q(t)) necessarily is ,;;; 0. Since fa has been 
supposed ifl! 1

, this right-derivative exists as soon as the function t ~ q(t) possesses a right-derivative at point t 1, 

say u +, and is expressed through the chain rule in the form a fa I at + u + a fa I aq. Therefore, if a motion satisfies 
the non-interpenetration inequalities, the right-velocity u + (t), whenever it exists, belongs to the polyhedral 
closed convex set 

lH . { R" I u ata ata } rr(t,q).= vE vaEJ(t,q): at +v aq :o;;;O . (34) 

Symmetrically, the left-velocity u- (t), whenever it exists, belongs to the set W' (t, q) defined by reversing the 
inequalities. 

The situation here is similar to that we met in Subsection 3.2. Let the considered motion satisfy the 
differential inclusion (33) in the conventional sense, i.e. t ~ q is locally absolutely continuous and u(t) equals 
for almost every t its (bilateral) derivative. Then, what precedes shows that, for such t, the value of u belongs 
the intersection W' n W, hence 

V a E J(t, q): 
ata ata 
at + u aq = 0· (35) 

By substraction one obtains that v belongs to W(t, q) if and only if the inequality (v - u) afal aq,;;; 0 holds for 
every a in l(t, q). In other words, W(t, q) = u + (N<P<n(q))*. Since the normal cones at corresponding points of 
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translate sets are equal, there comes out that Nw(t,ql(u) equals the normal cone to (N<Pul(q))* at the origin, namely 
N<P<<l(q) in view of (6). Consequently, if the function u satisfies (33), it also satisfies the differential inclusion 

du 
F(t, q, u)- A(t, q) dt E Nw(t.ql(u). (36) 

This makes a priori a stronger requirement than (33), since Nwu.q/u) is essentially a subset of N<~><rl(q). 
This inclusion implies that u E W(t, q); otherwise, the right-hand side would be empty. It is thus useful to 

observe [43]: 

THE INTEGRATION LEMMA. Let q:I -7Rn be connected with a locally Lebesgue-integrable function 
u: I --7 Rn through the integration formula (25). Suppose that q(t0 ) E cP(t0 ) and that u(t) E W(t, q) for almost 
every t in I. Then, q(t) E cP(t) for every t in I. 

REMARK. For brevity, it has been implicitely assumed in what precedes that u equals the time-derivative of q. 
That the same interplay of inequalities works, more generally, when other sorts of velocity parameters are used 
could be established through the machinery of Subsection 7 .2, by taking for instance as function fa the normal 
overlap of the concerned bodies (negative if the bodies lie apart). By elementary kinematics, one finds that, for 
an arbitrary motion, the time-derivative of this overlap equals - na. !Jila =- n". Ga u- n 01

• "W, expressions of the 
same form as those in (34) and (35). 

8.3. A primitive example of CD algorithm 

Let some initial conditions q(t0 ) = q0 E cP(t0 ) and u(t0 ) = u 0 E W(t0 , q0 ) be imposed on a solution to the 
differential inclusion (36). We propose here a time-stepping procedure for the approximation of the functions u 
and q. As in Section 4, let [ti, trl denote a time-step, with length h. From the computed values ui and qi of the 
functions u and q at t = ti, which result from the preceding step, one has to predict Ur and qr corresponding to tr. 

The given function F and A in (36) usually depend smoothly on their arguments, so we approximate their 
values throughout the concerned interval by fixing t as the 'midtirne' tm := ti + h/2 and q as the 'midposition' 
qm := qi + huJ2 while u is made equal to ui. 

Similarly, the detection of the contacts to be treated as effective in the time-step is based on the values that 
the functions/., take at point (tm, qm), i.e. the set of the 'active' values of a is estimated to be Jm := J(tm, qm) 
and W(t, q) to equal the constant subset Wm := W(tm, qm) of Rn. 

The differential inclusion (36) is formally analogous to that of the sweeping process by the moving set W 
hence, for the same reason as in Section 4, we choose to evaluate the unknown ur through a procedure of the 
implicit type. Approximating as usual du/dt by (ur- uJ!h, this leads to 

(37) 

(the right-hand side being a cone, the multiplier h > 0 has been dropped). 
This characterizes the unknown Ur as the solution of a quadratic programming problem. One achieves the 

same simplicity of notation as in Section 4 by taking for A the identity matrix (this actually entails no loss of 
generality, but amounts to equip the linear space where u takes its values with the 'kinetic' Euclidean metric; 
some precisions on the implementation of this trick are given in [41]). In view of (3), the inclusion (37) is then 
found equivalent to 

(38) 

Finally, one completes the computation step with 

REMARK 1. The calculation of ur from ui is based on mechanical elements evaluated at the mid-position qm; in 
tum, ur is used to calculate from qm the final position of the current step and, from there, the mid-position of the 
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subsequent time-step. This interleaving makes the above time-stepping procedure resemble the policy called 
'leapfrog' in molecular dynamics simulations. In order to compare its precision with that of an ordinary Euler 
explicit time-stepping scheme, one may apply it to calculating the parabolic unconstrained motion of a particle 
in a uniform gravity field. If h is constant, the values found for q at the successive steps coincide with the exact 
solution, while the Euler scheme generates cumulative errors. Of course, when an algorithm of the above sort is 
implemented with constant h, one may calculate each qm from the preceding one by a single incrementation. The 
proper output of the computation, namely q" may not be needed at each step. 

REMARK 2. Since the differential inclusion (36) is invoked as governing the evolution, one relies on the 
'integration lemma' of Subsection (8.2) in expecting that the computed solution shall agree with the 
non-interpenetration inequalities. The current practice in the numerical dynamics of machines analogously rests 
on the imposition of velocity conditions in order to enforce some constraint equalities. It is commonly observed 
in this case that the discretization errors, inherent in time-stepping methods, generate cumulative discrepancies, 
so that one has to resort to some auxiliary techniques of 'constraint stabilization'. From our experiments with the 
CD handling of the non-interpenetration inequalities, we may say that, provided the step length remains below 
some critical level, CD algorithms are free from this defect, due to a certain self-correction connected with the 
feasible region tP possessing a nonempty interior and having curved boundaries. 

8.4. Handling non-interpenetration in terms of accelerations 

The above time-stepping scheme of the implicit type, rests on predicting the velocity u whithout resorting to 
any expression of the acceleration u. In contrast, what follows is aimed at determining the right-acceleration 
u +, which is needed when a time-stepping scheme of the explicit type is implemented. This is usually what one 
does when the 'event driven strategy' is adopted. 

Let us assume for this Subsection that the functions fa are '{;; 2 in the concerned region of R" + 
1

• Let t 1 denote 
an instant preceded by some time-interval throughout which the motion satisfies (33 ). This hypothesis involves 
that t ~ u(t) is absolutely continuous on this interval, so (35) is verified, expressing that the function 
t ~ fa,(t, q(t)) has zero derivative of order one. Assume that u remains continuous also at instant t I' i.e. no 
collision occurs. 

The investigation of the subsequent motion through an event-driven policy rests on the assumption that t 1 is 
followed by a nonzero interval throughout which (33) is verified again. It only may happen that some contacts 
break at t 1, inducing a change of J(t, q). If u possesses a derivative on the right of t 1, say u;, the function 
t ~ fa(t, q(t)) possesses a second derivative on the right of t 

1
, expressed through the chain rule in the form 

aa(t I' q I' u I) + u ; a.t;, I aq. Since the function is zero at t I' as well as its first derivative, non-interpenetration 
requires of this second derivative to be ~ 0. If it is strictly negative, .fa(t, q(t)) becomes strictly negative on a 
subsequent interval, making the corresponding quantities r" = 11-a iJfaliJq vanish on this interval, as well as their 
limits for t J.. t 1, assumed to exist. One thus obtains a set of complementarity conditions 

By joining them to the equation of Dynamics 

A u ; - F = L 11-a a.t;, I aq 
a 

one reduces the determination of u ; and of the multipliers 11-a to a linear complementarity problem in standard 
form. 

Because the matrix A is positive definite, such a problem is classically equivalent to minimizing a convex 
quadratic function in a closed convex polyhedral subset of R". It has been shown in [31 ,33] that this extremal 
characterization of the acceleration may be viewed as extending Gauss' principle of the least deviation to 
mechanical systems subject to unilateral frictionless constraints. Some dual minimization property characterizes 
the contact forces. 
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9. Back to contact locus 

9.1. Complete contact laws 

Let us consider the contact with label a. In the notations of Section 7.2, put 

J( ·-{{'VER
3

1 'v.n"~O} if f,(t,q)~O 
,(t, q) .- 3 

R" otherwise. 

This closed convex subset of R 3 constitutes the set of the values of the local right-velocity of fJ3 relatively to [JJ' 

(the latter may be an external boundary) which at the considered instant are compatible with non-interpenetra­
tion, namely the ARVS in the terminology of Section 3. In the first line of above definition, :J{, equals a 
half-space, so the normal cone Nx , in the convex analytic sense, evaluated at the origin 0 of R 3

, equals the 
half -line generated by - n ". In ca;e J{, = R 3 , the cone NJ{ ( 0) reduces to the set { 0}. 

Therefore, the no-friction and no-gluing assumptions, as f~rmulated in Subsection 8.1 (including the case of 
no-contact, since it has been agreed to keep the local elements n", G,, etc. meaningful in this case) are 
equivalent to assert 

(39) 

The move made in Subsection 8.2 of replacing inclusion (33) by inclusion (36) amounts in the present context 
to replace inclusion (39) by 

(40) 

with 0!1, denoting as before the velocity of fJ3 relative to fJ3' at point M". In fact, during an episod of persistent 
contact, 0!1, belongs to the boundary plane of JC,, so NJ{ ( 0!1,) = Nx (0), while in case of no-contact 
N1r" ( 0!1,.) = {0} whatever is O!La. In short, ( 40) contains all the ~tipulations implied when a contact is declared 
frictionless. 

But, in addition, ( 40) entails OU" E J(,(t, q), since otherwise N,r ( 0!1,.) would be empty. If f,(t, x) < 0 this 
imposes no restriction on 0!1, while if f,(t, q) ~ 0, i.e. a E J(t, q)~ this imposes 0Ua.n" ~ 0. By elementary 
kinematics, OU,.n" is found equal to the time-derivative of the normal gap between the concerned bodies. 
Similarly to the 'integration lemma' of Subsection 8.2, this may be proved to secure that non-interpenetration 
holds for every t > t0 , provided it holds at t0 . 

Generally speaking, we say that a package of information, concerning the possible contact labelled a, is a 
complete contact law if, among other phenomenological stipulations, it implies the following: 

e in all cases 0!1, E %", 
e if 0!1, E interior %,, then fJ'l" = 0. 

Such is the law of frictionless contact in the formulation ( 40). Concerning similarly the description of 
non-interpenetrability with Coulomb friction in terms of a complete contact law, see [12,45]. 

9.2. The Gauss-Seidel way 

In the algorithmic scheme sketched in Subsection 8.3, if the specificities of the no-friction case are let aside, 
the phenomenological laws relative to each possible contact have to be introduced. Instead of the concise writing 
(37), the discretized equation of dynamics has to be detailed in the form 

Am(u1 -u)=hFm+ 2: p", (41) 
a Elm 

where the element p" of R" is made of the covariant components of the impulsion at contact a, i.e. the integral 
PI'" over [t i, t r] of the contact force [Jl ". Throughout the time-step, one ascribes to the linear mapping G! of Eq. 
(27) its value computed at (tm, qm), hence 
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"'=G*[lJJ"' p a • (42) 

One does the same with the linear mapping G" and with the rheonomic term 'W, of Eq. (26). Since a 
discretization scheme of the implicit type is being planned, the final velocity ur is invoked, so as to calculate 

UU r := G Ur + 'W. a, a a 
(43) 

In the exact problem, the contact law with label a should connect UU, to the contact force fJl" at every instant 
of the interval [ti, tr]. Approximation of the implicit type consists in connecting, through the same relationship, 
the final value UU,.r of UU, to the average of this force, namely [l/J"' I h. In usual situations such as the frictionless 
contact described by ( 40) or also Coulomb friction, the contact law happens to be positively homogeneous (with 
degree one) relatively to the contact force, so the discretized contact law reads 

(44) 

Solving the system of conditions ( 41) to ( 44) is the hard part of the computation step. From ( 41) and ( 42), 
one obtains 

u =u +A- 1 
"\;' G*[l/1 13 

f r m .L..., a ' (45) 
/3Elm 

where ur : = ui + hA ~IF m may be named the relaxed velocity. Here is an iteration technique a Ia Gauss-Seidel 
which consists of treating a succession of single-contact problems. 

Let an estimated solution (u;sri, [l/1~-r), {3 running through Jm, be obtained with (45) satisfied. One expects to 
obtain a corrected estimate, say (u~orr, [l/1~,,), by selecting a label a and altering only [l/1"', i.e. [l/J~orr = [l/J~sti for 
{3 o/= a. The new estimate is as trained to verify ( 45 ), i.e. since the old estimate satisfies the same, 

corr = esti +A -IG*([l/1"' _ [lj'J"' .) 
Uf Ur m a corr estt (46) 

and to satisfy the contact law (44). Through applying G, to both members of (46), one gives to (44) the form 

(47) 

where Ha := G,A~ 1 G! is a symmetric positive definite 3 X 3 matrix. 
Solving ( 47) in the unknown [l/J~orr is easy in some significant cases, such as two-dimensional Coulomb 

contact or the case where H, is axissymmetric about n"' [42,43]. Generally, some iterative procedures may be 
applied, in which the normal and tangential components of the contact force are alternatively treated as known. 
When the normal component is known, Coulomb law assumes the same form as that of 'associated' plasticity, 
for which a 'principle of maximal dissipation' is known to hold [40]. Anyway, when a technique has been 
devised for doing this, the above procedure of correcting successive estimates is iterated, with a ranging 
cyclically in Jm. The decision of stopping iterations may be made on observing the magnitude of the vector 
[l/J~orr - [l/J;-ri; this actually is equivalent to checking the precision at which each pair (u;sri, [l/1;,

1
) satisfies the 

corresponding contact law. 
Observe that, provided such a numerical convergence check is made, the linear operator Ha in (47) may be 

replaced by any other mapping of R 3 into itself with zero limit at point zero, which could have the advantage of 
making resolution easier. Such a replacement is also used in tricks for accelerating convergence. 

The mathematical convergence of algorithms of this sort, in the case of Coulomb contact, as well as the very 
existence of solutions to the problems addressed, has only been established in special situations [21 ,29]; 
uniqueness cannot be expected in general. 

If all the contact laws invoked are complete in the sense precised in the foregoing, one sees that, for each a, 
the final relative velocity UUar belongs to J{a(tm, qm). Similarly to Subsection 8.3, Remark 2, this ensures 
non-interpenetration with a welcome self-correction effect if the step-length is not too large. Complete contact 
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laws also manage automatically the possible breaking of contacts, without referring explicitly to any analysis of 
complementarity conditions. 

10. Collisions 

Assume that, in the course of the above computation, a time-step exhibits some contacts not detected at the 
preceding step. This reflects collisions occurring in the system. Since the velocity uf has to comply with some 
non-interpenetration conditions from which ui is exempt, the contact impulsions pa involved in the discretized 
equation of dynamics ( 41) are expected to take values of larger magnitude than in the case of a succession of 
steps with constant Jm. But calculation remains the same and delivers kinematically admissible post-collision 
velocities. In short, because the contact laws ( 44) have been assumed positively homogeneous in their last 
arguments, the algorithm treats collisions on the same footing as permanent contacts. 

Here is the theoretical model that the algorithm approximates. If discontinuous, the velocity function u is 
however assumed to have locally bounded variation. Then, at the instant tc E [ti, tf] of a possible collision, the 
left- and right-limit u- (tc) and u + (tJ exist, considered as approximated in the algorithm by ui and uf" In the 
frictionless case of Subsection 8.3, the latter are found connected by Eq. (38). If h is sufficiently small, the term 
hF may be neglected (recall that proximation mappings are non-expansive). Thus, the collision model one is 
approximating consists in asserting that u + (tJ equals, in the sense of the kinetic metric, the nearest point to 
u-(tJ in the ARVS. Coming back to contact locus, in the notations of Subsection 9.1, this zero-friction 
calculation in the 'implicit spirit' amounts to admit that, for each a, the contact impulsion [J}a is connected, 
through the complete law of frictionless contact ( 40), with the post-collision velocity CU;. The completeness of 
the law obviously involves the implication [J}a ;60=> CU;. na =0, meaning that, if the contact labelled a takes an 
effective part in the collision process, it is exhibits the feature traditionally qualified as zero restitution. 

The present model (it was introduced in [41] under the name of Standard Inelastic Shock) is somewhat more 
realistic than the traditional one, in that all the contacts present at instant tc are treated collectively. This 
produces plausible results, for instance in the case of a slender body rocking on a horizontal plane: if the 
traditional formulation of zero restitution was applied to all contacts, no rocking could be found. 

The energy balance of a collision is mainly of interest in the scleronomic case, i.e. when all the possible 
external boundaries are fixed. This balance may be drawn by using a rule of the Calculus of functions with 
bounded variation, namely in the notations of Section 6, 

dllull 2 
= (u + + u -). du. (48) 

The norm and scalar product here should naturally be understood in the sense of the kinetic metric (for the 
energy balance of the possibly nonsmooth motion of the system over a time interval, a more general equality of 
measures is available [43,44], taking into account the evolution of the matrix A). 

By restricting the measures to the singleton {tJ, one retrieves from this formula the energy balance equation 
sometimes called Kelvin's theorem. This actually is nothing else than the elementary equality (a+ b).(a- b)= 
llall 2 -llbll 2

• After comparing the balance with the inequalities (22) one concludes that the collisions described 
by the above model are essentially dissipative. 

Many extensions are formally possible. For instance, one may decide to connect through the contact law ( 40) 
the contact percussion [J}a with the mean velocity ( CU ~ + CU; )/2: this results in energy-preserving collisions. 
More generally, some weighted averages of CU ~ and CU; may be introduced. Similar calculation can also be 
performed by using, instead of ( 40) a complete law of frictional contact. 

In some definite instances, the results of this sort of computation have been found in very good agreement 
with experimental observations [45,46], but the preceding should by no means be accepted as a general theory 
of collisions. In fact, when collisions are analyzed at a finer time-scale, a nonzero micro-duration is assigned to 
the collision process. The direction of the sliding velocity CU"' at the impact locus may be found to exhibit large 
variations as a function of the micro-time, preventing the identification of any representative velocity which 
could, phenomenologically, be connected with the total impulsion [J}a. The situation is better if 0/La remains 
zero: because the Coulomb cone, closed and convex, is constant with regard to the micro-time, the condition of 
f!ll"' belonging to it commutes with the integration invoked in defining [1}"'. 
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