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Laurent Bétermin Mircea Petrache
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Abstract

We consider the minimization of theta functions θΛ(α) =
∑

p∈Λ
e−πα|p|2 amongst periodic

configurations Λ ⊂ R
d, by reducing the dimension of the problem, following as a motivation the

case d = 3, where minimizers are supposed to be either the BCC or the FCC lattices. A first way
to reduce dimension is by considering layered lattices, and minimize either among competitors
presenting different sequences of repetitions of the layers, or among competitors presenting
different shifts of the layers with respect to each other. The second case presents the problem
of minimizing theta functions also on translated lattices, namely minimizing (Λ, u) 7→ θΛ+u(α),
relevant to the study of two-component Bose-Einstein condensates, Wigner bilayers and of
general crystals. Another way to reduce dimension is by considering lattices with a product
structure or by successively minimizing over concentric layers. The first direction leads to the
question of minimization amongst orthorhombic lattices, whereas the second is relevant for
asymptotics questions, which we study in detail in two dimensions.

AMS Classification: Primary 74G65; Secondary 82B20 , 11F27
Keywords: Theta functions , Lattices , Layering , Ground state.

1 Introduction and main results

In the present work we study the problem of minimizing energies defined as theta functions, i.e.
Gaussian sums of the form

θΛ(α) =
∑

p∈Λ
e−πα|p|2 , (1.1)

among Λ ⊂ R
d belonging to the class of lattices (which we will also refer to as “Bravais lattices”,

below) or more generally among some larger class of periodic configurations, constrained to have
density 1. We recall that a lattice is the span over Z of a basis of Rd, and its density is the average
number of points of Λ per unit volume. This type of problems creates an interesting link between
the metric structure of Rd and the geometry and arithmetic of the varying lattices Λ. Our specific
focus in this paper is to find criteria based on which the multi-dimensional summation in (1.1)
can be reduced to summation on lower-dimensional sets. We thus select situations in which some
geometric insight can be obtained on our minimizations, while at the same time we simplify the
problem. Our basic motivation is the study of the minimization among density one lattices in R

3,

which is relevant for many physical problems (see the recent survey by Blanc-Lewin [12]). Note that
general completely monotone functions can be represented as superpositions of theta functions with
positive weights [8, 9]. Therefore our results are relevant for problems regarding the minimization
of Epstein zeta functions as well, and for even more general interaction energies.

Theta functions are important in higher dimensions, with applications to Mathematical Physics
and Cryptography. For applications to Cryptography see for instance [39] and more generally [20].
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Regarding the applications to Physics, important examples are the study of the Gaussian core
system [50] and of the Flory-Krigbaum potential as an interacting potential between polymers [28].
Recently an interesting decorrelation effect as the dimension goes to infinity has been predicted by
Torquato and Stillinger in [54, 55]. Furthermore, Cohn and de Courcy-Ireland have recently showed
in [16, Thm. 1.2] that, for α enough small and d → +∞, there is no significant difference between
a periodic lattice and a random lattice in terms of minimization of the theta function. Links with
string theory have been highlighted in [2].

The main references for the minimization problems for lattice energies are the works of Rankin [44],
Cassels [14], Ennola [25, 26], Diananda [24], for the Epstein zeta function in 2 and 3 dimensions,
Montgomery [35] for the two-dimensional theta functions (see also the recent developments by the
first named author [9, 11]) and Nonnenmacher-Voros [38] for a short proof in the α = 1 case. See
Aftalion-Blanc-Nier [1] or Nier [37] for the relation with Mathematical Physics, Osgood-Phillips-
Sarnak [41], [48] for the related study of the height of the flat torii, which later entered (see [10]
for the connection) in the study of the renormalized minimum energy for power-law interactions,
via the W-functional of Sandier-Serfaty [47], later extended in the periodic case too in work by the
second named author and Serfaty [42, Sec. 3] to more general dimensions and powers. See also the
recent related work [30] by Hardin-Saff-Simanek-Su. For the related models of diblock copolymers
we also note the important work of Chen-Oshita [15]. These works except [35] mainly focus on
energies with a power law behaviour. Regarding the minimization of lattice energies and energies
of periodic configurations we also mention the works by Coulangeon, Schürmann and Lazzarini
[21, 22, 23] who characterize configurations which are minimizing for the asymptotic values of the
relevant parameters in terms of the symmetries of concentric spherical layers of the given lattices
(so-called spherical designs, for which see also the less recent monographs [4, 56]).

As mentioned above, there are two main candidates for the minimization of theta functions on
3-dimensional lattices. They are the so-called body-centered cubic (BCC) and face-centered cubic
lattices (FCC), and we describe these two lattices in detail in Section 2.2. It is known that as α
ranges over (0,+∞), in some regimes the FCC is known to be the minimizing unit density lattice,
while in others the BCC is the optimizing lattice, and none of them is the optimum for all α > 0. See
Stillinger [51] and the plots [12, Figures 6 and 8] of Blanc and Lewin. Regarding this minimization
problem, the critical exponent α is uniquely individuated as α = 1 by duality considerations (as
the dual of a BCC lattice is a FCC one and vice versa, and theta functions of dual lattices are
linked by monotone dependence relations). A complete proof of the fact that below exponent α = 1
the minimizer is the BCC and above it it is the FCC seems to be elusive. A proof was claimed in
Orlovskaya [40] but on the one hand most of the heaviest computations are not explicited, while on
the other hand providing a compelling geometric understanding of the minimization seems to not
be within the goals of that paper (see Sarnak-Strömbergsson [48, Prop. 2], and their conjecture
[48, Eq. (43)], equivalent to the claimed result [40]).

Our goal with the present work was first of all to place the BCC and the FCC within geometric
families of competitors which span large regions of the 5-dimensional space of all unit volume 3-
dimensional lattices (see Terras [52, Sec. 4.4]). To do this, we focus on finding possible methods
by which theta functions on higher dimensional lattices can be reduced to questions on lower
dimensional lattices.

A first way to decompose the FCC (or BCC) is into parallel 2-dimensional lattices, which in this

case are either copies of a square lattice Z
2 or of a triangular lattice generated by (1, 0), (12 ,

√
3
2 )

(see Section 2.3). We can perturb such families by moving odd layers with respect to even ones,
and try to find methods for checking that the minimum energy configuration is the one giving FCC
and BCC. This question reduces to the minimization of the Gaussian sums over Λ + u for Λ ⊂ R

d

a lattice and u ∈ R
d a translation vector (we study this question in high generality in Section 3).
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Otherwise we can change the period of the repetition of the layers (this and related questions are
discussed in a generalized setting in Section 2).

Returning to the 3-dimensional model problem, a second possibility is, while viewing the FCC (or
BCC) as a periodic stacking of square lattices, to perturb such lattices by dilations along the axes
which preserve the unit-volume constraint. Again the goal is to check that the minimizer is then
given by the case of the square lattice. This question leads to the study of mixed formulas regarding
products of theta functions (see Section 4).

We now pass to discuss in more detail our results.

1.1 Layer decomposition with symmetry

Our first reduction method concerns the study of layered decompositions (see Section 2).

Let Λ0 ⊂ R
d−1 be a lattice and H ⊂ R

d−1 be a finite set having the same symmetries as Λ0 (see
Definition 2.3 for a precise statement). Then for each s : Z → H and each t > 0 we can construct
a lattice Λs ⊂ R

d by stacking copies of Λ0 translated by elements of H, along the d-th coordinate
direction at “vertical” distance t and by “horizontally” translating the k-th layer by s(k) for all
k ∈ Z (see Definition (2.10)). Then we prove in Section 2.4 the following results concerning the
minimization of s 7→ θΛs

(α):

Theorem 1.1. Let sb : Z → H as the |H|-periodic map such that sb|{1,...,|H|} = b for a bijection
b : {1, . . . , |H|} → H. Then the following hold:

1. If

α ≥ 1

2πt2
, (1.2)

then the sb as above are minimizers of

s 7→ θΛs
(α) =

∑

p∈Λs

e−πα|p|2

amongst general periodic maps s : Z → H.

2. If the inequality in (1.2) is strict then the sb as above exhaust all minimizers among periodic
layerings.

3. For all α > 0 the lattices corresponding to s = sb minimize s 7→ θΛs
(α) in the class

{s : ∃k′ ≤ |H|,∃b′ : Z/k′Z → H, s(i) = b′(i mod k′)},

namely amongst all layered configurations of period at most |H|.

In particular, as an important special case of the second part of the above theorem, we find that
θFCC(α) < θHCP (α) when FCC and HCP have the same density, as claimed in [17, p. 1, par. 5].
This implies that HCP has higher energy than the FCC for all completely monotone interaction
functions f .

Our result seems to be the first formalization/proof of this phenomenon in a more general setting.
In particular, the above theorem shows that the FCC lattice is a minimizer, for α large enough, in
the class (Λs)s where Λ0 is an equilateral triangular lattice and that its Gaussian energy, given by
the theta function, is lower than the energy of the hexagonal close packed lattice (HCP) for any
α > 0. Our proof partly relies on a (somewhat surprising) reduction to the study of optimal point
configurations on riemannian circles by Brauchart-Hardin-Saff [13].
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Figure 1: Schematic picture of Λs as in Theorem 1.1 in dimension d = 3 (three layers).

Theorem 1.1 provides large families amongst which some special lattices can be proved to be
optimizers, including an infinite number of non-lattice configurations. In particular we generalize
several of the results of [17] and of [19]. We present this link in Section 2.5.2, together with further
open questions of more algebraic nature, and some natural rigidity questions of lattices under
isometries (see also Proposition 2.8), which may be related to isospectrality results as in [18].

1.2 Minimization of theta functions amongst translates of a lattice

Since a way to reduce the dimension that we consider is to look at lattices formed as translated
copies of a given lattice, a related interesting question is to study the minimization, for fixed α > 0,
of

(Λ, u) 7→ θΛ+u(α) =
∑

p∈Λ
e−πα|p+u|2

among lattices Λ ⊂ R
d and vectors u ∈ R

d. This is the goal of the Section 3. Translated lattice
theta functions appear in several works, as explained in [45]. They were recently used in the context
of Gaussian wiretap channel, and more precisely to quantify the secrecy gain (see [39, Sec. IV]).
Furthermore, this sum can be viewed as the interaction energy between a point u and a Bravais
lattice Λ. A direct consequence of Poisson summation formula and Montgomery theorem [35, Thm.
1] about the optimality of the triangular lattice for Λ 7→ θΛ(α), for any α > 0, is the following
result, proved in Section 3.1.1:

Proposition 1.2. For any α > 0, any Bravais lattice Λ ⊂ R
d of density one and any vector u ∈ R

d,
we have

θΛ+u(α) ≤ θΛ(α),

with equality if and only if u ∈ Λ.

In particular, if d = 2 and A2 is the triangular lattice of length 1, then for any Bravais lattice
Λ such that |Λ| = |A2|, any α > 0 and u ∈ R

2, it holds

θA2+u(α) ≤ θΛ(α),

with equality if and only if u ∈ A2 and Λ = A2 up to rotation.

This proposition seems to show for the first time that, for any α > 0 and any given Λ ⊂ R
d, the

set of maxima of u 7→ θΛ+u(α) is Λ.

4



A particular case of u is the center of the unit cell of the lattice Λ. The following result shows that
this center c is the minimizer of u 7→ θΛ+u(α) for any α > 0, if Λ is an orthorhombic lattice, i.e. if
the matrix associated to its quadratic form is diagonal. It can be viewed as the generalization of
Montgomery result [35, Lem. 1], which actually proves the minimality for β = 1/2 of β 7→ θZ+β(α)
for any α > 0. Furthermore, the following proposition, proved in Sections 3.1.3 and 3.1.4, shows
that, for any α > 0, there is no minimizer of (Λ, u) 7→ θΛ+c(α).

Proposition 1.3. For any Bravais lattice Λ = MZ
d with M ∈ SL(d) decomposed as M = QDT ,

with Q ∈ SO(d), D = diag(c1, . . . , cd), ci > 0,
∏d

i=1 ci = 1, T is lower triangular, and for any
u ∈ R

d and any α > 0 there holds

θΛ+u(α) ≥ θD(Z+1/2)d(α).

Furthermore, there exists a sequence Ak = diag(1, . . . , 1, k, 1/k), k ≥ 1, of d× d matrices such that,
for any α > 0,

lim
k→+∞

θAk(Z+1/2)d(α) = 0.

This result shows the special role of the orthorhombic lattices. The second part justifies why the
minimization of energies of type Λ 7→ θΛ(α)+ δθΛ+u(α), with δ > 0 a real parameter, is interesting:
indeed, we see that it is the sum of two theta functions with a competing behaviour with respect
to the minimization over Bravais lattices, if u 6∈ Λ. More precisely, for d = 2, on the one hand
Λ 7→ θΛ(α) is minimized by the triangular lattice among Bravais lattices of fixed density, and on
the other hand (Λ, u) 7→ θΛ+u(α) does not admit any minimizer on this class of lattices. Therefore,
the competition between these two terms will create new minimizers with respect to δ (see Section
4, and in particular Proposition 4.6 in the δ = 1 case).

In dimension d = 1 and for Λ = Z, the classical Jacobi theta functions θ2, θ3, θ4 are defined (see
[20, Sec. 4.1]), for x > 0, by

θ2(x) =
∑

k∈Z
e−π(k+1/2)2x, θ3(x) =

∑

k∈Z
e−πk2x and θ4(x) =

∑

k∈Z
(−1)ke−πk2x. (1.3)

Furthermore, we recall the following identity (see [20, p. 103]): for any x > 0,

√
xθ2(x) = θ4

(

1

x

)

. (1.4)

Thus, studying the maximization problem of theta functions among some families of lattices con-
structed from orthorhombic lattices with translations to the center of their unit cell, we get the
following result, proved in Section 3.2, which can be viewed as a generalization of [27, Thm. 2.2]
in higher dimensions in the spirit of [35, Thm. 2].

Theorem 1.4. Let d ≥ 1 and α > 0. Assume that {ci}1≤i≤d ∈ (0,+∞)d are such that
∏d

i=1 ci = 1
and that not all the ci are equal to 1. For real t, we define

• U4(t) =

d
∏

i=1

θ4(c
t
iα),

• U2(t) = θAt(Z+1/2)d(α) =

d
∏

i=1

θ2(c
t
iα),

• Q(t) =
θAt(Z+1/2)d (α)

θAtZ
d(α)

=

d
∏

i=1

θ2(c
t
iα)

θ3(ctiα)
,

• P3,4(t) = U3(t)U4(t) =

d
∏

i=1

θ3(c
t
iα)θ4(c

t
iα),

• P2,3(t) = U2(t)U3(t) =

d
∏

i=1

θ2(c
t
iα)θ3(c

t
iα),

where At = diag(ct1, ..., c
t
d) and the classical Jacobi theta functions θi, i ∈ {2, 3, 4} are defined by

(1.3). Then for any f ∈ {U4, U2, Q, P3,4, P2,3}, we have
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1. f ′(0) = 0,

2. f ′(t) > 0 for t < 0,

3. f ′(t) < 0 for t > 0.

In particular, t = 0 is the only strict maximum of f .

The particular case f = Q gives the maximality of the simple cubic lattice among orthorhombic
lattices for the periodic Gaussian function (see [45]) with translation c and fixed parameter.

1.3 Asymptotic results

If Λ is not an orthorhombic lattice, then we do not have a product structure for the theta function
and the minimization of u 7→ θΛ+u(α) is more challenging. It seems that the deep holes of the lattice
Λ play an important role. For instance, in dimension d = 2, Baernstein proved (see [5, Thm. 1])
that the minimizer is the barycentre of the primitive triangle if Λ is a triangular lattice. Moreover,
numerical investigations, for some α > 0, show that the minimizer is the center of the unit cell if Λ
is rhombic (see the definition before Theorem 1.6). The shapes of naturally occurring crystals may
be considered good indicators for that. Also note the numerical study of Ho and Mueller [36, Fig.
1 and 2] detailed in [32, Fig. 16]. In the following theorem, proved in Section 3.3.2, we present an
asymptotic study, as α → +∞, of this problem:

Theorem 1.5. Let Λ be a Bravais lattice in R
d and let c be a deep hole of Λ, i.e. a solution to the

following optimization problem:
max
c′∈Rd

min
p∈Λ

|c′ − p|. (1.5)

For any x ∈ R
d there exists αx such that for any α > αx,

θΛ+c(α) ≤ θΛ+x(α). (1.6)

This result links our study to the one of best packing for lattices and to Theorem 1.1, as we expect
the above minima to be playing the role of H from Theorem 1.1. The systems corresponding to
α → +∞ are called “dilute systems” (see [17, 57]) and they correspond to the low density limit of
the configuration.

Furthermore, an analogue of this result is proved, in Section 3.3.3, in dimension d = 2, as α → 0,
by using Poisson summation formula and analysing concentric layers of the lattices.

Recall first that a two-dimensional lattice is called rhombic if up to rotation it is generated by
vectors of the form (a, b), (0, 2a), and the fundamental rhombus is then the convex polygon of
vertices (0, 0), (a, b), (2a, 0), (a,−b).

Theorem 1.6. Let Λ be a Bravais lattice in R
2. Then the asymptotic minimizers C of x 7→ θΛ+x(α)

as α → 0 are as follows:

1. If Λ is a triangular lattice then C contains only the center of mass of the fundamental triangle.

2. If Λ is rhombic and the first layer C1 of the dual lattice Λ∗ has cardinality 4 (equivalently,
we require that Λ is rhombic but not triangular), then C contains only the center of the
fundamental rhombus.

3. In the remaining cases consider the second layer C2 of Λ∗:

(a) If C2 has cardinality 2 or 6 then C contains only the center of the fundamental unit cell.
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Figure 2: Illustration of Theorem 1.6. First line: examples for cases 1, 2 and 3.a, where in the last
case the fundamental cell of a triangular lattice is also shown for comparison. Second line: example
in the case 3.b. The set C corresponds to the red points.

(b) Else, there exist coordinates such that if A is the matrix which transforms the unit cell
of Z2 to the unit cell of Λ, then C = A · {(1/2, 1

4), (1/2,
3
4)}.

This theorem is, so far as we know, the only general-framework analogue of the special case con-
siderations done in [17]. A similar classification in dimension 3 seems to be an interesting future
direction of research.

1.4 Orthorhombic-centred perturbations of BCC and FCC and local minimality

Recall that the body centred cubic lattices BCC belongs to the class of BCO lattices. Because
our first motivation was to study the minimality of BCC and FCC lattices, we prove the follow-
ing theorem in Section 4 about optimality and non-optimality among body-centred-orthorhombic
(BCO, see [53, Fig. 2.8]) lattices for Λ 7→ θΛ(α). These lattices correspond, e.g., to deformations,
by separate dilations along the three coordinate directions, of the BCC.

Figure 3: Body-Centred-Orthorhombic lattice Ly,t. The blue and red points correspond to alter-
nating rectangular layers.

The following results is proved in Section 4.1:

Theorem 1.7. For any y ≥ 1 and any t > 0, let Ly,t be the anisotropic dilation. of the BCC lattice

7



(based on the unit cube) along the coordinate axes by
√
y, 1/

√
y and t, i.e.

Ly,t :=
⋃

k∈Z

(

Z(
√
y, 0)⊕ Z

(

0,
1√
y

)

+ (
√
y/2, 1/2

√
y, 0)12Z(k) + k(0, 0, t/2)

)

.

We have the following results:

1. For any t > 0 and any α > 0, a minimizer of y 7→ θLy,t(α) belongs to [1,
√
3].

2. For any α > 0, there exists t0(α) > 0 such that for any t < t0(α), y = 1 is not a minimizer
of y 7→ θLy,t(α).

3. For any t <
√
2, there exists αt such that for any α > αt, y = 1 is not a minimizer of

y 7→ θLy,t(α). In particular, for t = 1, there exists α1 such that

(a) for α > α1, the BCC lattice is not a local minimizer of Λ 7→ θΛ(α) among Bravais
lattices of unit density,

(b) for α < 1/α1, the FCC lattice is not a local minimizer of Λ 7→ θΛ(α) among Bravais
lattices of unit density.

We numerically compute α1 ≈ 2.38 and we have α−1
1 ≈ 0.42.

4. For α = 1 and any t ≥ 0.9, y = 1 is the only minimizer of y 7→ θLy,t(α). In particular, for
t = 1, the BCC lattice is the only minimizer of Λ 7→ θΛ(1) among Bravais lattices (Ly,1)y≥1.

Applying the point 4 and the fact that the minimizer of R2 ∋ u 7→ θΛ+u(α) is, for any α > 0, the
center of the primitive cell (resp. the center of mass of the primitive triangle) if Λ is a square lattice
(resp. a triangular lattice), by Proposition 1.3 (resp. [5, Thm. 1]), we get the following type of
result about the local minimality of the BCC and the FCC lattices, here for some values of α. As
an example result, let

A := {0.001k; k ∈ N, 1 ≤ k ≤ 1000} and A−1 := {1/x : x ∈ A}.

These sets A,A−1 are just an example. Indeed, our algorithm based on Lemma 4.19 allows us
to rigorously check the statement of the following theorem, proved in Section 4.2, for any chosen
α ≤ 1, for the BCC lattice, and for any α ≥ 1 for the FCC lattice. We do not have a proof that
the statement holds for all such values, but we also do not find any values in these intervals such
that our algorithm fails.

Theorem 1.8. Let A,A−1 as above, α1 > 0 be as in Theorem 1.7 and Lo
3 be the space of three-

dimensional Bravais lattices of density one. Then

• For α ∈ A, BCC is a local minimum of Λ 7→ θΛ(α) over Lo
3. For α > α1 there are two

directions in the tangent space of Lo
3 at the BCC lattice, TBCCLo

3, along which BCC is a local
maximum and three directions along which it is a local minimum.

• For α ∈ A−1, FCC is a local minimum of Λ 7→ θΛ(α) over Lo
3. For α < 1/α1 there are two

directions in the tangent space of Lo
3 at the FCC lattice, TFCCLo

3, along which FCC is a local
maximum and three directions along which it is a local minimum.

Theorem 1.7 is one of the first complete proofs of the existence of nonlocal regions (here, the spaces
of lattices (Ly,1)y≥1 and (Ly,

√
2)y≥1 ) on which FCC and BCC are minimal, for small and large

values of α. Furthermore, Theorem 1.8 supports the Sarnak-Strömbergsson conjecture [48, Eq.
(43)] and Theorem 1.7 gives a first step of the geometric understanding of it. Theorem 1.7 can be
also viewed as a generalization of [27].
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In particular, we prove that the FCC and the BCC lattices are not local minimizers for any α > 0,
unlike the case of Epstein zeta function (see Ennola [26]). The proof consists of a careful discussion
of a sum of two products of theta functions which express the theta function of our competitors.
We provide an algorithm for implementing a numerical test to check cases where our theoretical
study stops being informative.

The statement of point 4 of Theorem 1.7 should be compared to [36, Fig. 1 and 2] (see also
[32, Fig. 16]) in the rectangular lattice case. Indeed, our energy can be rewritten θLy,t(α) =
θ3(t

2α)
(

θLy(α) + ρt,αθLy+cy(α)
)

where Ly is the anisotropic dilation of Z2 along the coordinate
axes by

√
y and 1/

√
y, cy is the center of the unit cell of Ly and ρt,α = θ2(t

2α)/θ3(t
2α). Thus, our

result shows that, for α = 1 (which is the Ho-Mueller case [36]), L1 = Z
2 is the unique minimizer

of Ly 7→ θLy,t(1) if t is large enough (i.e. ρt,α small enough), whereas for t small enough (i.e. ρt,α
close to 1), the minimum is a rectangle, as in [36, Fig. 1 d and e].

Structure of the paper. In Section 2 we study the minimization of Λ 7→ θΛ(α) among periodic
layering of a given Bravais lattice and we prove Theorem 1.1. Section 2.5 contains extensions and
open questions related to rigidity and fibered packings. In Section 3.1.1 we recall and prove some
properties of Regev-Stephens-Davidowitz functions and we prove Proposition 1.2. In Section 3.1.2
we prove a degeneracy property of Gaussian energy. In Section 3.1.3, the first part of Proposition
1.3, i.e. a lower bound of θΛ+u(α) in terms of rectangular lattice, is proved. In Section 3.1.4 we
prove the second part of Proposition 1.3 about the degeneracy to 0 of the theta function for a
sequence of centred-orthorhombic lattices. In Section 3.2 we prove Theorem 1.4. In Section 3.3 we
prove some results about the minimization of u 7→ θΛ+u(α), Λ being triangular or orthorhombic, as
well as Theorems 1.5 and 1.6. In Section 4 we prove Theorems 1.7 and 1.8 about the optimality of
the FCC and BCC lattices among body-centred-orthorhombic lattices and their local optimality.

2 Layering of lower dimensional lattices

2.1 Preliminaries

If C ⊂ R
d is a subset, we denote by ℓC the dilation by ℓ of C. The density (also called average

density) d(C) of a discrete point configuration is defined (See [29, Defn. 2.1]) as

d(C) := lim
R→∞

|C ∩ UR|
|UR|

,

where (UR)R is a Følner sequence, namely an increasing sequence of open sets such that for all
translation vectors v ∈ R

d we have |UR \ (UR + v)|/|UR| → 0 as R → ∞. By abuse of notation,
we denote by | · | both the cardinality of discrete sets and the Lebesgue measure, depending on the
context. Note that the above limit may not exist or may be different for different Følner sequences.
Such pathological C will however not appear in this work, as our C all have some type of periodicity.
We can thus consider just UR = BR, the ball of radius R centered at the origin.

We will call here (by an abuse of terminology) a lattice in R
d any periodic configuration of points.

Its dimension is the dimension of its convex hull (which is a vector subspace of Rd).

We then call a Bravais lattice a subset Λ ⊂ R
d such that there exist independent v1, . . . , vk ∈ R

d

such that Λ = SpanZ{v1, . . . , vk}.
If Λ ⊂ R

d is a Bravais lattice, then its dual lattice is defined by

Λ∗ := {v ∈ Span(Λ) : ∀w ∈ Λ, v · w ∈ Z}.
If Λ has full dimension d then it can be written as Λ = AZd with A ∈ GL(d), in which case
Λ∗ = (AT )−1

Z
d. The volume of Λ, written |Λ| is the inverse of its density or, equivalently, the

volume of a fundamental domain.
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2.1.1 Energies of general sets and of lattices

For countable C ⊂ R
d and a real number α > 0 we may define the possibly infinite series

θC(α) :=
∑

p∈C
e−πα|p|2 . (2.1)

This coincides with the usual theta function on Bravais lattices. For general functions f : [0,+∞) →
[0,+∞) one may also define the analogue interaction energy (generalized in (2.8) and in the rest
of section 2.4)

Ef,C(0) :=
∑

p∈C
f(|p|2) ∈ [0,+∞]. (2.2)

The formulas (2.1) and (2.2) will be interpreted as the interaction of a point at the origin with the
points from the set C corresponding to, respectively, the interaction potentials fα(|x|2) = e−πα|x|2

and f(|x|2), respectively. We note that if C = Λ is instead a Bravais lattice, then 0 ∈ Λ and the
interaction of the origin with Λ equals the average self-interaction energy per point.

The special relevance of minimization questions about theta functions (2.1) is due to the well-
known result by Bernstein [8] which allows to treat Ef,C(0) for any completely monotone f once we
know the behavior of all θC(α), α > 0. Recall that a C∞ function f : [0,+∞) → [0,+∞) is called
completely monotone if

for all n ∈ N, r ∈ (0,+∞) there holds (−1)nf (n)(r) ≥ 0.

Bernstein’s theorem states that any completely monotone function can be expressed as

f(r) =

∫ +∞

0
e−trdµf (t), (2.3)

where µf is a finite positive Borel measure on [0,+∞). This representation shows directly that if
C0 is a minimum of C 7→ θC(α) for all α > 0 within a class C of subsets of Rd then C0 is also a
minimum on C of Ef,C(0) for all completely monotone f (see [9] for some examples in dimension
d = 2).

2.1.2 Some notable lattices

We denote by A2 the lattice in R
2 generated by the vectors (1, 0), (1/2,

√
3/2). Then the scaled

lattice 21/23−1/4A2 has average density one. The dual lattice A∗
2 is isomorphic to A2 and is in fact

the π/6-rotation of 31/22−1A2. The lattices Dn, n ∈ N, are usually defined as Dn := {(x1, . . . , xn) ∈
Z
n :

∑

xi = 0(mod2)}. Then D∗
n is formed as D∗

n = Z
n ∪ (Zn + (1/2, . . . , 1/2)). This is again a

Bravais lattice, with generators e1, . . . , en−1, (1/2, . . . , 1/2) where {ei : 1 ≤ i ≤ n} is the canonical
basis of Rd. The lattices 2−1/nDn and 21/nD∗

n have density one.

Special cases of interest are the following rescaled copy of D3 and D∗
3 , respectively. In the crystal-

lography community these are the called face-centered cubic and body-centered cubic lattices. They
are formed by adding translated copies of Z3:

ΛFCC :=
⋃

{

Z
3 + τ : τ ∈ {(0, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)}

}

,

ΛBCC := (Z3 + (0, 0, 0)) ∪ (Z3 + (1/2, 1/2, 1/2)),

and thus we have ΛFCC = 2−1D3 and ΛBCC = D∗
3.
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2.2 FCC and BCC as pilings of triangular lattices, and the HCP

Define the vectors

a = (0, 0, 0), b =

(

1

2
,

1

2
√
3
, 0

)

, c =

(

0,
1√
3
, 0

)

, τ = (0, 0, t). (2.4)

Then for any bi-infinite sequence s : Z → {a, b, c} and t, ℓ > 0, we define the three-dimensional
lattice Λs,t,ℓ as follows:

Λs,t,ℓ =
⋃

k∈Z
(kτ + ℓs(k) + ℓA2) . (2.5)

It is straightforward to check that the volume of a unit cell of Λs,t,ℓ is

ρ(Λs,t,ℓ) =

√
3

2
tℓ2.

Then define

s1(k) =







a if k ≡ 0 mod 3
b if k ≡ 1 mod 3
c if k ≡ 2 mod 3

. (2.6)

Lemma 2.1. The BCC lattices are up to rotation the family of lattices Λs1,t,ℓ with ℓ/t = 2
√
6. The

FCC lattices are up to rotation the family of lattices Λs1,t,ℓ with ℓ/t =
√
3√
2
.

Proof. Since ℓ/t is dilatation-invariant and the two families in the lemma are 1-dimensional, we
restrict to proving that the BCC and FCC lattices belong to the corresponding families in the
coordinates up to the rotation which sends the canonical basis to a suitable orthonormal reference
frame (e1, e2, e3).
To do so in both cases let e3 =

1√
3
(1, 1, 1). Then choose τBCC = 1

6(1, 1, 1), τFCC = 1
3(1, 1, 1).

We first claim that, with the notation A+B := {a+ b : a ∈ A, b ∈ B},

ΛBCC ⊂ {x+ y + z = 0}+ ZτBCC , ΛFCC ⊂ {x+ y + z = 0}+ ZτFCC .

Indeed, (3, 0, 0) = (2,−1,−1)+(1, 1, 1) therefore (1, 0, 0) ∈ {x+y+z = 0}+ZτFCC and by invariance
under permutations of coordinates and closure under addition we get Z3 ⊂ {x+y+z = 0}+ZτFCC .
By multiplication by 1/2 we also get 1

2Z
3 ⊂ {x+y+z = 0}+ZτBCC , which directly implies ΛFCC ⊂

{x+y+z = 0}+ZτFCC . To establish ΛBCC ⊂ {x+y+z = 0}+ZτBCC we note that (1, 0, 0), (0, 1, 0)
together with 1

2 (1, 1, 1) = 3τBCC generate ΛBCC and are all in {x+y+z = 0}+ZτBCC , and conclude
again by closure under addition.

Next, we note that ΛBCC is 3τBCC -periodic and ΛFCC is 3τFCC-periodic. We see that {x+ y+ z =
0}∩ΛBCC is an intersection of subgroups and thus a lattice, and similarly for {x+y+z = 0}∩ΛFCC .

The former contains the equilateral triangle T0 := {(0, 0, 0), (−1, 1, 0), (−1, 0, 1)} and no interior
point of it, therefore is a triangular lattice with ℓ =

√
2. The triangles T2 := {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

and T4 := {(1, 1, 0), (1, 0, 1), (0, 1, 1)} are congruent to T0 and contained respectively in

({x+ y + z = 0}+ kτBCC) ∩ ΛBCC

for k = 2, 4. By periodicity T1 = T4 − 3τBCC is contained in the similar slice with k = 1. We see
that

(1, 0, 0) =
1

3
(2,−1,−1) + 2τBCC and (1, 1, 0) =

1

3
(1, 1,−2) + 4τBCC

11



and that 1
3(2,−1,−1) is a π/3-rotation of 1

3 (1, 1,−2) clockwise about τBCC , therefore we may let
e2 parallel to (1, 1,−2) and e1 such that (e1, e2, e3) is an positive rotation of the canonical basis,
and we find that up to such rotation ΛBCC = Λ

s1,
1

2
√

3
,
√
2.

For FCC analogously to above, we check that the slices ({x+ y + z = 0}+ kτFCC) ∩ ΛFCC for
k = 0, 1, 2 contain respectively the triangles T ′

0 := 1
2{(0, 0, 0), (0,−1,−1), (−1, 0,−1)}, T ′

1 :=
1
2{(1, 1, 0), (1, 0, 1), (0, 1, 1)} and T ′

2 := (1, 1, 1)−T ′
1; then by similar computations we find a positive

rotation that brings ΛFCC to Λ
s1,

1√
3
, 1√

2
.

If to fix scales we require |FCC| = |BCC| = 1 then we obtain

{

tBCC = 2−2/33−1/2, ℓBCC = 25/6

tFCC = 22/33−1/2, ℓFCC = 21/6.

We also recall that, by definition, the hexagonal closed packing (HCP) configuration is the non-
lattice configuration obtained from the FCC by using a different shift sequence. It is defined as

Λs2,t,ℓ, for ℓ/t =
√
3√
2
and

s2(k) =

{

a if k ≡ 0 mod 2
b if k ≡ 1 mod 2.

. (2.7)

2.3 FCC and BCC as layerings of square lattices

We note here that we may also consider the FCC and BCC to be simpler layerings of square lattices
Z
2. Let

a = (0, 0, 0), b = (1/2, 1/2, 0), τ = (0, 0, t), s : Z → {a, b}.
Then define here

Λs,t :=
⋃

k∈Z
(kτ + s(k) + Z

2).

We then easily find that with s2 defined as in (2.7) the following holds:

Lemma 2.2. The BCC lattices are the family of lattices Λs2,t with t = 1/2 and up to rotation the
FCC lattices are the family Λs2,t with t =

√
2.

2.4 Comparison of general Ef for periodically piled configurations - Proof of

Theorem 1.1

Let f : [0,∞) → [0,∞) be a fixed function. We define for a lattice Λ0 ⊂ R
d−1 and x ∈ R

d−1

Ef,Λ0(x) :=
∑

p∈Λ0

f(|p+ x|2) ∈ [0,∞]. (2.8)

In the particular case f(r) = fα(r) = e−παr, we define

θΛ0+x(α) := Efα,Λ0(x) =
∑

p∈Λ0

e−πα|p+x|2. (2.9)

Consider now a periodic function s : Z → R
d−1 ⊂ R

d and a vector τ ∈ (Rd−1)⊥. Define sτ (k) =
s(k) + kτ and the configuration

Λs =
⋃

k∈Z
(sτ (k) + Λ0) . (2.10)
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We define the following average f -energy per point, where P is any period of s:

Ef (Λs) :=
1

P

P
∑

h=1

∑

k∈Z
Ef,Λ(sτ (h)− sτ (k)). (2.11)

It is easy to verify that the value of above sum does not depend on the period P that we chose: if
P ′, P ′′ are distinct periods of s and mcf(P ′, P ′′) = P then P is also a period, and we may use the
fact that sτ (h+aP )− sτ (k+aP ) = sτ (h)− sτ (k) for a = 1, . . . , P ′/P to rewrite the sums in (2.11)
for P ′ and obtain that they equal those for P .

We now consider a finite set H ⊂ R
d−1 and assume that the lattice Λ0 has the same symmetries as

H in the sense of the following definition:

Definition 2.3. Let d ≥ 2, H ⊂ R
d−1 and Λ0 ⊂ R

d−1 be a Bravais lattice. We say that Λ0 has
the same symmetries as H if, for any x, y, w, z ∈ H with x 6= y and w 6= z, there exists a bijection
φ : Λ0 → Λ0 such that, for all p ∈ Λ0

|p+ x− y| = |φ(p) + w − z|. (2.12)

Example 2.4. Consider the triangular Bravais lattice A2. Then the FCC lattice is Λs1 and the
HCP lattice is Λs2 for s1, s2 as in (2.6) and (2.7). Then the maps s1, s2 take values in sets composed
of the vectors a, b or a, b, c respectively, which form possible choices of H as above.

For more discussions regarding the above Definition 2.3, see Section 2.5.1.

We now prove Theorem 1.1 concerning the optimality of a special type of function s.

Proof of Theorem 1.1. We prove now the first part of the theorem. Let α > 0 and t > 0 such that
α ≥ 1

2πt2
and s : Z → H be a periodic map, where H has the same symmetries as Λ0. Let us prove

that
θΛs

(α) ≥ θΛsb
(α)

for any sb that is |H|-periodic and such that sb|{1,...,|H|} = b is a bijection into H.

Step 1.1: Reduction to a 1-dimensional problem
Let f : [0,+∞) → [0,+∞) be such that for some ǫ, r0 > 0 we have f(r) = O(r−d/2−ε) for r ≥ r0
and f(0) ∈ R. This condition will be easily verified in our case, and is required in order for the
sums below to be unconditionally convergent. Let P be a period of s which is also a multiple of
|H|. Keeping in mind (2.10) we find that:

Ef (Λs) =
1

P

P
∑

h=1

∑

k∈Z

∑

p∈Λ0

f
(

(h− k)2t2 + |s(h)− s(k) + p|2
)

.

For a constant sequence s(k) ≡ a ∈ H we write Λa the corresponding lattice and we have

Ef (Λs≡a) =
∑

k∈Z

∑

p∈Λ0

f
(

|kτ + p|2
)

.

Therefore, we obtain

Ef (Λs≡a)− Ef (Λs) =
1

P

P
∑

h=1

∑

k∈Z

∑

p∈Λ0

[

f
(

(h− k)2t2 + |p|2
)

− f
(

(h− k)2|t|2 + |s(h)− s(k) + p|2
)]

.
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We will use the hypothesis that H has the same symmetries as Λ0: denote l = a − b for any
a 6= b ∈ H and note that the following expression does not depend on the choice of such a, b due to
(2.12):

F̃ (h) :=
∑

p∈Λ0

[

f
(

h2t2 + |p|2
)

− f
(

h2t2 + |l + p|2
)]

. (2.13)

With this notation we obtain, indicating ∆(v,w) = 0 if v = w and ∆(v,w) = 1 otherwise, (using
also the fact that we may omit terms with ℓ ∈ PZ below because they are zero by the choice of ∆
and by periodicity)

Ef (Λs≡a)−Ef (Λs) =
1

P

P
∑

h=1

∑

k∈Z
∆(s(h), s(k))F̃ (k − h)

=
1

P

P
∑

h=1

∑

ℓ∈Z
∆(s(h), s(ℓ + h))F̃ (ℓ)

=
1

P

P
∑

h=1

∞
∑

ℓ=1

(∆(s(h), s(h + ℓ)) + ∆(s(h), s(h − ℓ))) F̃ (ℓ).

Now define

F (h′) :=
∞
∑

n=0

F̃ (nP + h′) for h′ = 1, . . . , P. (2.14)

We may define finally, with the change of variable ℓ = nP + h′, n ∈ N, h′ = 1, . . . , P and using the
fact that P is a period of s:

Ef (Λs)− Ef (Λs≡a) =
1

P

P
∑

h=1

P−1
∑

h′=1

(

∆(s(h), s(h + h′)) + ∆(s(h), s(h − h′))
)

F (h′). (2.15)

Step 1.2: Computations and convexity in the case of theta functions.

Note that the formula defining F (h′) works also for arbitrary h′ ∈ [0, P ). We now check that for
f(|x|2) = e−πα|x|2 and large enough α the function F is decreasing convex on [1, P − 1]. Indeed in
this case we get

F (x) =

( ∞
∑

n=0

e−παt2(nP+x)2

)

(θΛ0(α)− θΛ0+l(α)),

F ′(x) = −2παt2

( ∞
∑

n=0

(nP + x)e−παt2(nP+x)2

)

(θΛ0(α) − θΛ0+l(α)),

F ′′(x) =

( ∞
∑

n=0

(4π2α2t4(nP + x)2 − 2παt2)e−παt2(nP+x)2

)

(θΛ0(α)− θΛ0+l(α)),

and we note that by Proposition 3.4 below, θΛ0+l(α) < θΛ0(α) for all α > 0, l /∈ Λ0 and so F is
decreasing in x for x ≥ 1. It is also convex on this range because

α ≥ 1

2πt2
=⇒ ∀n ≥ 0,∀x ≥ 1, 4π2α2t4(nP + x)2 − 2παt2 ≥ 0 =⇒ ∀x ≥ 1, F ′′(x) ≥ 0

We may also assume that F is convex on the whole range (0, P ] up to modifying it on (0, P ]\[1, P−1].
Indeed the estimates that we obtain below are needed only to compare energies of integer-distance
sets of points, thus they concern F ’s values restricted only to the unmodified part.
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Step 1.3: Relation to the minimization on the circle and conclusion of the proof.
We know that F depends on P only, so in order to compare finitely many different sequences s we
may take P to be one of their common periods, and the minimizer of (2.15) will coincide with the
minimum of Ef among lattices for which P is a period. We relate (2.15) to the energy minimization
for convex interaction functions on a curve, studied in [13].

We will consider a circle Γ of length P , which we also assume to be a multiple of 2d, and on which
the equidistant distance 1 points are labelled by H, in the order defined by s(k) with 1 ≤ k ≤ P .
For p ∈ H we define Ap to be the sets of points with label p. Let πs := {Ap : p ∈ H}. Moreover
d(x, y) denotes the arclength distance along the circle Γ. Then (2.15) gives the same value as

EF (πs) :=
1

P

∑

p∈H

∑

x 6=y∈Ap

F (d(x, y)). (2.16)

Therefore the minimum of (2.15) corresponds to the minimum of EF (πs) for s as above. We
compare each of the sums over Ap in (2.16) with the minimum F -energy of a set of points on Γ of
cardinality |Ap|. The latter minimum is realized by points at equal distances along Γ, by [13, Prop.
1.1(A)]. Denoting the minimum F -energy of N points on Γ by

EF (N) := min







∑

x 6=y∈Ω
F (d(x, y)) : Ω ⊂ Γ, |Ω| = N







,

we have then
P (EF (πs)− F (0)) ≥

∑

p∈H
EF (|Ap|).

Note that up to doubling P we may assume that the numbers |Ap| with p ∈ H are all even and add
up to P , since they correspond to instances of s(k) = p along a period P . Recall that we already
assumed that P is a multiple of |H| before. We then claim that

|H| EF

(

P

|H|

)

= |H| EF





1

|H|
∑

p∈H
|Ap|



 ≤
∑

p∈H
EF (|Ap|). (2.17)

To see this first observe (cf. [13, Eq. (2.1)]) that for even N

EF (N) = N

N/2
∑

n=1

F

(

P

N
n

)

−NF (P ).

Therefore

|H| EF (P/|H|) ≤
∑

p∈H
EF (|Ap|)

⇔

|H|
P/|H|
∑

n=1

F (|H| n) ≤
∑

X

|H| X
P

X/2
∑

n=1

F

(

P

X
n

)

,

where in the last sum X is summed over {|Ap|, p ∈ H}. Now recalling the definition (2.14) of F
and (2.13) of F̃ , we see that the above last line can be rewritten in the following form

∑

n∈N
F̃ (|H|n) ≤

∑

p∈H

∑

n∈N
tpF̃

( |H|n
tp

)

, (2.18)
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where the tp equal |H| |Ap|/P and satisfy
∑

tp = 1. Note that in Step 1.2 in particular we proved
that F̃ is convex, which in turn implies that for all c > 0 the function t 7→ tF̃ (c/t) is also convex
and by additivity so is t 7→∑

tF̃ (|H| n/t). Therefore (2.18) is true and (2.17) holds. In particular
(2.16) is minimized for the partition πs where each of the Ap consists of P/|H| equally spaced
points each, which corresponds to the choice s = sb for some bijection b : Z/|H|Z → H. Therefore
any such sb minimizes s 7→ Ef (Λs) amongst P -periodic s where P is a period of s multiple of |H|.
Since any periodic s has one such period and Ef (Λs) is independent on the chosen period, the
thesis follows.

Final remark. If for some choice of f the F̃ , F of Step 1.1 are decreasing and strictly convex,
then in this case the cited result of [13] as well as the inequalities (2.18) and (2.17) become strict
outside the configurations corresponding to s = s1, implying that s1 is the unique minimizer for
any fixed P . This gives the uniqueness part of the theorem’s statement.

We now prove the last part of the theorem which shows the optimality of sb in a smaller class, but
for all α > 0.

Step 2.1. To a layer translation map s : Z → H and to a layer index k̄ we associate the function
∆

s,k̄ : Z → {0, 1} defined as follows:

∆
s,k̄(k) :=

{

0 if s(k) = s(k̄),
1 if s(k) 6= s(k̄).

.

Then define as usual f(|x|2) = e−πα|x|2 and note that like in the proof of the first part of the theorem
the difference Ef (Λ0)−Ef (Λs) is the average for k̄ ∈ {0, . . . , P − 1} of the sums on k ∈ Z, p ∈ Λ0

{

f((k̄ − k)2|t|2 + |p|2)− f((k̄ − k)2|t|2 + |p + u|2) if ∆
s,k̄(k) = 1,

0 if ∆
s,k̄ = 0.

(2.19)

We note again that by Proposition 3.4 below, there holds

∑

p∈Λ0

(e−πα(h2|t|2+|p|2) − e−πα(h2|t|2+|p+u|2)) = e−παh2|t|2(θΛ0(α)− θΛ0+u(α)) > 0. (2.20)

The rest of the proof is divided into two steps.

Step 2.2. Assume that k′ = |H|. We then prove that the choice of s for which b′ = b is injective
is minimizing with respect to all other k′-periodic choices of b′. Indeed, in this case we see that
for each k̄ the function ∆b,k̄ takes values 0, 1, . . . , 1 within one period, whereas if b′ is not injective
then the function ∆b′,k̄ takes for at least one value of k̄ values 0 for both k = k̄ and for another
choice k < |H|. It thus suffices that the |H|-tuple of values 0, 1, . . . , 1 is the one for which the
contributions (2.19) corresponding to one single period take the smallest possible value. This is a
direct consequence of Step 2.1.

Step 2.3. Assume that b, b′ are both bijections and k′ < |H|. We then show that θΛs
b′
(α) > θΛsb

(α)

for all α > 0. Indeed in that case we have that ∆b,k̄(k̄+ k),∆b′,k̄(k̄+ k) both are independent of k̄.
Thus we compare them over a period of k′|H| starting at k = 0 and with k̄ = 0. We see that since
k′ < |H| then to each k ∈ {1, . . . , k′|H| − 1} where ∆b,0(k) = 0 and ∆b′,0(k) = 1 we can injectively
associate a value k′′ ∈ {1, . . . , k − 1} at which ∆b,0(k

′′) = 1,∆b′,0(k
′′) = 0. As the contributions to

θΛs
b′
(α) − θΛsb

(α) of the form (2.20) corresponding to these two values k, k′′ are

(e−πα(k′′)2|t|2 − e−παk2|t|2)(θΛ0(α)− θΛ0+u(α)) > 0,

because the first term is positive because r 7→ e−παr2 is decreasing, whereas the second term is
positive by Proposition 3.4.
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Remark 2.5. The same optimality of the lattices Λsb
among all periodically layered lattices holds

also for more general energies Ef , as soon as we can ensure that the function F present in (2.14)
via F̃ from (2.13) is strictly decreasing and convex on [1, P − 1]. Indeed in this case the Step 1.2
of the proof can be replaced and the rest of the proof goes though verbatim.

Example 2.6 (Comparison between FCC and HCP). As a consequence of the above, for any
α > 0, t, ℓ, θΛs1,t,ℓ

(α) ≤ θΛs2,t,ℓ
(α). In particular, θFCC(α) < θHCP (α) when |FCC| = |HCP |.

This implies that HCP has higher energy than the FCC for all completely monotone interaction
functions f .

2.5 Questions, links and possible extensions

2.5.1 A rigidity question related to Definition 2.3

Note that a case when H has the same symmetries as Λ0 is when for each x 6= y,w 6= z ∈ H
there exists an affine isometry of Λ0 sending x to w and y to z. The following rigidity question,
concerning the distinction between affine isometries of Rd−1 and isometries of a given lattice of
dimension d − 1, are open as far as we know (recall that distinct lattices may be isometric, as in
[18]).

Question 2.7. If Λ0 is a homogeneous discrete set and H is as in Definition 2.3, then does it
follow that we can find bijections φ in (2.3) which are actually restrictions of isometries of Rd−1 to
Λ0?

Recall that a set A ⊂ R
m is called homogeneous if it is the orbit of a point by a subgroup of the

isometries of Rm. Note the following related positive result, whose proof is however nontrivial:

Proposition 2.8. For any lattice Λ ⊂ R
d a length-preserving bijection φ : Λ → Λ is the restriction

of an affine isometry of Rd.

Proof. In fact our proof will show that any length-decreasing bijection of a lattice is the restriction
of an affine isometry. We consider first the set V1 of shortest vectors of Λ and we find that for
all e ∈ Λ, the restriction φ|e+V1 must be a bijection from this set to φ(e) + V1, thus it is uniquely
determined by a permutation, which a priori could depend on e.

Step 1. We will show that this permutation does not depend on e. To start with, we note that for
each e ∈ Λ and v ∈ V1 the restriction of φ to (e+ Rv) ∩ Λ is an isometry. Indeed we have

|φ(kv + e)− φ(e)| ≤
k−1
∑

k′=0

|φ((k′ + 1)v + e)− φ(k′v + e)| = k|v|,

with equality if and only if all vectors φ((k′ + 1)v + e) − φ(k′v + e) are positive multiples of each
other. As φ : e+ V1 → φ(e) + V1 is a permutation, the above vectors all belong to V1, which does
not contain vectors of different length. This implies that all these vectors are equal, and thus φ
restricts to an isometry on e+ Zv as desired.

Step 2. Next, for independent v1 6= v2 ∈ V1 we claim that φ restricts to an isometry on e+Zv1+Zv2.
We start by noticing that due to the previous step, φ|e+Zv1 is an isometry and thus it has the form
φ(e + kv1) = φ(e) + kw1 and similarly φ(e + hv1 + kv2) = φ(e) + hw1 + kw2(h) with w1 ∈ V1 is a
fixed vector and w2 : Z → V1 is a function which we desire to prove is constant. By a slight abuse
of notation we define w2(0) := w2 and we desire to prove that for all h ∈ Z there holds w2(h) = w2.
Indeed assume that h is a value such that w2(h) 6= w2. Then we must still have for all h ∈ Z, using
the 1-Lipschitz property of φ,

|hw1 + k(w2(h)− w2)| = |φ(e+ hv1 + kv2)− φ(e+ kv2)| ≤ h|v2|.
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As k → ∞ we find that this proves w2(h) = w2, which proves our claim.

Step 3. Similarly to the previous step we find that φ|(e+SpanV1)∩Λ coincides with an affine isometry
for all e ∈ Λ. Assuming that SpanV1 ∩ Λ 6= Λ, let V2 be the set of shortest vectors of Λ \ SpanV1.
Then at each e ∈ Λ the function V1 ∪ V2 ∋ v 7→ φ(e + v) − φ(v) is a permutation of V1 ∩ V2. We
saw that V1 is sent to itself and thus this function induces a permutation of V2. Steps 1 repeats for
vectors in V2 to show that φ restricts to an isometry on each e+Zv, v ∈ V2, and then the reasoning
of Step 1 allows to show that φ restricts to an affine isometry on each (e+ SpanV1 + SpanV2) ∩ Λ
for each e ∈ Λ.

Step 4. For each k ≥ 1 we can then repeat Step 3, and apply it to the sets Vk+1 of shortest vectors
of Λ \ Span(Vk) defined iteratively after V1. This allows to prove, after finitely many steps, that φ
restricts to an affine isometry on the whole Λ.

2.5.2 Link to the theory of fibered packings

In this section we consider our Theorem 1.1 within the theory of fibered packings, as introduced
by Conway and Sloane [19] and extended by Cohn and Kumar [17]. The basic definition is the
following:

Definition 2.9 (fibering configurations, cf. [19]). Let Λ ⊂ R
n,Λ0 ⊂ R

m,m < n be discrete
configurations of points. We say that Λ fibers over Λ0 if Λ can be written as a disjoint union of
layers belonging to parallel m-planes each of which is isometric to Λ0.

In fact the configurations considered in [19] and [17] are of a more special type, as described below.

Definition 2.10 (lattice-periodic fibered configurations). Let Λ1 ⊂ {0} × R
n−m,Λ0 ⊂ R

m × {0}
be Bravais lattices. Let H ⊂ R

m×{0} be a set of cardinality |H| ≤ m having the same symmetries
as Λ0 in the sense of Definition 2.3. Given a periodic map s : Λ1 → H we define the configuration

Λs := ∪p∈Λ1(Λ0 + s(p))× {p}. (2.21)

Recall that s : Λ1 → R
m is said to be Λ2-periodic if Λ2 is a sublattice of Λ1 and s(a) = s(b)

whenever a− b ∈ Λ2.
Note that the definition (2.10) is a special case of the above definition for Λ1 = τZ.

All configurations considered in [19] and [17] are of the above form, with H consisting precisely of
the origin and the so-called deep holes of Λ0, and Λ0 is always either equal to the 2-dimensional
triangular lattice A2 or to the 4-dimensional lattice D4 or to the 8-dimensional lattice E8. Recall
(see [34, Defn. 1.8.4]) that p ∈ R

m is a deep hole of Λ0 ⊂ R
m if it realizes the maximum of

p 7→ minq∈Λ0 |p − q|. The set of deep holes verifies (2.12) in the cases Λ0 ∈ {A2,D4.E8}: for the
triangular lattice A2 the deep holes are the centers of the fundamental triangles, and thus the
isometries of the lattice are transitive on the deep holes; for E8 the deep holes are 1/2E8 and the
statement is again clear; for the rescaled version D4 = {(x1, . . . , x4) ∈ Z

4 :
∑

i xi ≡ 0(mod2)}
the deep holes within the fundamental cell are (1, 0, 0, 0), (1/2, 1/2, 1/2, 1/2), (1/2, 1/2, 1/2,−1/2),
which again are equivalent under symmetries of D4. The following questions are worth mentioning
at this point:

Question 2.11. Is it true that for any Bravais lattice Λ0 the set of deep holes, i.e. the set of
maximizers of p 7→ minq∈Λ0 |p− q|, have the same symmetries as Λ0 in the sense of Definition 2.3?
Is this the case for deep holes of homogeneous discrete Λ ⊂ R

d−1?

If s : Λ1 → H and Λ are like in Definition 2.10, Ef,Λ(x) is defined like in (2.8) and s is Λ2-periodic
and r(Λ1/Λ2) is a set of representatives in Λ1 of Λ1/Λ2 (i.e. the discrete version of a fundamental
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domain), then in case |Λ1 : Λ2| < ∞ we define the energy per point with the following formula
generalizing (2.11):

Ef (Λs) :=
1

|Λ1 : Λ2|
∑

k∈r(Λ1/Λ2)

∑

h∈Λ1

Ef,Λ0(s(k) − s(h) + h− k). (2.22)

For the case f(r) = fα(r) = e−παr we have the following definition:

Definition 2.12 (asymptotic minimizers). Let H and Λ0,Λ1 be fixed and like in Definition 2.10.
We say that a periodic s : Λ1 → H is asymptotically minimizing as α → α0 ∈ [0,+∞] if for any
ǫ > 0 and any periodic s′ : Λ1 → H with s′ 6= s there exists a neighborhood N of α0 such that for
α ∈ N we have

Efα(Λs) ≤ ǫ+ Efα(Λs′).

We now can state in a new unified form the underlying reasoning subsuming the papers [19] and
[17]:

Theorem 2.13 (asymptotics of periodic minimizers [17, 19]). With the notations of Definition
2.12, for p ∈ Λ1 let Ck(p) be the k-th layer of Λ1 centered at p, defined for k ≥ 0 as

C0(p) := {p}, Ck+1(p) := argmin {|q − p| : q ∈ Λ1 \ ∪j≤kCj} .

Let Ck := Ck(0) and

mk(s) :=
1

|Λ1 : Λ2||Ck|
|{(p, q) ∈ r(Λ1/Λ2)× Λ1 : q ∈ Ck(p), s(q) 6= s(p)}| .

Then the Λ2-periodic configuration s is asymptotically minimizing as α → +∞ if and only if the
following infinite series of conditions A(k) hold for all k ≥ 1:

A(1): s realizes m̄1 := max
{

m1(s
′) : s′ : Λ1 → H periodic

}

, (2.23)

and for k ≥ 1

A(k+1): s realizes m̄k+1 := max
{

mk+1(s
′) : s′ : Λ1 → H periodic, and realizes m̄k

}

. (2.24)

The proof of this result is presented in [17] and consists in noticing that without loss of generality
two separate s, s′ have the same period Λ2, and then that for large α the contribution of Ck(p) to
Efα(Λs) becomes arbitrarily large compared to the combined one of all the Ch(p) such that h > k.

The discussion of A(1) in some special cases is the main topic of [19].

We note that if Λ1 ∼ Z like in the previous subsection, we find the following rigidity result:

Lemma 2.14. If Λ1 = τZ and |H| = d then the set of s satisfying all the A(k) coincides with
the ones which have period d and which realize a bijection to H over each period. In particular
conditions A(k) with k ≤ d/2 completely determine the optimal s, and these s are uniquely defined
up to composing with a permutation of H.

The same type of rigidity (with a different bound on k) was discovered, with case-specific and
often enumerative proofs, for the following couples of (Λ1, d) in [19] and [17]: (A2, d), (D3, d) and
(HCP, d) with d ≤ 5. By similar case-by-case computations we are able to prove the same results
for A2 for d ≤ 8 and for general two-dimensional lattices for d ≤ 6, as well as for D3 for d ≤ 6. This
leaves the following questions wide open, while giving strong evidence that the answer is positive:

Question 2.15 (rigidity of the constraints A(k)). Is it true that for every choice of Λ1 and of |H|
there exists h ≥ 1 such that the conditions A(k) with k ≥ h are redundant?

Question 2.16 (uniqueness of the optimal s). Is it true that the s satisfying all the A(k) is always
unique up to composition with permutations of H?
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3 Minimization of (Λ, u) 7→ θΛ+u(α)

3.1 Minimization in both Λ and u

3.1.1 Upper bound for Regev-Stephens-Davidowitz function and consequences - Proof
of Proposition 1.2

Definition 3.1. For any Bravais lattice Λ ⊂ R
d, any u ∈ R

d and any α > 0, we define

ρΛ,u(α) :=
θΛ+u(α)

θΛ(α)
,

where the theta functions are defined by (2.1) and (2.9).

Remark 3.2. We remark that, in the terminology of Regev and Stephens-Davidowitz [45], ρΛ,u(α) =
fΛ,α−2(u) where fΛ,s is the periodic Gaussian function over Λ with parameter s.

We restate [45, Prop. 4.1] in terms of ρΛ,u.

Lemma 3.3. (Regev and Stephens-Davidowitz [45]) For any Bravais lattice Λ ⊂ R
d and any

u ∈ R
d\Λ, α 7→ ρΛ,u(α) is a non-increasing function.

The above lemma is then complemented by the following independent result (which is well-known,
and implicit in the work [6]), that corresponds to the first part of Proposition 1.2:

Proposition 3.4. For any Bravais lattice Λ ⊂ R
d, any u ∈ R

d and any α > 0, we have:

1. if u 6∈ Λ, then lim
α→+∞

ρΛ,u(α) = 0;

2. it holds 0 < ρΛ,u(α) ≤ 1, i.e. θΛ+u(α) ≤ θΛ(α). Furthermore, ρΛ,u(α) = 1 if and only if
u ∈ Λ, i.e. for fixed Λ and α, the set of maximizers of u 7→ ρΛ,u(α) (or u 7→ θΛ+u(α)) is
exactly Λ.

Proof. If u 6∈ Λ, then we obtain

ρΛ,u(α) =
θΛ+u(α)

θΛ(α)
=

θΛ+u(α)

1 +
∑

p∈Λ\{0}
e−πα|p|2

which goes to 0 as α → +∞ because p+ u 6= 0 for any p ∈ Λ and any u 6∈ Λ.
By Poisson summation formula (see for instance [31, Thm. A]), we have, for any u ∈ R

d and any
α > 0,

θΛ+u(α) =
α−d/2

|Λ|
∑

s∈Λ∗
e2iπs·ue−

π|s|2
α .

Hence we get

ρΛ,u(α) = |ρΛ,u(α)| =
∣

∣

∣

∣

θΛ+u(α)

θΛ(α)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

s∈Λ∗
e2iπs·ue−

π|s|2
α

∑

s∈Λ∗
e−

π|s|2
α

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1.

Furthermore, we have, for any fixed Λ, α:

ρΛ,u(α) = 1 ⇐⇒ θΛ(α) = θΛ+u(α)

⇐⇒
∑

s∈Λ∗
e−

π|s|2
α (1− cos(2πs · u)) = 0
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⇐⇒ ∀s ∈ Λ∗, 2πs · u = 0 (modπ)

⇐⇒ ∀s ∈ Λ∗, s · 2u ∈ Z

⇐⇒ 2u ∈ Λ

⇐⇒ u ∈ Λ.

Remark 3.5. In particular, for any Λ and α > 0, if u 6∈ Λ, then ρΛ,u(α) < 1.

In dimension d = 2, we get the second part of Proposition 1.2 as a corollary of the previous result:

Corollary 3.6. Let A2 be the triangular lattice of length 1, then for any α > 0, any vector u ∈ R
2

and any Bravais lattice Λ such that |Λ| = |A2|, it holds

θA2+u(α) ≤ θΛ(α),

with equality if and only if u ∈ A2 and Λ = A2 up to rotation.

Proof. Let u ∈ R
2, α > 0 and Λ be a Bravais lattice of R

2. By the previous proposition and
Montgomery’s Theorem [35, Thm. 1], we get

θA2+u(α) ≤ θA2(α) ≤ θΛ(α).

The equality holds only if θA2+u(α) = θA2(α) and θA2(α) = θΛ(α), i.e. respectively u ∈ A2 and
Λ = A2 up to rotation.

We now give an alternative proof of Lemma 3.3 in the particular case Λ = Z and u = 1/2 because
it will be useful in the last part of this paper. We note that ρZ,1/2(α)

2 is also called the modulus
of the elliptic functions (see [33, Ch. 2]). We recall that the Jacobi theta functions θi are defined
by (1.3).

We first prove the following. An alternative proof, found by Tom Price, is available online at [43].

Proposition 3.7. Let ρZ,1/2(α) =
θ2(α)

θ3(α)
, then

1. for any α > 0, 0 < ρZ,1/2(α) < 1;

2. the function ρZ,1/2 is decreasing on (0,+∞).

Proof. The first point is a direct application of Proposition 3.4, because 1/2 6∈ Z. For the second
point, we remark that (see [33, Eq. (2.1.8)])

ρZ,1/2(α) = (1− k′2)1/4

where k′ :=
θ4(α)

2

θ3(α)2
≤ 1 is the complementary modulus of the elliptic functions. For q = e−πα we

have, by the Jacobi’s triple product formula [49, Ch. 10, Thm. 1.3],

k′2 =
+∞
∏

n=1

(

1− q2n−1

1 + q2n−1

)8

.

All the factors are increasing in α, we see that α 7→ k′2 is an increasing function, and it follows
that ρZ,1/2 is decreasing.
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We now fix the decomposition R
d = R

d−1 ×R and in these coordinates we consider the case where
we are given two bounded functions t : Z → {0} × R and s : Z → R

d−1 × {0} and the lattices
obtained as translations of a Bravais lattice Λ0, as follows:

Λs,t,Λ0 :=
⋃

k∈Z
(t(k) + s(k) + Λ0) , Λs≡0,t,Λ0 :=

⋃

k∈Z
(t(k) + Λ0) .

Then we see that as for p ∈ Λ0 by the orthogonality of t(k) to p, s(k) there |t(k) + s(k) + p|2 =
|t(k)|2 + |s(k) + p|2 so we can factorize:

θΛs≡0,t,Λ0
(α)− θΛs,t,Λ0

(α) =
α−d/2

|Λ0|
∑

k∈Z
e−πα|t(k)|2





∑

q∈Λ∗
0

e−
π|q|2

α −
∑

q∈Λ∗
0

e2iπq·s(k)e−
π|q|2

α



 ,

and using again the positivity and monotonicity of each of the terms in parentheses we deduce that
a choice of “horizontal” translations s(k) which maximises the energy θΛs,t,Λ0

(α) is the one given
by s(k) = 0 for all k ∈ Z, which is the case of perfectly aligned copies of Λ0.

Corollary 3.8. For any α > 0, any s, t as above and any Bravais lattice Λ0 in R
d−1×{0}, it holds

θΛs,t,Λ0
(α) ≤ θΛs≡0,t,Λ0

(α).

3.1.2 The degeneracy of Gaussian energy

We now show that the formula

lim
α→0+

θΛ+u(α)

θΛ(α)
= 1 (3.1)

holds more in general, even when the perturbation u depends on the point. We note that in higher
generality the monotonicity in α > 0 of the above ratio is unknown, therefore we cannot extend
the results of the previous section.

Proposition 3.9. Let Λ0 ⊂ R
d be a lattice of determinant one and let u : Λ0 → R

d be a bounded
function and Λu = {u(p) + p : p ∈ Λ0}. Then there holds

lim
α→0

θΛu
(α)

θΛ0(α)
= 1. (3.2)

Proof. We may write

θΛu
(α)

θΛ0(α)
=

∑

p∈Λ0
e−α|u(p)+p|2

∑

p∈Λ0
e−α|p|2 .

Since u is bounded, we have, for some constant C > 0,

e−πα(|p|−C)2 ≤ e−πα|u(p)+p|2 ≤ e−πα(|p|+C)2 . (3.3)

Since Λ0 is a lattice of determinant one we have

∑

p∈Λ0

e−πα|p|2 = (1 + o(1)α→0)

∫

Rd

e−πα|x|2dx,

∑

p∈Λ0

e−πα(|p|−C)2 = (1 + o(1)α→0)

∫

Rd

e−πα(|x|−C)2dx,

∑

p∈Λ0

e−πα(|p|+C)2 = (1 + o(1)α→0)

∫

Rd

e−πα(|x|+C)2dx,
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Thus we have to show that the ratio of the last two integrals on the left hand side tends to 1 as
α → 0. Note that the numerator of this ratio has limit +∞ as α → 0. If Cd = 2πd/2/Γ(d/2) is the
area of the unit sphere in R

d, after a change of variable we find

∫

Rd

e−πα(|x|−C)2dx = Cd

∫ C

0
e−πα(r−C)2rd−1dr + Cd

∫ ∞

0
e−παr2(r + C)d−1dr

and the first term is an O(1)α→0, and therefore this term will thus disappear in the limit. For the
second term we note that for any 0 ≤ a < b there holds

∫ ∞

0
e−παr2radr ≪

∫ ∞

0
e−παr2rbdr as α → 0,

therefore upon expanding the polynomial (r+C)d−1 the term in rd−1 is the leading order term. By
an analogous reasoning for the case of e−πα(|p|+C)2 we deduce that the ratio of sums of the leftmost
and rightmost terms in (3.3) have limits which agree and equal 1, and the claim follows.

3.1.3 Iwasawa decomposition and reduction to diagonal matrices - Proof of Proposi-
tion 1.3 (first part)

In this subsection, we prove the first part of Proposition 1.3. We recall that Bravais lattices of
density one in R

d are precisely the lattices Λ = MZ
d for M ∈ SL(d). By Iwasawa decomposition

of SL(d) any such M can be expressed in the form

M = QDT, with







Q ∈ SO(d),

D = diag(c1, . . . , cd), ci > 0,
∏d

i=1 ci = 1,
T lower triangular.

(3.4)

Proof of Proposition 1.3 - First part. For any Bravais lattice Λ = MZ
d with M ∈ SL(d) decom-

posed as M = QDT with notations like in (3.4), any u ∈ R
d and any α > 0, let us prove that

θΛ+u(α) ≥ θD(Z+1/2)d(α).

First of all we note that for any Q ∈ SO(d) there holds

θQ−1Λ(α) = θΛ(α).

Thus we may as well assume that in (3.4) we have Q = id. As M is invertible, we may express
u = Mv, thus

θΛ+u(α) = θDT (Zd+v)(α).

Next, we use the parametrization similar to [35, p. 76] of Montgomery in order to re-express for
p = (n1, . . . , nd) ∈ Z

d and writing v = (v1, . . . , vd), T = Tij with Tij = 0 for j > i and Tii = 1,

|DT (p+ v)|2 =

d
∑

i=1

∣

∣

∣

∣

∣

∣

ci(ni + vi) + ci

i−1
∑

j=1

Tij(nj + vj)

∣

∣

∣

∣

∣

∣

2

:=

d
∑

i=1

|cini + Fi(n1, . . . , ni−1)|2 ,

where Fi depends only on T,D, v and F1 = 0. Thus, we have that θDT (Zd+v)(α) equals

∑

n1∈Z
e−παc21|n1|2





∑

n2∈Z
e−παc22|n2+c−1

2 F2(n1)|2


· · ·





∑

nd∈Z
e−παc2d|nd+c−1

d Fd(n1,...,nd−1)|2


 · · ·







 . (3.5)
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Now, we know that (see [35, Lem. 1]), for any β > 0, s ∈ R,
∑

m∈Z
e−πβ(m+s)2 ≥

∑

m∈Z
e−πβ(m+1/2)2 .

Applying this for m = nd, β = αc2d and s = c−1
d Fd(n1, . . . , nd−1) we obtain that the innermost sum

in (3.5) satisfies
∑

nd∈Z
e−παc2d|nd+c−1

d Fd(n1,...,nd−1)|2 ≥
∑

nd∈Z
e−παc2d(nd+1/2)2 = θcd(Z+1/2)(α),

and therefore the latter sum can be brought outside of the nested parentheses in (3.5) and we
obtain that

θDT (Zd+v)(α) ≥ θcd(Z+1/2)(α)θD′T ′(Zd−1+v′)(α),

where the (d − 1)× (d − 1)-matrices T ′,D′ are obtained from T,D by forgetting the last row and
column, and v′ = (v1, . . . , vd−1). Using this we can easily prove by induction on d that

θDT (Zd+v)(α) ≥
d
∏

i=1

θci(Z+1/2)(α),

and by the defining property ea+b = eaeb and by distributivity (which can be applied here due to
the fact that our sums defining θ functions are all absolutely convergent), the left hand side above
is just θD(Z+1/2)d(α), as desired.

3.1.4 Discussion about M 7→ θM(Z+1/2)d(α) for diagonal M - Proof of Proposition 1.3
(second part)

The outcome is a description of the minimization which complements the result of the first part of
Proposition 1.3.
We have the following:

Proposition 3.10. There exists a sequence (Z2
k := kZ × 1

kZ)k of rectangular lattices with density
1 such that

lim
k→+∞

θ
Z2
k+(k/2,1/2k)(α) = 0.

Proof. Keeping the parametrization from [35] for lattices with area 1/2, for any α > 0, let

fα(y) := θ
Z̃2
y+(

√
y

2
√

2
, 1
2
√

2y
)
(α) =

∑

n∈Z
e−

πα
2
y(n+1/2)2

∑

m∈Z
e−

πα
2y

(m+1/2)2 ,

where Z̃
2
y =

√
y√
2
Z × 1√

2y
Z is the rectangular lattice of area 1/2 parametrized by y ≥ 1. Therefore,

using notations (1.3) and by (1.4), we get, for any α > 0,

f2α(y) = θ2(αy)θ2(α/y) =

√

y

α
θ4(y/α)θ2(αy)

=

√

y

α

(

1 + 2

+∞
∑

n=1

(−1)ne−πyn2/α

)

∑

n∈Z
e−παy(n+1/2)2 .

Hence, by growth comparison, we get, for any α > 0, lim
y→+∞

fα(y) = 0, and there exists a sequence

(Z2
k := kZ× 1

kZ)k of rectangular lattices such that

lim
k→+∞

θ
Z2
k+(k/2,1/2k)(α) = 0.
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Let us now prove the second part of Proposition 1.3, i.e. the existence of a sequence Ak =
diag(1, . . . , 1, k, 1/k), k ≥ 1, of d× d matrices such that, for any α > 0,

lim
k→+∞

θAk(Z+1/2)d(α) = 0.

Proof of Proposition 1.3 - Second part. For any k > 0, let Zd
k := Z

d−2 × Z
2
k, where

Z
2
k := kZ× 1

k
Z.

The center of its primitive cell is given by Ck := (1/2, ..., 1/2, k/2, 1/2k) and

θAk(Z+1/2)d (α) = θ
Zd
k+Ck

(α) = θ2(α)
d−2θ

Z2
k+ck

(α),

where ck = (k/2, 1/2k). Now, by previous Proposition 3.10, as

lim
k→+∞

θ
Z2
k+ck

(α) = 0,

we get our result.

3.2 Proof of Theorem 1.4

We recall the following result [35, Thm. 2] due to Montgomery about minimization of theta
functions among orthorhombic lattices:

Theorem 3.11. (Montgomery [35]) Let d ≥ 1 and α > 0. Assume that {ci}1≤i≤d ∈ (0,+∞)d are

such that
∏d

i=1 ci = 1 and that not all the ci are equal to 1. For real t, we define

U3(t) =

d
∏

i=1

θ3(c
t
iα).

Then U ′
3(0) = 0, U ′

3(t) < 0 for t < 0 and U ′
3(t) > 0 for t > 0. In particular, t = 0 is the only strict

minimum of U3.

Remark 3.12. For d = 2, a particular case, also proved in [27, Thm. 2.2], is the fact that y = 1
is the only minimizer of y 7→ θ3(αy)θ(αy

−1).

We now prove Theorem 1.4 that generalizes [27, Thm. 2.4] to general dimensions, in the spirit
of the previous result.

Proof of Theorem 1.4. Let d ≥ 1 and α > 0. Assume that {ci}1≤i≤d ∈ (0,+∞)d are such that
∏d

i=1 ci = 1 and that not all the ci are equal to 1. For real t, we define

• U4(t) =

d
∏

i=1

θ4(c
t
iα),

• U2(t) = θAt(Z+1/2)d(α) =

d
∏

i=1

θ2(c
t
iα),

• P3,4(t) = U3(t)U4(t) =

d
∏

i=1

θ3(c
t
iα)θ4(c

t
iα),
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• P2,3(t) = U2(t)U3(t) =

d
∏

i=1

θ2(c
t
iα)θ3(c

t
iα),

• Q(t) =
U2(t)

U3(t)
=

θAt(Z+1/2)d (α)

θAtZ
d(α)

=
d
∏

i=1

θ2(c
t
iα)

θ3(c
t
iα)

.

where At = diag(ct1, ..., c
t
d). Let us prove that, for any f ∈ {U4, U2, P3,4, P2,3}, we have f ′(0) = 0,

f ′(t) > 0 for t < 0 and f ′(t) < 0 for t > 0 and, in particular, that t = 0 is the only strict maximum
of f .

As in [35, Sec. 6], we remark that

U ′
4

U4
(t) = α

d
∑

i=1

θ′4
θ4

(ctiα)c
t
i log ci and

(

U ′
4

U4

)′
(t) =

d
∑

i=1

T (ctiα)(log ci)
2,

where T is defined on (0,+∞) by

T (x) := x
θ′4
θ4

(x) + x2
(

θ′4
θ4

)′
(x).

Hence, we have by [27, Thm. 2.2], for any x > 0,

T (x) = x
θ′4
θ4

(x) + x2
θ′′4θ4 − (θ′4)

2

θ24
(x) < x

θ′4
θ4

(x)− x2
θ′4(x)θ4(x)
xθ4(x)2

= 0.

Therefore, we get

(

U ′
4

U4

)′
(t) < 0 for any t, and it follows that

U ′

U
is strictly decreasing. Thus, as

U ′
4

U4
(0) = α

θ′4(α)
θ4(α)

d
∑

i=1

log ci = 0,

we get the result for f = U4, because U4(t) > 0 for any t.

The case f = U2 is a direct application of the previous point, thanks to identity (1.4). Indeed,

U2(t) =

d
∏

i=1

θ4

(

1
ctiα

)

√

ctiα
= α−1/2

d
∏

i=1

θ4

(

1

ctiα

)

because
∏d

i=1

√

cti =
√

∏d
i=1 c

t
i = 1. Now, writing, for any i, bi =

1

ci
, which are not all equal to 1,

and β =
1

α
, we get

∏d
i=1 bi = 1 and

U2(t) =
√

β
d
∏

i=1

θ4(b
t
iβ),

which is exactly
√
βU4 as in the previous point, therefore its variation is the same.

For f = P3,4, by
√

θ3(s)θ4(s) = θ4(2s) (see [20, Sec. 4.1]) for any s > 0, we get

P3,4(t) =

d
∏

i=1

θ3(c
t
iα

′)θ4(c
t
iα

′) =

(

d
∏

i=1

θ4(2α
′cti)

)2

= U4(t)
2

26



with α = 2α′. Furthermore, for f = P2,3, by

θ2(2s) =

√

θ3(s)2 − θ4(s)2

2
, θ3(2s) =

√

θ3(s)2 + θ4(s)2

2
and θ3(s)

4 = θ2(s)
4 + θ4(s)

4,

(see [20, Sec. 4.1]) we obtain

P2,3(t) =

d
∏

i=1

θ2(c
t
iα

′)θ3(c
t
iα

′) =
1

2d

d
∏

i=1

√

θ3(c
t
iα

′)4 − θ4(c
t
iα

′)4

=
1

2d

d
∏

i=1

θ2

(

ctiα
′

2

)2

=
1

2d
U2(t)

2,

with α =
α′

2
. Hence, the two last points follow from the two first points.

By using Theorem 3.11 and the previous results we directly get the optimality for Q.

3.3 Minimization in u at fixed Λ

The main motivation for the study in this subsection is the negative result of the first part of
Theorem 3.10, which shows that if we minimize θΛ+u(α) for varying Λ and u, in general no minimizer
exists.

3.3.1 Two particular cases: orthorhombic and triangular lattices

We take some time here in order to point out some special results about the minimization of
u 7→ θΛ+u(α) valid for all α > 0 when Λ is a special lattice.

The first result is just a special case of Proposition 1.3, and holds in general dimension:

Corollary 3.13 (of Prop. 1.3). Let α > 0 be arbitrary. If Λ ⊂ R
d is an orthorhombic lattice, i.e.

Λ = AZ with A a diagonal matrix, then the minimum of u 7→ θΛ+u(α) is achieved precisely at the
points Λ + c with c = A · (1/2, . . . , 1/2).

The second result, due to Baernstein, and is valid in two dimensions:

Theorem 3.14 (See [5, Thm. 1]). Let α > 0 be arbitrary. If Λ = A2 ⊂ R
2 is the triangular

lattice of length 1 generated by (1, 0), (1/2,
√
3/2), then the minimum of u 7→ θA2+u(α) is achieved

precisely at the points A2 + c with c = (1/2, 1/(2
√
3)).

In particular, c is the barycenter of the primitive triangle T := {(0, 0); (1, 0); (1/2,
√
3/2)}. We are

not aware of the presence of further results valid for all α > 0 in the literature.

3.3.2 Convergence to a local problem in the limit α → +∞ - Proof of Theorem 1.5

In this part, we prove Theorem 1.5 which expresses the fact that the minimization of u 7→ θΛ+u(α)
has as α → +∞ the same result as the maximization of u 7→ dist(u,Λ).

Proof of Theorem 1.5. Let Λ be a Bravais lattice in R
d and let c be a solution to the following

optimization problem:
max
c′∈Rd

min
p∈Λ

|c′ − p|. (3.6)
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For any x ∈ R
d let us prove that there exists αx such that for any α > αx,

θΛ+c(α) ≤ θΛ+x(α). (3.7)

Writing Λα :=
√
αΛ we have

θΛ+c(α) =
∑

p∈Λα

e−π|p+c
√
α|2

=
∑

p∈Λα,|p+c
√
α|≤

√
dγ

e−π|p+c
√
α|2 +

∑

p∈Λα,|p+c
√
α|>

√
dγ

e−π|p+c
√
α|2 .

By [7, Lem. 18.2], we have that for γ > 1/2π,

∑

p∈Λα,|p+c
√
α|>

√
dγ

e−π|p+c
√
α|2 ≤ (2πγ)

d
2 e−dπγ+d/2θΛ0(α).

Moreover, for any x ∈ R
2, we have (see [7, Pb. 18.4])

θΛ(α) ≤ eπα|x|
2
θΛ+x(α).

Thus, for any x ∈ R
2, we get

θΛ+c(α) ≤
∑

p∈Λ,|p+c|≤
√

dγ/α

e−πα|p+c|2 + (2πγ)
d
2 e−dπγ+d/2θΛ(α)

≤
∑

|p+c|≤
√

dγ/α

e−π|p+c
√
α|2 + (2πγ)

d
2 e−dπγ+d/2eπα|x|

2
θΛ+x(α). (3.8)

Taking α so large that α|u|2
d ≥ 1

2π and γ := α|u|2
d we have

{p ∈ Λ : |p+ c| ≤
√

dγ

α
} = ∅.

Furthermore we have that the factor in (3.8) rewrites as

(2πγ)
d
2 e−dπγ+d/2eπα|x|

2
= e−πα(|c|2−|x|2)

(

2πα

d

) d
2

ed/2|c|d.

Therefore if |x| < |c| then there exists αx such that for any α > αx, the inequality (3.7) holds.

Now notice that unless x also solves (3.6) there exist p, q ∈ Λ such that |p − x| < |q − c|. In this
case, we note that θΛ+x = θΛ+p+x and thus we reduce to the case |x| < |c|, as desired.

Note that in the case of 2-dimensional Bravais lattices for which a fundamental domain is the
union of two triangles with angles ≤ π/2 the points c solving (3.6) are the circumcentres of the
two triangles. For a rectangular lattice we find that c is the center of the rectangle, while for the
equilateral triangular lattice A2 we have that c = (1/2, 1/2

√
3) is a minimizer for α → +∞. These

points are precisely the ones figuring also in Section 4.2.
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3.3.3 Asymptotics of α → 0 by Poisson summation for d = 2 - Proof of Theorem 1.6

Let Λ be a Bravais lattice in 2 dimensions and x ∈ R
2, then we have, for any α > 0, by the Poisson

summation formula:

θΛ+x(α) =
1

α|Λ|
∑

ℓ∈Λ∗
e−

π
α
|ℓ|2+2iπ〈ℓ,x〉.

Thus we get

θΛ+x

(

1

α

)

= α|Λ|−1
∑

ℓ∈Λ∗
e−πα|ℓ|2e2iπ〈ℓ,x〉 = α|Λ|−1

∑

ℓ∈Λ∗
e−πα|ℓ|2 cos(π〈ℓ, 2x〉). (3.9)

Now, up to a rotation and reflections we may suppose that the matrix basis B of Λ is in the form

B =

(

a b
0 a−1

)

, for a ≥ 1, b ≥ 0.

Then the matrix of the basis of Λ∗ is (BT )−1. Therefore,

Λ∗ = Z
(

a−1,−b
)

⊕ Z (0, a) .

Let ℓm,n := m (a,−b) + n
(

0, a−1
)

be a point of Λ∗, x = s(a, 0) + t
(

b, a−1
)

then we have, for any
(m,n) ∈ Z

2 and any (s, t) ∈ [0, 1/2]2,

〈ℓm,n, 2x〉 = 2sm+ 2tn.

For the first layer C1 of Λ∗, that is to say for any ℓ ∈ Λ∗ such that |ℓ|2 = min
ℓ′∈Λ∗\{0}

|ℓ′|2, we get

∑

(m,n)∈C1

e−πα|ℓm,n|2 cos(π〈ℓm,n, 2x〉) =
∑

(m,n)∈C1

e−πα|ℓm,n|2 cos(2π(ms + nt)). (3.10)

We now aim at proving a result about the asymptotics of best translation vectors x, as α → 0. We
use the following definition:

Definition 3.15. We say that C is a set of asymptotic strict minimizers of x 7→ θΛ+x(α) as
α → α0 ∈ [0,∞] if there exists c ∈ C such that for each x /∈ C + Λ there exists a neighborhood of
α0, denoted Ux, such that for all α ∈ Ux there holds

θΛ+c(α) < θΛ+x(α).

Note that the above is very similar in spirit to Definition 2.12, however here we minimize over the
translation vectors x while in Definition 2.12 we were minimizing over translation patterns s.

We now prove Theorem 1.6.

Proof of Theorem 1.6. We have three options, corresponding to C1 of cardinality either 6 or 4 or
2, and to lattices Λ of decreasing symmetry:

1. For the case |C1| = 6 we have that Λ = 2√
3
A2 is a triangular lattice and C1 corresponds to

ℓm,n for (m,n) ∈ {±(1, 0),±(0, 1),±(1, 1)}. In this case |ℓ|2 = 4/3 on the first layer and we
compute

(3.10) = 2e−
4π
3
α (cos(2πs) + cos(2πt) + cos(2π(t+ s)))

= 2e−
4π
3
α
(

2 cos(π(t+ s)) cos(π(t− s)) + 2 cos2(π(t+ s))− 1
)

= 4e−
4π
3
α cos(π(t+ s)) (cos(π(t+ s)) + cos(π(t− s)))− 2e−

4π
3
α

= 8e−
4π
3
α cos(π(t+ s)) cos(πt) cos(πs)− 2e−

4π
3
α ≥ −3e−

4π
3
α,

with equality if and only if s ∈ 1/3 + Z or t ∈ 1/3 + Z.
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2. The case |C1| = 4 corresponds to rhombic lattices different from A2, in which up to change
of basis of Λ and Λ∗, C1 has (m,n) ∈ {±(1, 0),±(0, 1)} and similarly to above, we consider
the sums like (3.10) and to find optimal (s, t) we have to minimize cos(2πs) + cos(2πt) and
thus we find that s, t ∈ Z+ 1/2.

3. For |C1| = 2 we find precisely the non-rhombic lattices Λ and up to changes of base of Λ we
find C1 to have (m,n) ∈ {±(1, 0)}. Here we have to minimize a formula like (3.10) giving
just cos(2πs) and thus we find s ∈ Z + 1/2 but t remains undetermined. To determine t we
have to look at the second layer, which again, can have either 6, 4 or 2 lattice points:

(a) If |C2| = 2 then up to a change of basis that keeps C1 fixed we have C2 = {ℓm,n :
(m,n) ∈ {±(0, 1)}} and via the discussion of the sum like (3.10) over the layer C2 we
directly find t ∈ Z+ 1/2 precisely as above.

(b) If |C2| = 6 then up to a change of basis keeping C1 fixed we find C2 has coefficients
(m,n) ∈ {±(0, 1),±(1, 1),±(2, 0)}, and we find that the minimization corresponding to
(3.10) for the second layer and with s ∈ Z + 1/2 gives cos(2πt) + cos(2π(t + 1/2)) = 0,
thus we have to discuss the third layer. Up to rotation and dilation Λ∗’s generators are
(1, 0), (−1/2,

√
15/2). In this case we find that C3 has coefficients {±(1,−1),±(2, 1)},

C4 has coefficients {±(2, 0)}, giving no constraint on t, but C5 has only coefficients
{±(2,−1)} which gives an expression uniquely minimized at t ∈ Z+ 1/2.

(c) If |C2| = 4 then up to a change of basis keeping C1 fixed we find C2 corresponds to
(m,n) ∈ {±(0, 1),±(1, 1)}, which again gives no constraint on t. Up to rotation and
dilation Λ∗’s generators are (1, 0), (−1/2, x) with x ∈]

√
3/2,

√
15/2[. We find several

possibilities:

i. If
√
3/2 < x < 1, then C3 = {±(1,−1),±(2, 1)}, gives no constraint on t and C4

has coefficients {±(1, 2)} gives the minimization of cos(4πt + π) = − cos(4πt) and
so we have t ∈ 1

2Z + 1
4 . It seems that the remaining layers (we calculated them in

some special cases till C40 give no contribution allowing to decide whether there is
a unique minimizer among t ∈ Z+ 1

4 and t ∈ Z+ 3
4 , so we conjecture that they are

both asymptotic minimizers.

ii. If x = 1, then C3 is as before and C4 has coefficients {±(1, 2),±(2, 0)} and again
t ∈ 1

2Z+ 1
4 .

iii. If 1 < x <
√
7/2, then C3 is as before, C4 has coefficients {±(2, 0)} and C5 has

coefficients {±(1, 2)} is the deciding layer and we obtain again t ∈ 1
2Z+ 1

4 .

iv. If x =
√
7/2 then C3 has coefficients {±(1,−1),±(2, 1),±(2, 0)} and again the de-

ciding layer is C4, which this time has coefficients {(±(1, 2)} and the minimizers are
t ∈ 1

2Z+ 1
4 .

v. If
√
7/2 < x < 5/(2

√
3) then C3 has coefficients {±(2, 0)}, C4 = {±(1,−1),±(2, 1)}

and the decisive layer is C5 has coefficients {±(1, 2)} and the minimizers are t ∈
1
2Z+ 1

4 .

vi. If x = 5/(2
√
3) then the first 4 layers are as above, but C5 has coefficients

{±(1, 2),±(2,−1),±(3, 1)}, which again leads to the minimizers t ∈ 1
2Z+ 1

4 .

vii. If 5/(2
√
3) < x < 3/2 then the first four layers are as before, C5 has coefficients

{±(3, 1),±(2,−1)} gives zero contribution and C6 has coefficients {±(1, 2)} gives
minimizers t ∈ 1

2Z+ 1
4 .

viii. If x = 3/2 then the first 5 layers are as in the previous case but now C6 has
coefficients {±(1, 2),±(3, 0)}, still leading to t ∈ 1

2Z+ 1
4 .

ix. If 3/2 < x <
√
11/2 then the first 5 layers are as in the previous case but now C6 has

coefficients {±(3, 0)} and C7 has coefficients {±(1, 2)}, still leading to t ∈ 1
2Z+ 1

4 .
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x. If x =
√
11/2 then the first 4 layers are as in the previous case and C5 has coefficients

{±(2,−1),±(3, 0),±(3, 1)} however the decisive layer is C6, which has coefficients
{±(1, 2)} and which gives t ∈ 1

2Z+ 1
4 .

xi. If
√
11/2 < x <

√
15/2 then the first 4 layers are as in the previous case but C5 has

coefficients {±(3, 0)}, C6 has coefficients {±(2,−1),±(3, 1)} and the decisive layer
is C7 which has coefficients {±(1, 2)}, giving t ∈ 1

2Z+ 1
4 .

Now, if the quantity corresponding to the sum of the layers below or in the decisive layer is strictly
larger than the minimum, then for α large enough the difference with the minimum will give a
contribution which surpasses the contributions from all layers different than C1, therefore by the
above subdivision in cases we obtain the result.

3.4 Questions and conjectures

3.4.1 A question related to Proposition 3.4

Note that the point 2. of Proposition 3.4 may be sharp in the sense that superpositions of theta
functions are the largest class where it keeps holding true in full generality. Indeed, consider, with
the notation in (2.8), the quotient

ρΛ,u(f) :=
Ef,Λ(u)

Ef,Λ(0)
, (3.11)

where f : [0,+∞) → [0,+∞) is a function more general than f(r) = e−παr used to define ρΛ,u(α)
and let F (x) := f(|x|2). Then we have by the same reasoning as in the proposition, for each u ∈ R

d,

ρΛ,u(f) ≤ 1 ⇔
∣

∣

∣

∣

∣

∑

s∈Λ∗
F̂ (s)e2iπs·u

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

s∈Λ∗
F̂ (s)

∣

∣

∣

∣

∣

. (3.12)

Requiring that the right side of (3.12) holds for all u ∈ R
d imposes on the F̂ (s), s ∈ Λ∗ the sharp

condition, and is implied by the fact that F̂ ≥ 0 on all rescalings of Λ∗ \ {0} or that the same
holds for −F̂ . This property is equivalent to requiring that ±F is positive definite, or that ±f is
completely monotone. Determining the class of interactions F (or f) which is individuated by this
condition seems to be an interesting open question:

Question 3.16. What is the class of all F for which, for all u ∈ R
d the condition in the right-hand

side of (3.12) holds?

3.4.2 A conjecture related to Theorem 1.6

Conjecture: For the Bravais lattices which are very asymmetric as in the last point above, both
points in C are separately realizing the minimum of x 7→ θΛ+x(α) as α → 0.

This is not provable via examination of layers, but in several cases we explicitly observed all the
layers of Λ∗ up to C40 and we never found a contradiction to the conjecture. We thus have strong
motivation to think that it is true. Perhaps it can be proved by symmetry considerations on the
layers of Λ∗.

4 Optimality and non optimality of BCC and FCC among body-

centred-orthorhombic lattices - Proof of Theorems 1.7 and 1.8

4.1 Proof of Theorem 1.7

The goal of the present section is to prove Theorem 1.7, i.e. to study the minimization of Λ 7→ θΛ(α)
among a class of three-dimensional Bravais lattices Λ composed by stacking at equal distances a se-
quence of translated rectangular lattices with alternating translations (corresponding to a sequence
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of periodicity 2 in Section 2). This kind of systems was numerically studied by Ho and Mueller
in [36]. Indeed, in the context of two different Bose-Einstein condensates in interaction, in the
periodic case, they proved that a good approximation of the energy of the system is given by

Eδ(Λ, u) := θΛ(1) + δθΛ+u(1), (4.1)

where Λ ⊂ R
2 is a Bravais lattice, u ∈ R

2 is the translation between the two copies of Λ and
−1 ≤ δ ≤ 1 is a parameter which quantifies the interaction between these two copies of Λ. While
the case δ ≤ 0 gives (A2, 0) as a minimizer of Eδ (i.e. the condensates are juxtaposed), varying
δ from 0 to 1 gives a collection of minimizers composed by a triangular lattice that is deformed
almost continuously to a rectangular lattice and where the translations correspond to the deep hole
of each lattice (see [36, Fig. 1] or the review [32, Fig. 16 and description]). It is interesting to note
that numerical simulations give strong support to the conjecture that also Wigner bilayers show
the same behavior as Bose-Einstein condensates, as presented in [3, 46].

In the present section, we focus on the minimization in which Λ is allowed to vary only in the class
of rectangular lattices, but where θΛ(α) is allowed to vary beyond the case α = 1, and for δ which
is allowed to depend on α and on the distance t between the layers of Λ (compare the expression of
the energy Et(y, α) below to (4.1)). Also note that, by Corollary 3.13, in the case of a rectangular
lattice Λ = Ly (see precise notations below), the minimizing u in (4.1) equals the center cy of the
fundamental cell of Ly, thus we are justified to fix this choice throughout this section.

Definition 4.1. For any y ≥ 1 and any t > 0, we define the body-centred-orthorhombic lattice of
lengths

√
y, 1/

√
y and t by

Ly,t :=
⋃

k∈Z
(kτ + s(k) + Ly),

where Ly = Z(
√
y, 0)⊕Z(0, 1√

y ) is a rectangular lattice of lengths
√
y and 1/

√
y, τ = (0, 0, t/2) and

s(k) = cy = (
√
y/2, 1/(2

√
y)) if k is an odd integer and s(k) = 0 if k is an even integer.

Define also the lattice

L∗
y,t :=

⋃

k∈Z
(kτ ′ + s′(k) + L∗

y),

where L∗
y is the dual of Ly, which is generated by (1/

√
y,±√

y), τ = (0, 0, t−1) and s′(k) =
(1/(2

√
y),

√
y/2) if k is an odd integer and s′(k) = 0 if k is an even integer.

Note that Ly,t is the anisotropic dilation of the BCC lattice (based on the unit cube) along the
coordinate axes by

√
y, 1/

√
y, t respectively, whereas L∗

y,t is the dilation of the FCC lattice (again
based on the unit cube) by respectively 1/

√
y,
√
y, 1/t.

Lemma 4.2. For any y ≥ 1 and t > 0, the dual lattice of Ly,t is L∗
y,t.

Proof. Let us consider the generator matrix of Ly,t given by

B =







y1/2 0 y1/2

2

0 y−1/2 y−1/2

2
0 0 t/2






.

Therefore, the generator matrix of L∗
y,t is B

∗ = (BT )−1, i.e.

B∗ =





y−1/2 0 0

0 y1/2 0
−1

t −1
t

2
t



 .
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Then we observe that the coordinates of a generic point of L∗
y,t are (c1, c2, c3) = (y−1/2h, y1/2k, 1/t(2n−

h− k)), h, k, n ∈ N, which can be expressed as

{(c1, c2, c3) :
√
yc1 + c2/

√
y + tc3 ≡ 0(mod2)},

which shows that this lattice corresponds to L∗
y,t as in the above definition.

For any α > 0, t > 0 and y ≥ 1, the energy of Ly,t is given by

Et(y, α) := θLy,t(α) = θ3(t
2α)θLy(α) + θ2(t

2α)θLy+cy(α)

= θ3(t
2α)θ3(yα)θ3(α/y) + θ2(t

2α)θ2(αy)θ2(α/y)

= θ3(t
2α) {f3,α(y) + ρt,αf2,α(y)}

where, for any i ∈ {2, 3}, the classical Jacobi theta functions θi are defined by (1.3), the functions
fi,α are defined by

fi,α(y) := θi(αy)θi

(

α

y

)

and

ρt,α := ρZ,1/2(t
2α) =

θ2(t
2α)

θ3(t2α)
< 1,

by Proposition 3.7. For convenience, we define, for any (α, t) ∈ (0,+∞)2 and any y ≥ 1,

Ẽt(y;α) := f3,α(y) + ρt,αf2,α(y).

Since θ3(t
2α) > 0 is independent of y, the goal of this part is to minimize y 7→ Ẽt(y;α) among

y ∈ [1,+∞), for fixed α, t.

Remark 4.3. The third point of Theorem 1.7 shows that the minimization of Λ 7→ θΛ(α) is quite
different from the minimization of Λ 7→ ζΛ(s) for which FCC and BCC lattices are local minimizers
for any s > 0 (see Ennola [26]). We will present below an algorithm allowing to rigorously check
the minimality of y = 1 for any chosen α > 0 and any t > t0(α) (not only for α = 1).

Remark 4.4 (fixing the unit density constraint). We note that for a > 0 the volume of the unit
cell of the lattice aLy is a2 and the distance between layers in the direction orthogonal to Ly

after replacing t by at becomes a|t|/2. This means that the unit cell of the rescaled layers is of
volume a3|t|/2. The constraint of our scaled layered lattice having average density 1 becomes the
requirement that

a =
21/3

t1/3
.

The analogue of Et(y, α) for the rescaled lattice aLy,t and imposing the unit density requirement
above, is

θLy,t(a
2α) = θLy,t(β), for β :=

(

2

t

)2/3

α.

If we represent the BCC in our framework we have to use t = 1, y = 1 to start with, and then we
have

βBCC = 22/3α.

For the FCC, after a rotation of π/4 in the xy-plane followed by a dilation (of all three coordinates)
of 21/2, we see that it corresponds to y = 1, t =

√
2, and we have

βFCC = 21/3α.
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We first study the variations of fi,α, for given α > 0 and i ∈ {2, 3}.
Lemma 4.5. For any α > 0, we have:

1. the function f3,α is increasing on (1,+∞), minimum at y = 1 and f ′′
3,α(1) > 0;

2. the function f2,α is decreasing on (1;+∞), maximum at y = 1 and f ′′
2,α(1) < 0.

Proof. The monotonicity of both functions is a direct consequence of [27, Thm. 2.2]. Furthermore,
we have for any i ∈ {2, 3},

f ′′
i,α(1) = αθ′′i (α)θi(α) − αθ′i(α)

2 + θi(α)θ
′
i(α),

and our statement about the sign of both second derivatives follows from [27, Thms. 2.3 and
2.4].

Then, we study the properties of an associated function gα, given if ρt,α = 1:

Proposition 4.6. Let gα(y) := f3,α(y) + f2,α(y), then, for any α > 0,

1. gα is decreasing on (1,
√
3) and increasing on (

√
3,+∞);

2. we have g′′α(1) < 0.

In particular y =
√
3 is the only minimizer of gα on [1,+∞).

Proof. For any α > 0, we have, by Poisson summation formula and writing β = 2
α ,

gα(y) = f3,α(y) + f2,α(y)

=
∑

m,n∈Z
e
−πα

(

ym2+n2

y

)

+
∑

m,n∈Z
e
−πα

(

y(m+1/2)2+ (n+1/2)2

y

)

=
1

α

∑

m,n∈Z
e
−πα−1

(

yn2+m2

y

)

+
1

α

∑

m,n∈Z
e
−πα−1

(

yn2+m2

y

)

eiπ(m+n)

=
1

α

∑

m,n∈Z
e
−πα−1

(

yn2+m2

y

)

(1 + cos(π(m+ n))

=
2

α

∑

m,n∈Z

m+n∈2Z

e
−πα−1

(

yn2+m2

y

)

=
2

α

∑

k,n∈Z
e
−πα−1

(

yn2+ (2k−n)2

y

)

=
2

α

∑

k,n∈Z
e−

π
α
yn2

e
− 4π

yα
(k−n

2
)2

=
2

α

∑

k,n∈Z
e−πβ y

2
n2
e−πβ 2

y
(k−n

2
)2

=
2

α
θ

(

β;−1

2
,
y

2

)

where for the definition of θ(β;X,Y ) we use the notations of Montgomery [35, Eq. (4)]. We recall
(see [35]) that for any β > 0 the function (X,Y ) 7→ θ(β;X,Y ) admits only two critical points: the

saddle point (0, 1) and the minimizer
(

1
2 ,

√
3
2

)

, in the half modular domain

D :=
{

(x, y) ∈ R
2; 0 ≤ x ≤ 1/2, x2 + y2 ≥ 1

}

.

Thus we get:
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1. y =
√
3 is the only minimizer of y 7→ θ

(

β;−1
2 ,

y
2

)

, because (−1/2,
√
3/2) and (1/2,

√
3/2)

both correspond to the same (triangular) lattice, by modular invariance z 7→ z + 1;

2. y = 1 is the second critical point, because (−1/2, 1/2) and (0, 1) both correspond to the same
(square) lattice, by modular invariance z 7→ − 1

z+1 + 1.

Actually, as explained in [1, Prop. 4.5], by applying the transformation z 7→ − 1
z+1 + 1, the line

{(x, y) ∈ R
2;x = −1/2, y ≥ 1/2} is sent to the quarter of the unit of circle centred at 0 with

extremes (0, 1), (1, 0), which in particular passes through
(

1
2 ,

√
3
2

)

. For any φ ∈ [0, π/2], we now

have

g̃(φ) := θ(β; cosφ, sin φ)

g̃′(φ) = − sinφ∂xθ + cosφ∂yθ

g̃′′(φ) = − cosφ∂xθ + sin2 φ∂2
xxθ − sinφ cosφ∂2

xyθ − sinφ∂yθ − cosφ sinφ∂xyθ + cos2 φ∂2
yyθ.

Since ∂yθ(β; 0, 1) = 0, it follows that g̃′′(π/2) = ∂2
xxθ(β; 0, 1). Let us prove that ∂2

xxθ(β; 0, 1) < 0.
By Poisson summation formula, we get

θ(β;X,Y ) =
∑

m,n∈Z
e−πβY n2

e−πβ(m+nX)2/Y

=
∑

n∈Z
e−πβY n2

∑

k∈Z
e−πk2Y/β+2iπknX

√

Y

β

=

√

Y

β

∑

n,k∈Z
e−πβY n2

e−πk2Y/β cos (2πknX) .

Hence, we obtain

g̃′′(π/2) = ∂2
XXθ(β; 1, 0) = −4π2

√
β

∑

n,k

e−πβn2
e−πk2/βk2n2 < 0.

It follows that g′′α(1) < 0.

Remark 4.7. In Proposition 4.6 we show that the energy (Λ, u) 7→ θΛ(α) + θΛ+u(α) is minimized
among rectangular lattices. This energy seems to be minimized by Λ = 1

31/4
Z × 31/4Z and u =

(

1
2×31/4

, 3
1/4

2

)

, among all Bravais lattices of density one (see the diagram [36, Fig 1.e] obtained

numerically by Mueller and Ho).

Thanks to this result, we can prove the first point of Theorem 1.7.

Lemma 4.8. For any α > 0 and any t > 0, y 7→ Ẽt(y;α) is an increasing function on [
√
3,+∞).

Consequently, for any t > 0 and any α > 0, a minimizer of y 7→ Ẽt(y;α) belongs to [1,
√
3].

Proof. Let α, t > 0. On [
√
3,+∞), g′α(y) = f ′

3,α(y) + f ′
2,α(y) ≥ 0, therefore

∂yẼt(y;α) = f ′
3,α(y) + ρt,αf

′
2,α(y) ≥ f ′

3,α(y)(1 − ρt,α) > 0

because f ′
3,α(y) > 0 and ρt,α < 1.

We now prove the second point of Theorem 1.7. We first need the two following lemmas:
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Lemma 4.9. For any y > 1, we have Ẽt(y;α) ≥ Ẽt(1;α) if and only if

hα(y) :=
f3,α(y)− f3,α(1)

f2,α(1)− f2,α(y)
≥ ρt,α.

Proof. For any y > 1, f3,α(y) − f3,α(1) > 0 and f2,α(1) − f2,α(y) > 0, thanks to the minimality of
y = 1 for f3,α and its maximality for f2,α.

Lemma 4.10. For any α > 0, we have

hα(1) =
f ′′
3,α(1)

−f ′′
2,α(1)

=
αθ′′3(α)θ3(α) − αθ′3(α)

2 + θ3(α)θ
′
3(α)

−αθ′′2(α)θ2(α) + αθ′2(α)
2 − θ2(α)θ′2(α)

< 1.

Proof. Use a Taylor expansion and the fact that g′′α(1) = f ′′
3,α(1) + f ′′

2,α(1) < 0.

Figure 4: Values of α 7→ hα(1)

Therefore, we can prove that y = 1 is not a minimizer of Ẽt(.;α) for fixed α and t small enough.

Proposition 4.11. For any α > 0, there exists t0(α) such that for any t < t0(α), hα(1) < ρt,α
and for any t > t0(α), hα(1) > ρt,α. In particular, for t < t0(α), y = 1 is not a minimizer of
y 7→ Ẽt(y;α).

Proof. By Proposition 3.7, we know that t 7→ ρt,α is a decreasing function and limt→0 ρt,α = 1.
Hence the existence of t0(α) is proved. Furthermore, if t < t0(α), then hα(1) < ρt,α and by Lemma
4.9, y = 1 cannot be a minimizer of Ẽt(.;α).

Remark 4.12. In Figure 5, we have numerically computed the explicit values of t0(α), 0.1 ≤ α ≤
10.

Now, fixing t we study the optimality of y = 1 for large α, and we prove the third point of Theorem
1.7 as a corollary.

Proposition 4.13. For any t <
√
2, there exists αt such that for any α > αt, hα(1) < ρt,α, i.e.

y = 1 is not a minimizer of Ẽt(.;α). Furthermore, for any t ≥
√
2, there exists αt such that for

any α > αt, hα(1) > ρt,α.
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Figure 5: Graph of α 7→ t0(α), s.t. hα(1) = ρt0(α),α, on [0.1, 10]

Proof. We have

hα(1)− ρt,α =
αθ′′3(α)θ3(α)− αθ′3(α)

2 + θ3(α)θ
′
3(α)

−αθ′′2(α)θ2(α) + αθ′2(α)
2 − θ2(α)θ′2(α)

− θ2(t
2α)

θ3(t2α)

=
αθ′′3(α)θ3(α)θ3(t

2α)− αθ′3(α)
2θ3(t

2α) + θ3(α)θ
′
3(α)θ3(t

2α)

θ3(t2α) (−αθ′′2(α)θ2(α) + αθ′2(α)
2 − θ2(α)θ′2(α))

+
αθ′′2(α)θ2(α)θ2(t

2α)− αθ′2(α)
2θ2(t

2α) + θ2(α)θ
′
2(α)θ2(t

2α)

θ3(t2α) (−αθ′′2(α)θ2(α) + αθ′2(α)
2 − θ2(α)θ′2(α))

∼ 2π2αe−πα − 2π2αe−2πα − πe−πα − π
4 e

−πα((t2+2)/4)

θ3(t2α) (−αθ′′2(α)θ2(α) + αθ′2(α)
2 − θ2(α)θ′2(α))

as α → +∞.

Thus, if
t2 + 2

4
< 1, i.e. t <

√
2, then, as α → +∞,

hα(1)− ρt,α ∼ −π
4 e

−πα((t2+2)/4)

θ3(t2α) (−αθ′′2(α)θ2(α) + αθ′2(α)
2 − θ2(α)θ

′
2(α))

< 0.

Furthermore, if t ≥
√
2, then

hα(1) − ρt,α ∼ 2π2αe−πα

θ3(t2α) (−αθ′′2(α)θ2(α) + αθ′2(α)
2 − θ2(α)θ′2(α))

> 0

and the proof is completed by Lemma 4.9.

Remark 4.14. We give two numerical illustrations of this result in Figure 6 (for t = 1) and Figure
7 (for t = 2).

Corollary 4.15. (BCC and FCC are not local minimizers for some α) There exists α1

such that for any α > α1, y = 1 is not a minimizer of y 7→ Ẽ1(y;α), i.e. the BCC lattice is not a
local minimizer of Λ 7→ θΛ(α) among Bravais lattices of fixed density one.
By duality, the FCC lattice is not a local minimizer of Λ 7→ θΛ(α) for α < α−1

1 .
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Figure 6: Graph of α 7→ hα(1)− ρ1,α on [0.1, 5]

Figure 7: Graph of α 7→ hα(1)− ρ2,α on [0.1, 5]

Proof. It is clear by Proposition 4.13 because |BCC| = |L1,t| = 1 ⇐⇒ t = 1 <
√
2.

Remark 4.16. As FCC and BCC lattices are local minimizers, at fixed density, of Λ 7→ ζΛ(s) for
any s > 0, we notice that the situation for the theta function is more complex and depends on the
density of the lattice (i.e. on α). Numerically, we find that α1 ≈ 2.38, and then α−1

1 ≈ 0.42.

We finally investigate the global minimum of Ẽt(.;α) for some values of α and we prove the fourth
point of Theorem 1.7, using a computer-assisted proof.

Lemma 4.17. For any α > 0, we have ∂2
yyẼt(1;α) > 0 if and only if t > t0(α).
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Proof. As ∂2
yyẼt(1;α) = f ′′

3,α(1) + ρt,αf
′′
2,α(1), we get

∂2
yyẼt(1;α) > 0 ⇐⇒

f ′′
3,α(1)

−f ′′
2,α(1)

< ρt,α ⇐⇒ hα(1) < ρt,α ⇐⇒ t > t0(α).

Numerical investigations justify the following conjecture:

Conjecture 4.18. For any α > 0 and for any t > t0(α), y 7→ Ẽt(y;α) is a increasing function on
(1,

√
3]. And then, y = 1 is the only minimizer of Ẽt(.;α).

In order to prove the conjecture for some values of (α, t), we need the following result:

Lemma 4.19. Let y0 < y2 and f ∈ C3([y0, y2]) be such that

1. f ′(y0) ≥ 0;

2. f ′′(y0) > 0;

3. ‖f ′′′‖∞ := max
y∈[y0,y2]

|f ′′′(y)| < K.

Let y1 :=
f ′′(y0) +

√

f ′′(y0)2 + 2Kf ′(y0)

K
, then for any y ∈ (y0, y0 + y1], f

′(y) > 0.

Proof. By Taylor expansion, we know that, for any y ≥ y0,

f ′(y) ≥ f ′(y0) + f ′′(y0)(y − y0)−
‖f ′′′‖∞

2
(y − y0)

2.

For any X ≥ 0, let P (X) := −AX2 +BX + C, where A = ‖f ′′′‖∞
2 , B = f ′′(y0) and C = f ′(y0). It

is clear, by definition of f , that P admits two roots of opposite signs. The positive one is

X1 :=
f ′′(y0) +

√

f ′′(y0)2 + 2f ′(y0)‖f ′′′‖∞
‖f ′′′‖∞

,

and P (X) > 0 on (0,X1). Now we notice that x 7→ a+
√
a+bx
x is a decreasing function of x for

any a, b ≥ 0. Thus, since ‖f ′′′‖∞ < K, we get X1 > y1. Therefore, for any y ∈ (y0, y0 + y1],
f ′(y) > 0.

Lemma 4.20. For any t > 0 and any α > 0,

‖Ẽ′′′
t ‖∞ := sup

y∈[1,
√
3]

|Ẽ′′′
t (y;α)| < Kα

where

Kα : =
3
∑

i=2

α3|θ′′′i (α)|θi(α/
√
3) + α3θi(α)|θ′′′i (α/

√
3)|+ 3α3θ′′i (α)|θ′i(α/

√
3)|

+ 5α2|θ′i(α)||θ′i(α/
√
3)|+ 3α2|θ′i(α)|θ′′i (α/

√
3) + 6αθi(α)θi(α/

√
3)

+ 2α2|θ′i(α)|θi(α/
√
3) + 2α2θi(α)|θ′i(α/

√
3)|+ 4α2θi(α)θ

′′
i (α/

√
3).

Proof. We get easily the result by using the fact that |ρt,α| < 1 and the decreasing of t 7→ |θ(k)(t)|
on (0,+∞) for any k ∈ N.
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Algorithm allowing for checking the conjecture for fixed α, t: We start by defining

y0 = 1,

a0 = Ẽ′
t(1;α) = 0,

b0 = Ẽ′′
t (1;α) > 0.

Now, by recursion and using both previous lemmas, if ai ≥ 0 and bi > 0, while yi <
√
3, we compute

yi+1 = yi +
Ẽ′′

t (yi;α) +
√

Ẽ′′
t (yi;α)

2 + 2KαẼ′
t(yi;α)

Kα
,

ai+1 = Ẽ′
t(yi+1;α),

bi+j = Ẽ′′
t (yi+1;α).

We have just a finite number of first and second derivatives of Ẽt(.;α) to compute, which we do
numerically. Thus, it is possible to rigorously check that y 7→ Ẽt(y;α) is increasing for every desired
α and every t > t0(α).

Lemma 4.21. If y 7→ Ẽt′(y;α) is increasing on [1,
√
3) for some α > 0 and t′ > t0(α), then it is

always true for any t ≥ t′.

Proof. Note that t 7→ Ẽ′
t(y;α) is increasing for any y, α since t 7→ ρt,α is decreasing and f ′

2,α(y) ≤ 0
for any y ≥ 1.

Therefore, the fourth point of Theorem 1.7 is proved via the following result:

Proposition 4.22. For α = 1 and any t ≥ 0.9, y = 1 is the unique minimizer of y 7→ Ẽt(y;α). In
particular, for t = 1, the BCC lattice L1,1 is the only minimizer of Ly,1 7→ θLy,1(1).

Proof. We use the previous algorithm for α = 1 and t = 0.9. We get, after 13 steps:

y a b

1 0 5.7185
1.1182 0.0009 4.2545
1.2063 0.0024 3.4958
1.2792 0.0043 3.0105
1.3428 0.0064 2.6649
1.4002 0.0086 2.4017
1.4532 0.0108 2.1918
1.5029 0.0131 2.0188
1.5504 0.0154 1.8724
1.5960 0.0177 1.7461
1.6403 0.0199 1.6354
1.6836 0.0223 1.5372
1.7262 0.0246 1.4492

with y13 = 1.7683 >
√
3. Thus, y 7→ Ẽ0.9(y; 1) is increasing on [1,

√
3) and it follows that y = 1 is

the unique minimizer of y 7→ Ẽt(y; 1) for any t ≥ 0.9.

Remark 4.23. Clue for the minimality of BCC and FCC lattices By Proposition 4.13 with
|FCC| = 1 ⇐⇒ t =

√
2, we can reasonably think that there is α2 such that for any α > α2,

y = 1 is the only minimizer of y 7→ Ẽ√
2(y;α), i.e. the FCC lattice is the only minimizer of the

theta function among lattices Ly,t with t =
√
2. Our algorithm allows us to prove this result for α

as large as we wish.

By duality, the BCC lattice is then expected to be a minimizer for any α < α−1
2 , among dual

lattices L∗
y,t with t = 1, of the theta function.
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4.2 Geometric families related to FCC and BCC local minimality - Proof of

Theorem 1.8

As an application of the above two results Corollary 3.13 and Theorem 4.2, and of Theorem 1.7,
we find a compelling “geometric picture” of possible perturbations of the FCC and BCC lattices,
which allows to show their local minimality for some α > 0 in a geometric way. Indeed, let us focus
for the moment on the case of the BCC lattice, and consider the following families of unit density
lattices containing it:

• Let F1 be the 2-dimensional family obtained by considering the representation of Section 2.2
of BCC as layering of triangular lattices. In an adapted coordinate system, the generators of
the BCC are the vectors given by rescalings of the generators of A2 and of the translation of
the center c of the fundamental triangle of A2. With notations as in Section 2.2 we have:

v1 := ℓBCC(1, 0, 0) = (25/6, 0, 0),

v2 := ℓBCC

(

1

2
,

√
3

2
, 0

)

=
(

2−1/6, 2−1/631/2, 0
)

,

v3 := {tBCC} × {ℓBCC · c} =

(

tBCC ,
ℓBCC

2
,
ℓBCC

2
√
3

)

=
(

2−1/6, 2−1/63−1/2, 2−2/33−1/2
)

.

Now the elements of F1 will be defined simply by replacing v3 by any vector of the form

v′3 := {tBCC} × {ℓBCC · x}, x ∈ R
2.

We obtain for each x ∈ R
2 a unit density lattice Λx := SpanZ(v1, v2, v

′
3) and we can express

θΛx(α) =
∑

k∈Z
e−παt2BCC θℓBCC(A2+kx)(α). (4.2)

Due to Theorem 3.14, and using the fact that A2 + c is isometric to A2 + kc for k ∈ Z, we
find that for all k ∈ Z, α > 0 there holds

θℓBCC(A2+kx)(α) ≤ θℓBCC(A2+c)(α) = θℓBCC(A2+kc)(α)

with equality precisely if x = c. Applying this to (4.2) we find that BCC is the unique
minimizer within F1.

• Let F2 be the 2-dimensional family obtained by considering the representation of Section 2.3
of BCC as layering of square lattices. In an adapted coordinate system, the generators of
the BCC are the vectors, expressed now in terms of the generators of Z2 and of the center
c = (1/2, 1/2) of the unit square of Z2, with ℓ = 21/3 such that our lattice has density 1:

v1 := ℓ(1, 0, 0) =
(

21/3, 0, 0
)

,

v2 := ℓ (0, 1, 0) =
(

0, 21/3, 0
)

,

v3 := {ℓ/2} × {ℓ · c} =
(

2−2/3, 2−2/3, 2−2/3
)

.

By the same reasoning as in the previous item, we now define the family F2 as formed by the
lattices Λ′

x with x ∈ R
2, obtained by replacing v3 by

v′3 := {ℓ/2} × {ℓ · x}

and by using now the d = 2 version of Corollary 3.13 we again obtain that BCC is the unique
minimizer of x′ 7→ θΛ′

x
(α) in F2.

41



• Let Fxy
3 be the family given by the body-centred-orthorhombic lattices where the deformation

is within the xy-plane like in Section 4. Due to Theorem 1.7 and to the algorithm following
Lemma 4.19, we find that BCC is the unique minimizer within Fxy

3 for α ∈ A defined by (4.3)
and not a minimizer for α large. Indeed, our algorithm is also efficient here to prove this for
α as small as we wish. In particular, we rigorously check this fact for any α ∈ A defined by

A := {0.001k; k ∈ N, 1 ≤ k ≤ 100}. (4.3)

This result implies that the FCC lattice is a minimizer for α ∈ A−1 defined by

A−1 := {1000k−1; k ∈ N, 1 ≤ k ≤ 1000}. (4.4)

These sets of real numbers are, obviously, only an example and there is no doubt in the fact
that these results hold at least for any α ≤ 1 for the BCC lattice, and for any α ≥ 1 for the
FCC lattice.

Similar behaviors as for Fxy
3 apply also for the families Fxz

3 ,Fyz
3 which are defined precisely

like Fxy
3 but with respect to suitably permuted coordinates.

Recall that the BCC of density 1 can be represented as 21/3Z3∪21/3(Z2+(1/2, 1/2, 1/2)). It is not
hard to note that the space of 3-dimensional lattices Lo

3 of density 1 has dimension 5. Moreover, the
tangent spaces TBCCF1, TBCCF2 of the families F1,F2 span a 3-dimensional subspace of TBCCLo

3,
corresponding to the infinitesimal perturbations of the generator 21/3(1/2, 1/2, 1/2). The tangent
spaces of any two of the families Fxy

3 ,Fxz
3 ,Fyz

3 , say TBCCFxy
3 and TBCCFxz

3 are easily seen to span
the two complementary dimensions. Therefore

Span(TBCCF1, TBCCF2, TBCCFxy
3 , TBCCFxz

3 ) = TBCCLo
3.

The above reasoning gives in particular a geometric proof of the local minimality of BCC for α
small, and moreover we find a saddle point behavior for α > α1 as in Theorem 1.7. By applying
the FCC version of the results of Section 2.2 (for the family F1), Section 2.3 (for the family F2),
and Theorem 1.7 (which gives the correct reasoning for Fxy

3 ,Fxz
3 ,Fyz

3 ) applied now for the case of
FCC, we similarly find three families which span TFCCLo

3, showing the local minimality of FCC
for α ∈ A−1 defined by (4.4), as well as the saddle point behavior for α < 1/α1 from Theorem 1.7.
We thus obtain a geometric proof of Theorem 1.8.
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