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Abstract

Resilience to uncertainties must be ensured in air traffic management. Unex-
pected events can either be disruptive, like thunderstorms or the famous volcano
ash cloud resulting from the Eyjafjallajökull eruption in Iceland, or simply due
to imprecise measurements or incomplete knowledge of the environment. While
human operators are able to cope with such situations, it is generally not the
case for automated decision support tools. Important examples originate from
the numerous attempts made to design algorithms able to solve conflicts between
aircraft occurring during flights. The STARGATE project was initiated in order
to study the feasibility of inherently robust automated planning algorithms that
will not fail when submitted to random perturbations. A mandatory first step is
the ability to simulate the usual stochastic phenomenons impairing the system:
delays due to airport platforms or ATC and uncertainties on the wind velocity.
The work presented here will detail algorithms suitable for the simulation task.

Keywords: Fast time traffic simulator, Gaussian field simulation, Air traffic
management

1. Introduction

One of the most important source of uncertainties in the ATM system comes
from the wind. When flying a given path, an aircraft can experience two kind
of errors: a cross-track error that describes the lateral deviation from the in-
tended trajectory and a longitudinal error that describes the distance between
the current and the expected position at a given time. The figure 1 summarizes
these two measures. Flight management systems (FMS) are able to deal effi-
ciently with the cross-track error that can be reduced to very low values that are
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Fig. 1. Longitudinal and cross-track errors

generally not a concern, at least during en-route flight phase. Managing the lon-
gitudinal error relies on changing the aircraft velocity mainly by engine thrust
adjustment. Such an operation impairs fuel consumption and may not even
be possible as during cruise phase, aircraft are operated close to the maximal
altitude, reducing the safe speed interval.

As a consequence, keeping an aircraft on a 4D trajectory, that is bound to
a given position at a given time, requires a perfect knowledge of atmospheric
conditions. Even in the context of future ATM systems like SESAR or Nextgen,
the holy graal of full 4D trajectory does appear as feasible: requested time-to-
arrival (RTA) at given predefined positions, known as 3D+t procedures, is a
more realistic option. Nevertheless, due to the traffic increase, moving from
airspace based operations to trajectory based ones appears mandatory. In this
context, the control task will no longer be performed uniquely by human opera-
tors and automated tools will help in maintaining aircraft separated. To gain a
wide social acceptance of the concept, systems must be proven safe, even under
uncertainties on aircraft positions.

Several automated trajectory planners exist, [1] most of them being adapted
from their counterparts in robotics, but are generally very sensitive to random
perturbations. Navigation functions are of current use for autonomous robots
and have been extended to air traffic problems [2]. They offer built-in collision
avoidance and are fast to compute. Furthermore, relying basically on a gradient
path following algorithm, it is quite easy to derive convergence properties. An
interesting approach to design navigation functions is the use of harmonic poten-
tials and recently bi-harmonic ones. The computation is reduced to an elliptic
partial differential equation solving, that can be done readily using off-the-shelf
software. The STARGATE project, funded by the french agency ANR, was ini-
tiated to extend harmonic and bi-harmonic navigation functions to a stochastic
setting. Within this frame, a mean of simulating random events is required, As
mentioned above, only the longitudinal error along track is a concern, and it
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Fig. 2. A typical wind field (world coverage)

comes from two main sources:

• The airport departure delay and the ATC actions;

• The effect of the wind experienced along the flight path.

Airport or ATC delays may be somewhat anticipated, but an important
variability still exists. Concerning the wind, meteorological models are not
accurate enough to ensure a good predictability: the best possible description
of a wind field is the sum of a mean component, generally taken to be the output
of the atmosphere models, and a random perturbation.

The first part of this article will be devoted to the means of generating
random wind fields, that will be processed within a fast time air traffic simulator.
The resulting synthetic flight paths can be used to assess the performance of
the conflict solving algorithms and to test the resilience of the planning schemes
produced.

In a second part, a statistical analysis of airport and ATC delays will be
presented, and a simple delay generator will be detailed.

Finally, some numerical implementation issues will be discussed.

2. Random wind field simulation

Wind fields exhibit generally some structure along with more chaotic behav-
ior in some areas as shown on figure 2. Meteorological models forecast wind
speed on a sampling grid, with angular increments that can be as low as 0.01◦

(e.g. the AROME model from the french weather service). The temporal resolu-
tion is not so high, typically in the hour range. Due to the requirements of future
ATM systems, providers are working on an order of magnitude improvement,
but such data is not yet available.

Even with the best available resolution, mesh size is in the order of 1Km, not
enough to ensure a very high quality trajectory prediction: an interpolation error

3



will add to the predicted position. The same is true for the time interpolation
point of view and both effects may be modeled as a random variable. Finally,
inherent model inaccuracies can be incorporated, so that the wind field X may
be represented as the sum of a deterministic mean value X0 and a stochastic
field η. While η is a vector valued field, it will be described in coordinates and
only scalar fields will be considered in the sequel.

2.1. Spectral representation

It is classically assumed that η is an homogeneous Gaussian random field
defined on Rd, width d = 2 for planar fields and d = 3 for the general case. It
is further assumed that η does not depend on time, or that the time evolution
is slow enough compared to the time scale of the trajectory predictor.

It is characterized by its mean and covariance functions, respectively denoted
µ,C and C satisfies the (spatial) stationarity condition:

∀(x, y) ∈ Ω, C(x, y) = C(x− y) (1)

One of the most important property of Gaussian fields is related to finite samples
of it.

Proposition 1. For any finite sequence (x1, . . . , xn) of points in Rd, the vector
(X(x1), . . . X(xn)) is Gaussian, with mean

(µ(x1), . . . , µ(xn))

and covariance
Σ = (C(xi − xj))i,j=1...n

The covariance function is positive definite:

∀(a1, . . . an) ∈ Rn, ∀(x1, . . . xn) ∈ Ωn,
∑
i,j

aiajC(xi − xj) ≥ 0 (2)

The Bochner theorem gives a characterization of positive definite functions:

Theorem 1. A continuous mapping f : Rd → R is positive definite if and only
if it exists a finite positive measure F such that:

∀x ∈ R, f(x) =

∫
R
ei2π〈t,x〉dF (t)

It is most of the time easier to check that a given mapping is positive definite
through the use of 1 than with a direct proof. In the case of covariance functions,
F is known as the spectral measure of the random field and when it admits a
density θ, one can compute a numerical approximation of it using a discrete
Fourier transform. This property is the key ingredient of many efficient random
field generators. The spectral density θ can be shown to be even and positive.

4



2.2. Gaussian field generation

Algorithms for scalar Gaussian field generation can be direct or spectral. In
the first case, the proposition (1) is invoked to generate Gaussian vectors on a
mesh of points (x1, . . . , xN ) that is generally structured as a rectangular, evenly
spaced grid.

Proposition 2. Let u = (u1, . . . , uN ) be a sample of independent, normally
distributed real numbers. Let v be a vector in RN and C a symmetric, positive
definite matrix. The vector C1/2u+ v is Gaussian, with mean v and covariance
C.

Proof. It is a very classical result that comes at once from the properties of
mathematical expectation. Since u has zero mean:

E[C1/2u+ v] = C1/2E[u] + v = v

The covariance is then given by:

E[C1/2uttC1/2] = C1/2E[uut]C1/2 = C1/2C1/2 = C

The computation of the square root C1/2 is not required: the Cholesky de-
composition C = LtL will give the same result and is much easier to obtain.
The algorithmic complexity of the process is dominated by the Cholesky de-
composition, that is an O(N3) process. Once done, sampling the vector u and
performing the combination Lu+v is of order O(N2). In many cases, the covari-
ance will quickly drop for distant pairs of points: the matrix C is often nearly
sparse, and adapted algorithms for the Cholesky decomposition exist. However,
this stage remains the bottleneck of the Gaussian field generation procedure.

Spectral algorithms rely on a fast Fourier transform to let computations
occur in the frequency domain. In [3], some methods for sampling Gaussian
fields based on this approach are detailed.

The general principle underlying these methods is the use of Bochner theo-
rem and Ito isometry formula. While almost never stated in references related
to numerical Gaussian field simulations, it is a very important point that may
be used as basis to derive algorithms. The approach taken in this work is to
directly approximate the spectral representation of the field instead of using it
only as a convenient tool for lowering the computational cost. A benefit is that
optimal quadrature rules may be used in the fourier domain to improve the
reconstruction of the simulated field.

Let us first start with some basic facts about spectral representation of pro-
cesses as exposed in the reference work [4].

Definition 1. Let P = (Ω, T , P ) be a probability space and let L2 = L2(ωT , P )
be the space of finite variance complex random variables over it. An orthogonal
stochastic measure on P is a mapping µ from T to L2 such that:

• µ(∅) = 0
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• For all couples (A,B) in T such that A ∩B = ∅:

µ(A ∪B) = µ(A) + µ(B)

P -almost surely.

• It exists a measure m on T such that for all couples (A,B) in T :

E[µ(A)µ(B)] = m(A ∩B)

The measure m occurring in the definition 1 is called the structural measure
of µ The definition can be extended straightforwardly to vector valued, finite
variance random variables by requiring that the covariance matrix E[µ(A)µ(B)]
is a σ-additive function on T with diagonal entries ordinary measures.

Given a simple function f =
∑n
i=1 ai1Ai

, one can define its µ-integral as:∫
f(x)dµ(x) =

n∑
i=1

aiµ(Ai)

which is an L2 random variable by definition of µ. Given the fact that random
variables in L2 are limits of such functions, one can define the µ-integral of an
arbitrary L2 random variable.

A very important isometry theorem holds for µ-integrals.

Theorem 2. Let f, g be L2 random variables. Then:

E

[∫
f(x)dµ(x)

∫
g(x)dµ(x)

]
=

∫
f(x)g(x)dm(x)

An important special case arises when µ is obtained from a left mean-square
continuous process F with orthogonal increments. In such a case, one can
construct µ on intervals [a, b[ by µ([a, b[) = F (b) − F (a) and extend to the
Borel σ algebra on R. The resulting µ-integral is a stochastic Stieljes integral.
Extension to Rd can be done component-wise, using independent processes in
each coordinate and take as the stochastic measure of rectangle the product
of the stochastic measures of its sides. Itô integral is recovered when F is the
Wiener process, the theorem 2 being the Itô isometry.

Theorem 3. Let X be an complex stochastic process on (Ω, T , P ) with a well
defined covariance function CX . If it exists a measure space (A,A,m) and
measurable functions g : Ω×A→ C such that:

∀(ω1, ω2) ∈ Ω2, CX(ω1, ω2) =

∫
g(ω1, x)g(ω2, x)dm(x)

Then it exists a stochastic orthogonal measure µ on T with structure measure
m such that almost surely:

∀ω ∈ Ω, X(ω) =

∫
g(ω, x)dµ(x)
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The theorems extends to vector-value stochastic processes (see [4]).
The following special case will be the one used in the sequel:

Theorem 4. Let X be a complex vector valued continuous, stationary random
process defined on R with zero mean. Then it exists a vector-valued stochastic
orthogonal measure µ such that almost surely:

X(t) =

∫
eitξdµ(ξ)

2.3. Principles of gaussian fields simulation

If C is the covariance function of the field that must be simulated, then it
can be written according to 1 as:

[∀x, y ∈ Rd, C(x, y) =

∫
Rd

exp(i〈x− y, ξ〉)dF (ξ)

and if µ is absolutely continuous with respect to the Lebesgue measure as:

[∀x, y ∈ Rd, C(x, y) =

∫
Rd

exp(i2π〈x− y, ξ〉)θ(ξ)dξ (3)

with θ a density. Let Z be the centered random field given by:

Zx =

∫
Rd

exp(i2π〈x, ξ〉)θ1/2(ξ)dBξ (4)

with Bξ the d-dimensional complex Wiener process. By the Ito isometry it
comes;

E[ZxZy] =

∫
Rd

exp(i〈x, ξ〉) exp(i〈y, ξ〉)θ(ξ)dξ (5)

=

∫
Rd

exp(i2π〈x− y, ξ〉)θ(ξ)dξ = C(x, y) (6)

Finally, the process Zx + µ(x) has covariance C and mean µ as required.
For numerical simulations, it is needed to generate samples of the above

stochastic processes at fixed positions, that may be done using a very simple
approximation of the integral as a finite sum. First of all, the domain of in-
tegration has to be reduced to a bounded region Ω of Rd in order to make it
amenable to numerical implementation. Since in the spectral representation the
density θ is even, it makes sense to let Ω be a product of centered rectangles:
Ω =

∏d
i=1[−ai, ai] (here d = 2 or d = 3). An elementary cell in the grid, Ck,

indexed by the vector k = (k1, . . . , kd) with integer coordinates, will be written
accordingly as:

Ck =

d∏
i=1

[ξik, ξ
i
k+1[
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where for each i, −ai = ξi0 < ξi1 < · · · < ξiNi
= ai is a subdivision of the interval

[−ai, ai]. Please note that the index coordinates k1, . . . , kd are for each i in the
set 0, . . . , Ni − 1. The discretization of the integral in (4) over the partition
given by the cells Ck using the rectangle quadrature formula gives:

Zx =

N0−1,...,Nd−1∑
k1=0,...,kd=0

exp (i2π〈x, ξk1,...,kd〉) θ1/2(ξk1,...,kd)Vk1,...,kd (7)

with:

Vk1,...,kd =

d∏
i=1

(
Wi(ξ

i
ki+1

)−Wi(ξ
i
ki)
)

(8)

In the computation of the volume element (8), W1, . . . ,Wd are independent
one-dimensional Wiener processes. Due to the fact that Wi has normally dis-
tributed increments, it appears that Vk1,...,kd follows a d-dimensional centered
Gaussian distribution with diagonal covariance matrix and variance ξiki+1

− ξiki
in dimension i: generating samples according to such a law is easily done using
for example the Box-Muller algorithm [5].

In practice, only regular grids are used, and we may further assume that
discretization steps are equal to a fixed value δ in each direction. The random
number generator is then calibrated once for all to draw samples according to
a N (0, δ). Please note that the algorithm takes place in the Fourier domain,
so characteristic dimensions must be inverted when going to the space domain,
as it will be made more precise in the sequel, when dealing with numerical
implementation.

2.4. Finding a covariance function

Model covariance functions must comply with the requirements already men-
tioned above, namely be a symmetric and of positive type function. A simple
approach is to fit a standard function belonging to this class on measured data.
Classical choice are exponential functions, either in spatial or the Fourier do-
main: in such a case the transformed function in the dual domain will be a
slowly decreasing mapping, behaving roughly as ‖ • ‖−2 at infinity. Another
option is to use a gaussian function, that is of positive type and exhibits fast
decrease in both the spatial and Fourier domain. Simulated fields with gaussian
covariance functions are given in figures.

A more satisfying approach will be to start with real observations then esti-
mate directly the covariance from them. However, the resolution of the available
meteorological models, especially at the cruise altitude of commercial airliners,
is a major issue, so that its implementation is postponed to a future work.

3. Airport and ATC delays: a statistical study

For the purpose of the STARGATE project, only a coarse modeling is needed
for the airport delays, as simulations involving ground side are done at a strate-
gical time horizon, namely weeks to days from real departure dates. Given the
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uncertainties on the weather at this time scale, only very conservative plannings
may be designed, that will serve as a basis for reference business trajectories ne-
gotiation. A statistical study was conducted on sample data coming from flight
plans data in France over the years 2012-2015. A python parser was designed in
order to transform the original data in COURAGE format (used by the french
civil aviation authorities) into a csv file readable in R. The code is made avail-
able at the project website [6]. A simple pre-processing step is needed to get rid
of aberrant values due to flights erroneously classified on a day, while departing
one day before or after. This situation occurs on long-haul flights when part of
the trajectory is made over the french airspace, but departure or arrival take
place on another day. All flights with high delays are thus processed in order
to check for such an event and are discarded from the initial set of samples.
Furthermore, negative delays may occur but are uncommon and not useful for
the application in mind: only flights with positive ones have been retained in
the final sample. The density histogram on the cleaned data is shown on figure
(3) From classical queuing theory, it is common to fit an exponential distribu-
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Fig. 3. Density of delays

tion on delays. Based on the histogram, other candidates are the Weibull and
gamma distributions. Using the function fitdistr from the R package MASS,
the maximum likelihood estimates in table 1 were found. The resulting densities
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Distribution parameters
Exponential rate = 3.85e-4
Gamma shape = 1.47, rate = 5.66e-4
Weibull shape = 1.13, scale = 2730

Table 1: Maximum likelihood parameters estimates

are plotted against the sample histogram on figure (4) Only the initial part of
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Fig. 4. Maximum likelihood fits

the curve makes a real difference, especially for the exponential distribution that
will not vanish at the origin. For the simulation purposes and since plausible
delays are to be generated, the exponential distribution was retained, although
not the best fitted to observations. The reasons for such a choice are:

• The exponential distribution yields easier theoretical derivations. It is not
a real issue for simulations, but the stochastic delay model is intended to
be used also for resilient automatic conflict resolution algorithms. In this
context, the ability to derive provable results is mandatory.

• The initial part of the empirical histogram corresponds to small delays
which are often inaccurately reported. It makes no real difference from an
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operational point of view to assume that very small delays exist.

The well known absence of memory of the exponential law is questionable in the
context of airport or ATC delays as one can expect them to be highly correlated
in time. This is true at small time scales, say hours, but no longer verified at
the larger time horizons considered in the present work.

The generation of exponentially distributed values is easy using either a
transformation or the fast ziggurat algorithm.

4. Numerical implementation

The purpose of this section is to detail the way random wind field are gen-
erated. It is split into two parts: acquisition of weather data, with an emphasis
on publicly accessible sources and stochastic simulation.

4.1. Weather data

The overall simulation process starts with an prior information about the
deterministic component of the field. It is available from weather services as a
grid of values computed from a numerical model. Depending on the reference
time, real measurements may be part of the data, but will not cover the entire
grid: an interpolation is realized implicitly by the model used. The french
weather agency provides two ways for accessing the data:

• Direct download of files encoded in the GRIB format [7].

• Access through a web service complying with the European INSPIRE
directive [8].

The highest resolutions can be obtained only using the first procedure. The
table (2) summarizes the data downloadable with the associated grid spacing
and coverage, expressed in latitude-longitude coordinates. Nearly all atmo-

Area grid step model coverage (lat-lon)
Europe 0.1◦ ARPEGE 72N 20N 32W 42E
Globe 0.5◦ ARPEGE World
France 0.01◦ AROME 55.4N 37.5N 12W 16E
France 0.025◦ AROME 53N 38N 8W 12E

Table 2: Weather data downloadable from Meteo France.

spheric parameters are available. The complete description of the AROME and
ARPEGE models is available at [9]. The figure (5) is an example of wind data
acquired from the 0.01◦ AROME model.

Unfortunately, high resolution data cannot be accessed from the web service
at the time where this article was written, only the 2.5◦ world coverage was im-
plemented. It is expected that all models will be soon ported to this platform,
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Fig. 5. Wind v-component. 0.01◦ resolution

which will then become the preferred data source. Due to the resolution limita-
tions and the fact that fine step samples are needed to accurately implement the
random field generation, only the outputs from the AROME model were used
in the present work. The relevant atmospheric parameters were the u, v wind
components, associated respectively to projections onto local longitude and lat-
itude coordinates and with an altitude-pressure of 250 hPa, roughly equal to the
flight level 340, which is the mean cruise altitude for commercial aircraft (one
must note that resolution is reduced at this altitude compared to the original
0.01◦).

4.2. Gaussian field simulation

As indicated in section 2, simulation will be conducted by the mean of a spec-
tral representation. The fast Fourier transform (FFT) is an O(n log n) algorithm
for efficiently computing sums like the one appearing in (7). The software li-
brary used for that purpose is FFTW [10, 11], a very efficient implementation
that is able to operate on sequences of arbitrary lengths1.

Let us first recall the definition of a discrete Fourier transform (DFT), that
is computed by the FFT algorithm. Given a sequence x0, . . . , xN−1, its DFT is
the sequence x̂0, . . . , ˆxN−1 given by:

x̂k =

N−1∑
j=0

xje
−i2π jk

N (9)

Looking at the expression 9, it appears immediately that x̂k is a periodic
sequence, of period N . Furthermore, if the DFT is interpreted as an approxi-

1The original FFT algorithms requires lengths in powers of two
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mation of a Fourier integral, then the domain of integration has length 1, due
to the j/N appearing in the complex exponential. The inverse DFT is defined
pretty much the same way:

xk =
1

N

N−1∑
j=0

x̂je
i2π jk

N (10)

The DFT can be used to approximate an integral if considered as a Riemann
sum. In such a case, it is easy to see that if the points xj , j = 0 . . . N − 1
are considered as samples at positions jT/N in the interval [O, T [, so that the
time period is T , then the corresponding sample positions in the frequency do-
main are located at k/T, k = 0 . . . N − 1. Introducing the so-called sampling
frequency fs = N/T , the samples in the frequency domain are expressed as
kfs/N, k = 0 . . . N − 1. Going back to formula (8), the points ξij appearing in

the expression correspond to a subdivision of the interval [−f is/2, f is/2] where
f is is the sampling frequency in the dimension i (with corresponding number
of samples Ni). This fact is important and often overlooked: the frequency
domain depends on the sampling rate, and thus if the time (or spatial) inter-
val is fixed, on the number of discretization points. On the other hand, the
frequency resolution, that is the difference between two samples in the Fourier
domain depends only on T , the length of the time interval. As a consequence,
the respective variances of the Gaussian increments occurring in the expression
(8) are 1/Ti, where Ti is the length of the spatial domain in dimension i, and
are not dependent on the number of sampling points. The same remark applies
for the function θ appearing in (8) where care must be taken to use the points
ξi = (k − Ni/2)/Ti, k = 0 . . . Ni. When using the inverse DFT for comput-
ing, it is important to note that the term 1/N present in the expression must
be scaled out in order to get an approximate integral. Finally, the procedure
described above will generated a complex valued random field, which is not
needed in practice, unless one want to get in one step two independent samples.
It is possible to get a real valued field by generating only half of the Gaussian
random variables and taking the complex conjugate of them for the remaining
ones. Gathering things, a 2D-field generation algorithm on a evenly spaced grid
with Nx, Ny points in each coordinate, can be summarized as indicated below:
The algorithm 1 returns a field with energy proportional to the product fxfy.

This can be understood intuitively by recalling that the DFT approximates an
integral over [−fx/2, fx/2] × [−fy/2, fy/2]. If a unit energy is needed, then
an inverse scaling must be applied or a normalization performed: this last op-
tions is preferred as it removes any inaccuracy coming from the finite precision
computation of the FFT, at the expense of a higher computational cost.

5. Conclusion and future work

The present work describes means of simulating random events occurring in
the context of the air traffic system. ATC and airports delays can be modeled
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Algorithm 1 2D Gaussian field generation

Require: M is a Nx ×Ny complex matrix
Require: fx, fy are the respective sample frequencies in x, y
Require: θ is the required spectral density
Require: N(µ, σ) generates independent random normally distributed real

numbers with mean µ and variance σ
for i = 0 . . . Nx − 1 do

for j = 0 . . . Ny − 1 do
if i == 0 or j == 0 or i == Nx/2 or j == Ny/2 then . Endpoints

are handled differently: they have a vanishing imaginary part
<M(i, j)← N(0, fx ∗ fy)
=M(i, j)← 0

else
<M(i, j)← N(0, fx ∗ fy) ∗ θ1/2(ξi, ξj)
=M(i, j)← N(0, fx ∗ fy) ∗ θ1/2(ξi, ξj)

M(Nx − i,Ny − j) = M(i, j)
end if

end for
X ← Nx ∗Ny ∗ IFFT (M) . X is the generated real field

end for

on an exponential distribution, taking into account the large time horizon con-
sidered. For the meteorological uncertainties, a simple random Gaussian field
model is assumed. Generating such samples can be done efficiently by the mean
of fast Fourier transforms. An approach based on the spectral representation of
the processes and discretization of it in the Fourier domain is introduced, giving
final algorithms similar to the ones described in the literature, but relying on a
different principle. Due to the flexibility of the spectral representation, a future
work will investigate the use of alternative functions for the covariance expan-
sion. For example, wavelets may be considered to allow a multiscale generation
of fields, allowing different characteristic lengths to be considered.
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