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On the signed chromatic number of gridsI

Julien Bensmaila

aDepartment of Applied Mathematics and Computer Science
Technical University of Denmark

DK-2800 Lyngby, Denmark

Abstract

The oriented (resp. signed) chromatic number χo(G) (resp. χs(G)) of an undirected graph G,
is defined as the maximum oriented (resp. signed) chromatic number of an orientation (resp.
signature) of G. Although the difference between χo(G) and χs(G) can be arbitrarily large, there
are, however, contexts in which these two parameters are quite comparable.

We here compare the behaviour of these two parameters in the context of (square) grids. While
a series of works have been dedicated to the oriented chromatic number of grids, nothing was known
about their signed chromatic number. We study this parameter throughout this paper. We show
that the maximum signed chromatic number of a grid, lies in between 7 and 12. We also focus on
2-row and 3-row grids, and exhibit bounds on their signed chromatic number, some of which are
tight. Although our results indicate that the oriented and signed chromatic numbers of grids are,
in general, close, they also show that these parameters may differ, even for easy instances.

Keywords: signed chromatic number, oriented chromatic number, grids

1. Introduction

Colouring problems are among the most important problems of graph theory, as, notably, they
can model many real-life problems under a graph-theoretical formalism. In its most common sense,
a colouring of an undirected graph G refers to a proper vertex-colouring, which is a colouring of
V (G) such that every two adjacent vertices of G get assigned distinct colours. Many variants of
this definition have been introduced and studied in the literature, including variants dedicated to
augmented kinds of graphs, which are of interest in this paper.

Namely, our investigations are related to two kinds of augmented graphs, called oriented graphs
and signed graphs. An oriented graph

−→
G is basically obtained from an undirected simple graph

G, by orienting every edge uv either from u to v (resulting in an arc −→uv), or conversely (yielding
an arc −→vu). We sometimes also call

−→
G an orientation of G. Now, from G, we can also get a

signed graph (G, σ), by assigning a sign σ(uv), being either − (negative) or + (positive), to every
edge uv of G. We also call (G, σ) a signature of G. Signed graphs generally come along with
a resigning operation, which we will not consider herein. So, though our signed graphs are thus
nothing but 2-edge-coloured graphs, we here stick to the signed graphs terminology, which we find
more convenient in our context.

As undirected graphs, oriented and signed graphs can as well be coloured in many different ways.
We herein consider those colouring variants arising from the homomorphism definition of colourings.
Indeed, a k-colouring φ of an undirected graph G can as well be regarded as a homomorphism from
G to Kk, the complete graph on k vertices, that is, a mapping φ : V (G)→ V (Kk) preserving the
edges (i.e. for every edge uv of G, we have that φ(u)φ(v) is an edge of Kk). Graph homomorphisms
can quite naturally be derived for oriented and signed graphs as well (i.e. we want the edge
orientations and signs, respectively, to be preserved as well), yielding, in turn, colouring variants
for oriented and signed graphs, which are precisely the variants we consider here. These variants,
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out of the homomorphism terminology, can be defined as follows. A colouring φ of an oriented
graph is a proper colouring, such that, for any two arcs −−→u1v1 and −−→u2v2, if φ(u1) = φ(v2), then
φ(v1) 6= φ(u2). Analogously, a colouring φ of a signed graph respects that, for any two edges u1v1
and u2v2 with the same sign, if φ(u1) = φ(v2), then φ(v1) 6= φ(u2).

Usually, the main objective, given a colouring notion, is to find a colouring of a graph using
the least possible number of colours. For an undirected graph G, the least number of colours in
a colouring is called the chromatic number of G, commonly denoted by χ(G). Concerning the
aforementioned colouring notions for oriented and signed graphs, we call the associated chromatic
parameters the oriented chromatic number and signed chromatic number, respectively, and denote
them by χo(

−→
G) and χs((G, σ)), respectively, for a given oriented graph

−→
G and a given signed graph

(G, σ), respectively. The χo and χs parameters can also be derived for undirected graphs: for an
undirected graph G, we set χo(G) as being the maximum value of χo for an orientation of G, while
we set χs(G) as the maximum value of χs for a signature of G. In other words, χo(G) and χs(G)
indicate whether G is the underlying graph of oriented or signed graphs needing many colours to be
coloured. For more details on these two chromatic parameters, we refer the interested reader to the
recent survey [5] by Sopena dedicated to the oriented chromatic number, and to the Ph.D. thesis [4]
of Sen, which is dedicated, in particular, to both the oriented and signed chromatic numbers.

Our investigations, in this paper, are motivated by the general relation between χo(G) and
χs(G) for a given undirected graph G. Intuitively, one could expect these two parameters to be
close somehow, as oriented graphs and signed graphs are rather alike notions: in both an orientation
and a signature of G, every edge basically has one of two possible “states” (being oriented in one
way or the other, or being positive or negative). From a more local point of view, though, an
oriented edge and a signed edge are perceived differently by their two ends. In light of these two
points, it thus appears legitimate to wonder whether oriented and signed graphs, in some particular
contexts, have comparable behaviours. This aspect was notably investigated by Sen in his Ph.D.
thesis [4].

In general, it has to be known that, for a given undirected graph G, the difference between χo(G)
and χs(G) can be arbitrarily large, as noted by Bensmail, Duffy and Sen in [1]. A natural arising
question, is thus whether this behaviour is rather systematic, or can be observed for a restricted
number of graph classes only. Towards this question, we here focus on the class of (square) grids,
where the grid G(n,m), with n rows and m columns, is defined as the graph being the Cartesian
product of the path with order n and the path with order m. While, to the best of our knowledge,
nothing is known about the signed chromatic number of grids, a series of works, namely [2, 3, 6],
can be found in the literature on the oriented chromatic number of these graphs. In brief words,
these works have (1) pointed out that the maximum oriented chromatic number of a grid lies in
between 8 and 11, and have (2) exhibited the exact oriented chromatic number of grids with at
most four rows. More details on these results will be given throughout this paper, as they connect
to our investigations.

We thus initiate the study of the signed chromatic number of grids, our main objective being
to compare how close the oriented and signed chromatic numbers of these graphs are. Prior to
present our results, we first introduce, in Section 2, some definitions and terminology that are used
throughout this paper. We then start, in Section 3, by providing a general constant upper bound
on the signed chromatic number of grids. Namely, we prove that χs(G(n,m)) ≤ 12 holds for every
n,m ≥ 1. We then exhibit, in Sections 4 and 5, lower bounds on the signed chromatic number of
grids, by focusing on signed grids with at most three rows. In particular, we point out that some
signed 3-row grids cannot be coloured with less than 7 colours. We also provide refined bounds on
the signed chromatic number of 2-row and 3-row grids, our bounds for 2-row grids being sharp. We
finally conclude this paper by gathering, in Section 6, our results, and discussing how the oriented
and signed chromatic numbers seem to behave for grids.

2. Definitions and terminology

Throughout this paper, we use σ to refer to the implicit signature function of any signed graph.
Let G be a signed graph, and A be a signature of some graph. By an A-colouring of G, we refer
to a homomorphism from G to A. We also say that G is coloured by A. To stick to the colouring
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point of view, the vertices of any colouring graph A are generally represented, in our proofs, by
integers 0, ..., |V (A)| − 1, while, to avoid any misleading terminology, the edges of A are written
under the form {α, β}. In that spirit, we denote k-paths (i.e. paths of length k) of A under the
form (α1, ..., αk+1), where α1, ..., αk+1 are the consecutive vertices of the path. Similarly we denote
by (α1, ..., αk, α1) any k-cycle, i.e. cycle of length k. Any signed path or cycle is said alternating,
if no two of its consecutive edges have the same sign.

Signed graphs that can colour all signed graphs among a family, should, intuitively, have a
rather “regular” and “symmetric” structure, with convenient properties. In the context of colouring
of oriented graphs, examples of such nice oriented graphs include circulant oriented graphs, which
are defined as follows. The circulant oriented graph C(n, S), where n ≥ 1 and S ⊆ {1, ..., n − 1},
is the oriented graph on n vertices 0, ..., n− 1, in which, for every j ∈ S and i ∈ {0, ..., n− 1}, the
arc (i, (i+ j) (mod n)) is present1. In some sense, set S “generates” the arcs of C(n, S).

Our upper bounds in this paper, are established from colourings by signed graphs which are
inspired from circulant oriented graphs, which we call circulant signed graphs. The definition is
as follows. The circulant signed graph C(n, S) is the signature of Kn obtained by denoting by
0, ..., n− 1 the vertices, then, for every j ∈ S and i ∈ {0, ..., n− 1}, letting (i, (i+ j) (mod n)) be
a positive edge, and, eventually, letting all other edges being negative. This time, set S is used to
generate the positive edges of C(n, S).

3. A general upper bound

The only known upper bound on the oriented chromatic number of grids was exhibited by
Fertin, Raspaud and Roychowdhury, who proved in [3] that χo(G(n,m)) ≤ 11 holds for every
n,m ≥ 1. In this section, we prove that, for every grid G = G(n,m), we have χs(G) ≤ 12. We
first prove the upper bound of 13 using a somewhat simpler method, so that the reader gets a
first idea of our proof scheme. The upper bound of 12 will then be obtained by using more refined
arguments.

Our upper bound of 13 follows from the following signed version of the method described in [3].

Proposition 3.1. Suppose we have a signed graph A such that, for every two distinct vertices u, v
of A, and for any every {s1, s2} of {−,+}2, there exist two distinct 2-paths uw1v and uw2v in A
such that σ(uw1) = σ(uw2) = s1, σ(w1v) = σ(w2v) = s2. Then every signed grid is A-colourable.

Proof. We describe how to obtain an A-colouring φ of any signed grid G, by extending φ from rows
to rows. By the assumption on A, there is, in A, an alternating 4-cycle C. Since every signed path
can clearly be C-coloured, there is a C-colouring, hence an A-colouring, φ of the first row of G.

Now assume, for some i, that φ is a partial A-colouring of all vertices from the first row to the
(i− 1)th row of G. Assuming the vertices of the ith row are consecutively denoted by b1, ..., bn (b1
being in the first column), we extend φ to these vertices following the order given by their indexes.

Denote by a1, ..., an the vertices from the (i − 1)th row of G, where ajbj is an edge for every
j = 1, ..., n. When colouring a vertex bj , we of course have to make sure that φ(bj) 6= φ(bj−1) (if
this vertex exists), and that φ(bj) 6= φ(aj). We also note that, if aj+1 exists, then bj+1 cannot be
coloured if φ(bj) = φ(aj+1) and σ(bjbj+1) 6= σ(aj+1bj+1). One solution to avoid this technicality,
is to always request that φ(bj) 6= φ(aj+1), which we will maintain at any step of the upcoming
colouring procedure.

We are now ready to describe how to extend φ to b1, ..., bn. By the assumption on A, every
vertex of A is incident to at least two positive edges, and incident to at least two negative edges.
Hence, we can colour b1 so that φ(b1) 6= φ(a1), φ(a2).

We now go to the general case, i.e. we consider the case where all vertices b1, ..., bj−1 have been
coloured, for some j − 1 ≥ 1, and consider bj . Then we can easily extend φ to bj , in the following
way. Recall that φ(bj−1) 6= φ(aj). By the property of A, applied to u = φ(bj−1), v = φ(aj),
s1 = σ(bj−1bj), s2 = σ(ajbj), there are at least two possible colours that can be assigned to bj .
By assigning to bj a colour different from φ(aj+1) (if this vertex exists), we maintain our colouring

1In order to avoid digons, one should request S to not include two elements summing up to n.
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Figure 1: The circulant signed graph C(12, {1, 2, 5}). Black (resp. gray) edges are positive (resp. negative) edges.

condition, and hence make sure that the colouring process can be pursued. The ith row of G can
hence be coloured, thus all rows of G, concluding the proof.

In order to get an upper bound on the signed chromatic number of all grids, we hence just have to
exhibit signed graphs A, of lowest possible order, having the property described in Proposition 3.1.
Using a computer program, we have generated all circulant signed graphs C(n, S) with small order
n, in order to find a smallest one having the desired property. Our algorithm is the following. For
any fixed n, we thus want to generate every circulant signed graph on n vertices. To that aim,
we consider every subset S of {1, 2, ..., n − 1}, and build the graph A = C(n, S). This can be
done by starting from A being the empty graph on n vertices, then adding the positive edges of A
(as defined by S), and finally adding all missing edges as negative edges. To then check whether
A has the property described in Proposition 3.1, we just have to consider all distinct vertices
u, v ∈ {0, ..., n− 1}, all combinations of two signs s1, s2 ∈ {−,+}, and count, in A, the number of
distinct vertices w such that σ(uw) = s1, σ(wv) = s2. If A has the desired property, this number
should always be at least 2.

The main conclusion of our computation, is the following.

Proposition 3.2. The smallest circulant signed graphs C(n, S) having the property described in
Proposition 3.1, have n = 13. An example of a such graph, is C(13, {1, 3, 4}).

Combining Propositions 3.1 and 3.2, we directly get the following.

Theorem 3.3. For every n,m ≥ 1, we have χs(G(n,m)) ≤ 13.

We now improve the bound in Theorem 3.3 down to 12, still by considering colourings by
circulant signed graphs. Following Proposition 3.2, we unfortunately cannot find a circulant signed
graph on 12 vertices having the nice property described in Proposition 3.1. We however show that
such signed graphs having “almost” this property, can be used to colour any signed grid, provided
we are a bit more careful when assigning the colours.

The circulant signed graph from which our bound is obtained, is C(12, {1, 2, 5}) (depicted in
Figure 1). To show that every signed grid can be coloured by C(12, {1, 2, 5}), we essentially proceed
as in the proof of Proposition 3.1, namely we colour the rows one after another, from the first vertex
to the last vertex. As explained above, though, this time the colours should be cautiously chosen,
as otherwise it may occur, during the course, that no colour is available for some vertex.

To overcome this issue, we proceed as follows. Assume all vertices from the first row up to the
(i− 1)th row of a signed grid G, have been successively coloured by C(12, {1, 2, 5}) in an arbitrary
way (resulting in a partial colouring φ), and that we are now considering an extension of φ to the
ith row. Assume a1, ..., an and b1, ..., bn denote the successive vertices of the (i− 1)th and ith rows,
respectively. Prior to actually assigning a colour by φ to each bj , we will first iteratively compute
a set ψ(bj) of possible colours that can be assigned to bj , where these possible colours depend on
the set ψ(bj−1) (if this vertex exists), and on some of the φ(aj)’s.
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We call ψ : V (G) → P({0, ..., 11}) a choice function. Formally, its definition is that, for every
j = 1, ..., n and every αj ∈ ψ(bj) 6= ∅, there are α1 ∈ ψ(b1), ..., αj−1 ∈ ψ(bj−1) such that, by setting
φ(b1) = α1, ..., φ(bj−1) = αj−1 and φ(bj) = αj , we obtain a correct extension of φ to the first j
vertices of the ith row of G. In other words, for every value αj in ψ(bj), there are possible correct
colours that can be assigned to b1, ..., bj−1, i.e. colours indicated by ψ, which eventually allow us
to correctly colour bj with colour αj . Note that this definition implies that if ψ(bn) 6= ∅, then a
colouring of the ith row of G can be obtained.

It turns out that, assuming the (i − 1)th row of G is arbitrarily coloured by C(12, {1, 2, 5}), a
such choice function ψ for the ith row can always be obtained. We state this result right away, so
that we can then explain how ψ can lead to the desired extension of φ to the ith row.

Proposition 3.4. Let G be a signature of G(2, n), whose first-row vertices are successively denoted
by a1, ..., an, while its second-row vertices are denoted by b1, ..., bn, so that ai, bi are the vertices of
the ith column for every i = 1, ..., n. Then, for every colouring φ by C(12, {1, 2, 5}) of the ai’s,
there exists a choice function ψ of the bi’s, such that every ψ(bi) is non-empty.

With Proposition 3.4 in hand, we can finally prove that every signed grid is colourable by
C(12, {1, 2, 5}), and, hence, that the signed chromatic number of every grid is at most 12.

Theorem 3.5. For every n,m ≥ 1, we have χs(G(n,m)) ≤ 12.

Proof. We actually prove that every signed grid is colourable by C(12, {1, 2, 5}). The proof goes
exactly the same way as that of Proposition 3.1. As a base case, we note that C(12, {1, 2, 5}) has
alternating 4-cycles, such as (0, 1, 4, 3, 0), so the first row of any given signed grid G can be coloured
by C(12, {1, 2, 5}).

Assume now that all rows of G up to the (i − 1)th one have been coloured by C(12, {1, 2, 5}),
resulting in a partial colouring φ, and consider the ith row, with consecutive vertices b1, ..., bn.
Denote by a1, ..., an the consecutive vertices of the (i − 1)th row of G, so that aibi is an edge for
every i = 1, ..., n. According to Proposition 3.4, no matter how the aj ’s are coloured, there is a non-
trivial choice function ψ of the bj ’s. In particular, every ψ(bj) is non-empty. By definition, there
is hence a sequence α1, ..., αn ∈ {0, 1, ..., 11} of colours, such that αj ∈ ψ(bj) for every j = 1, ..., n,
and, by setting φ(bj) = αj for every j = 1, ..., n, we get a correct extension of φ to the bj ’s. This
proves the inductive step, and hence concludes the proof.

The remaining task, is thus to prove Proposition 3.4.

Proof of Proposition 3.4. We determine some of the values in the choice function ψ(bi) of every
bi, one after another, starting from b1, and show, in particular, that none of the ψ(bi)’s is empty.
Throughout the proof, we call any value in a set assigned by ψ a choice. Furthermore, we say that
a choice at a vertex bi is clean, if this choice is different from φ(ai+1) (if this vertex exists). So,
out of all choices in any ψ(bi), all but at most one of them are clean.

The proof goes as follows. Assuming we have determined part of the choice functions of all
vertices up to, say, bi, and ψ(bi) was shown to include at least two clean choices, we determine
part of the choice functions of the vertices following bi, until either 1) we determine part of ψ for
all remaining vertices of the row, or 2) we reach a vertex bj , for which ψ(bj) is shown to have at
least two clean choices. In the latter case, we can then reapply the same procedure, but with bj
instead of bi, and pursue the process until all ψ(bi)’s are shown to be non-empty.

We start with b1. Since all vertices of C(12, {1, 2, 5}) are incident to at least five negative edges
and five positive edges, ψ(b1) includes at least five choices (deduced from φ(a1)), at least four of
which are clean. It now suffices to prove the claim above, with bi = b1.

By the assumption, ψ(b1) includes at least two clean choices α1, α2. We note that if, by virtually
assigning colour α1 or α2 to b1, there are, regarding φ(a2), at least three possible colours available
for b2, then we are done, as, then, ψ(b2) would include at least three choices, at least two of which
are clean. We may thus assume that, by virtually colouring b1 with α1 or α2, at most two choices
are available at b2. Actually, since α1 6= α2, there cannot be less than two such choices, according
to the following property of C(12, {1, 2, 5}), which we have checked using a computer.
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Figure 2: A 4-colouring of a signature of G(2, 2) (left), a 5-colouring of a signature of G(2, 3) (middle), and the
circulant signed graph C(5, {1}) (right). Black (resp. gray) edges are positive (resp. negative) edges.

Observation 3.6. The cases where a pair of vertices of C(12, {1, 2, 5}) is, for a fixed signature, not
joined by at least two 2-paths with that signature, are when 1) the signature includes two negative
edges, and 2) the pair is of the form {α, α+ 4} or {α, α− 4}, where the operations are understood
modulo 12. Furthermore, for such signature and pair, the only joining 2-paths in C(12, {1, 2, 5})
are (α, α+ 8, α+ 4) and (α, α− 8, α− 4), respectively.

Let thus β1, β2 be two choices at b2. If these two choices are clean, then we are done. Assume
thus that one of these two choices, say α1, is not clean. Due to the symmetries of C(12, {1, 2, 5}),
we may assume, without loss of generality, that φ(a3) = 0, and hence that α1 = 0. We may, as
well, assume that σ(b2b3) 6= σ(a3b3), as, otherwise, by virtually colouring b2 with colour 0, we
would get at least five choices at b3, and, hence, at least four clean choices.

According to Observation 3.6, since σ(b2b3) 6= σ(b3a3), we get, by virtually colouring b2 with
colour α2, at least two choices at b3. If at least three choices are available, then we are done,
according to the same reasons as above. So we may assume that there are only two choices γ1, γ2
at b3, when b2 is virtually coloured with colour α2. This situation being exactly the same as earlier,
it can be treated similarly. Namely, we can assume that one of γ1, γ2, say γ1, is not clean, hence that
φ(a4) = γ1. Furthermore, we may assume that σ(b3b4) 6= σ(a4b4). Under those assumptions, we
again deduce that, by virtually colouring b3 with colour γ2, there are at least two choices available
at b4. And so on.

By repeatedly applying the above procedure, we either run into a bi such that ψ(bi) includes
at least two clean choices, or successively reveal, until we reach the last vertex of the row, that at
least two choices are available, one of which is not clean, at every vertex. We hence end up with ψ
being non-empty for every bi, as claimed.

4. Signed grids of the form G(2, n)

The oriented chromatic number of 2-row grids was fully determined by Fertin, Raspaud and
Roychowdhury in [3], wherein it was proved that χo(G(2, n)) = 6 for every n ≥ 4, while G(2, 2)
and G(2, 3) have oriented chromatic number 4 and 5, respectively. We here completely determine
the signed chromatic number of 2-row grids, by mainly showing that χs(G(2, n)) is bounded above
by 5 for every n ≥ 3. Hence, for this type of grids, the signed chromatic number is always smaller
than the oriented chromatic number.

We start off by noting that G(2, 2), which is the cycle of length 4, admits a signature under
which each of its vertices must be coloured with a unique colour.

Proposition 4.1. We have χs(G(2, 2)) = 4.

Proof. Consider the signature of G(2, 2) depicted in Figure 2 (left). Clearly, in this signed graph,
every two non-adjacent vertices are joined by an alternating 2-path. It hence cannot be coloured
with less than |V (G(2, 2))| colours, implying that χs(G(2, 2)) = 4.

SinceG(2, 2) is a subgraph ofG(2, n) for every n ≥ 2, by Proposition 4.1 we get that χs(G(2, n)) ≥
4 for every n ≥ 2. In the following, we prove that, actually, χs(G(2, n)) ≥ 5 holds for every n ≥ 3.

Proposition 4.2. We have χs(G(2, 3)) ≥ 5.
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Figure 3: Examples of the 3-paths of C(5, {1}), claimed in the proof of Observation 4.4, for (u, v) = (0, 1) (top),
and (u, v) = (0, 2) (bottom). Black (resp. gray) edges are positive (resp. negative) edges.

Proof. To be convinced of this statement, consider the signature of G(2, 3) depicted in Figure 2
(middle), and assume, for contradiction, that it admits a 4-colouring φ. We note that the vertices
a1, a2, b1, b2 form exactly the signature of G(2, 2) described in the proof of Proposition 4.1. As
explained earlier, these four vertices must be assigned different colours by φ. Assume φ(a1) = 0,
φ(a2) = 1, φ(b1) = 2 and φ(b2) = 3 without loss of generality. Now, because a3 is adjacent to
a2, and a3 is joined by alternating 2-paths to both a1 and b2, clearly we must have φ(a3) = 2.
But now, b3 cannot be assigned any of colours 1, 2 or 3 for the same reasons, while it cannot be
assigned colour 0, since a1b1 and a3b3 have different signs, and φ(a3) = φ(b1) = 2. So b3 cannot
be assigned a colour by φ, contradicting our initial hypothesis.

Again, since G(2, 3) is a subgraph of G(2, n) for every n ≥ 3, Proposition 4.2 implies that
χs(G(2, n)) ≥ 5 holds for every n ≥ 3. Actually, it turns out that five colours are sufficient to
colour any signature of any 2-row grid.

Proposition 4.3. For every n ≥ 1, we have χs(G(2, n)) ≤ 5.

Proof. We actually show that every signature of G(2, n), with n ≥ 1, can be coloured by the
circulant signed graph C(5, {1}) (see Figure 2 (right)). To that aim, let us first point out the
following property of C(5, {1}).

Observation 4.4. For every two distinct vertices u, v of C(5, {1}), and for every set {s1, s2, s3}
of {−,+}3, there exists a 3-path uw1w2v in C(5, {1}) such that σ(uw1) = s1, σ(w1w2) = s2,
σ(w2v) = s3.

Proof. Due to the signature-preserving automorphisms of C(5, {1}), it should be clear that we may
restrict our attention to the cases (u, v) = (0, 1) and (u, v) = (0, 2). Furthermore, only six of the
sets among {−,+}3 have to be considered. To see that the claim holds, refer to Figure 3, which
gathers examples of the claimed twelve 3-paths of C(5, {1}).

Back to the proof of Proposition 4.3, we now describe how to get a colouring φ by C(5, {1}),
of any signature G of G(2, n) with n ≥ 1. Let us denote by a1, ..., an and b1, ..., bn the consecutive
vertices of the first and second rows of G, respectively, where ai, bi are the vertices of the ith column
for every i = 1, ..., n. As a first step, we colour a1 and b1. For this purpose, we choose an edge
{α, β} of C(5, {1}) having sign σ(a1b1), and set φ(a1) = α and φ(b1) = β.

To complete the colouring by C(5, {1}), it now suffices to repeatedly apply the following proce-
dure. Assuming vertices ai−1 and bi−1 have been coloured in the previous step, we extend φ to ai
and bi. Let s1, s2, s3 be the signs of ai−1ai, aibi, bibi−1, respectively. According to Observation 4.4
(applied to u = φ(ai−1), v = φ(bi−1) and s1, s2, s3), there exists a 3-path (φ(ai−1), α, β, φ(bi−1)) in
C(5, {1}) whose edges have sign s1, s2, s3, respectively. By hence setting φ(ai) = α and φ(bi) = β,
we get an extension of φ to ai and bi.

From all of the previous results, we end up with the following characterization of the signed
chromatic number of 2-row grids.
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Theorem 4.5. We have:

• χs(G(2, 2)) = 4,

• χs(G(2, n)) = 5 for every n ≥ 3.

5. Signed grids of the form G(3, n)

The investigations on the oriented chromatic number of 3-row grids were initiated by Fertin,
Raspaud and Roychowdhury, who proved, in [3], that χo(G(3, 3)) = χo(G(3, 4)) = χo(G(3, 5)) =
6, while χo(G(3, n)) ∈ {6, 7} for every n ≥ 6. Later on, Szepietowski and Targan completely
determined, in [6], the values of χo(G(3, n)) for every n ≥ 6, by proving that χo(G(3, 6)) = 6, while
χo(G(3, n)) = 7 for every n ≥ 7.

Before presenting our results on 3-row grids, we first introduce some definitions and terminology
that are used throughout this section, and raise some comments that are important to understand
our investigations.

Whenever dealing with a (signed) grid G = G(3, n), we assume that its vertices are labelled by
a1, ..., an, b1, ..., bn and c1, ..., cn, where the ai’s are the consecutive vertices of the first row, the
bi’s are the consecutive vertices of the second row, and the ci’s are the consecutive vertices of the
third row. We also assume, for every i = 1, ..., n, that the vertices of the ith column are ai, bi, ci
(see Figure 4 (left) for an illustration).

Let A be a fixed signed graph, and assume now that G is a signed grid. In the sequel, we
will mainly colour G by extending an A-colouring φ from column to column, starting from the
first column. In doing so, for each column i, we get a set of possible triplets of colours, which are
3-element sets (α, β, γ) ∈ {0, 1, ..., |V (A)| − 1}3 such that, when extending φ to the ith column, we
can set φ(ai) = α, φ(bi) = β and φ(ci) = γ. Note that every triplet (α, β, γ) verifies β 6= α, γ.

When extending φ to the ith column of G, it turns out that the possible colours for ai, bi, ci,
i.e. the possible triplets (αi, βi, γi) of colours that can be assigned to this column, are highly
dependent of the triplet (αi−1, βi−1, γi−1) of colours assigned to the (i−1)th column. Also, assuming
φ(ai−1) = αi−1, φ(bi−1) = βi−1, φ(ci−1) = γi−1, the possible triplets (αi, βi, γi) depend on the set
of five edges {ai−1ai, bi−1bi, ci−1ci, aibi, bici}, which form a signed subgraph that we call a 2-comb.
Formally, a 2-comb, refers to a graph obtained from a path uw1w2w3v of length 4, by joining w2

to a new pendant vertex w. Under that labelling, we say that the 2-comb joins u,w, v, and call
w1w2w3 the spine of the 2-comb. We note that any (signed) 3-row grid can be obtained, starting
from a (signed) 2-path, by repeatedly joining a new (signed) 2-comb onto a (signed) 2-path (first
step) or the spine of a previous (signed) 2-comb (other steps).

Back to our context, the possible triplets (αi, βi, γi) for the ith column are precisely those 3-
element sets such that A has a 2-comb joining αi−1, βi−1, γi−1, with spine αiβiγi, and whose edge
signs are precisely the signs of the 2-comb joining the (i− 1)th and the ith columns of G.

5.1. Lower bounds
We start off by investigating general lower bounds on the signed chromatic number of 3-row

grids. As a starting point, we point out that, for some signatures of G(3, 3), at least six colours
are needed.

Proposition 5.1. We have χs(G(3, 3)) ≥ 6.

Proof. Let G be the signature of G(3, 3) depicted in Figure 4 (left), and assume, for contradiction,
that there is a signature A of K5 such that G admits an A-colouring φ.

We note that every two vertices of a2, b1, b3, c2 are joined by an alternating 2-path. For this
reason, all colours φ(a1), φ(a2), φ(b1), φ(b3), φ(c2) must be different. As in Figure 4 (left), let us
assume, without loss of generality, that φ(b2) = 0, φ(a2) = 1, φ(b3) = 2, φ(c2) = 3 and φ(b1) = 4.
This reveals that, in A, edges {0, 1} and {0, 4} are positive, while {0, 2} and {0, 3} are negative.

Now consider c3. Since b2 and c3 are joined by an alternating 2-path, we have either φ(c3) = 1
or φ(c3) = 4. At this point of the proof, we may assume that φ(c3) = 1. This reveals that, in A,
edge {1, 2} is negative, while {1, 3} is positive. Now consider c1. Since c1 is joined by an alternating
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Figure 4: A 6-colouring of a signature of G(3, 3) (left), and the circulant signed graph C(9, {2, 4}) (right). Black
(resp. gray) edges are positive (resp. negative) edges.

2-path to both b2 and c3, we must have φ(c1) = 2. Hence, edges {2, 3} and {2, 4} are negative in A.
For similar reasons, vertex a1 must receive colour 2 or 3 by φ. Actually, we cannot have φ(a1) = 2
since edge {1, 2} was shown to be negative in A. So, we have φ(a1) = 3.

We finally note that a3 cannot be coloured with either of colours 0, 1, 2, due to some edges or
alternating 2-paths of G. Furthermore, we cannot have φ(a3) = 3 since edge {2, 3} is negative
in A, or φ(a3) = 4 since edge {2, 4} is negative in A. Hence a3 cannot be assigned a valid colour
by φ, a contradiction.

It turns out that some signed 3-row grids need at least seven colours to be coloured. The
existence of such grids was attested by means of a computer, by employing the following arguments.

Roughly speaking, our method to show that a 7-chromatic signed grid exists, consisted in
showing the existence, for every signature A of K6, of a signed 3-row grid GA that is not A-
colourable. With such a signed grid in hand for every A, one can just imagine a big signed 3-row
grid including every of the GA’s, so that it cannot be coloured by any signature of K6. Our
method for showing the existence of such grids GA, was partly inspired from a computer-assisted
proof described in [2], which was used to exhibit oriented grids with large oriented chromatic
number.

So that our proof scheme could be used, a necessary ingredient was the explicit list L of all non-
isomorphic signatures of K6, out of the 215 possible signatures. To obtain L, we have proceeded
as follows. Assuming the vertices of K6 are denoted by 0, ..., 5, while each edge (i, j) is denoted by
ei,j (where i < j), we note that every signature A of K6 is uniquely identified by an integer

r(A)10 = (b(e0,1)b(e0,2)...b(e0,5)b(e1,2)...b(e1,5)b(e2,3)...b(e2,5)b(e3,4)b(e3,5)b(e4,5))2 ,

where b(ei,j) = 1 if ei,j is positive, and b(ei,j) = 0 otherwise. Furthermore, r(A) can easily be
computed for every A, and, vice-versa, we can easily reconstruct A from r(A).

Clearly, the signatures of K6 that are isomorphic to A, are obtained by preserving the edge
signs, but relabelling the vertices of A in every possible way. In other words, to every permutation π
of {0, ..., 5} corresponds a signature A′ of K6 which is isomorphic to A, and verifies r(A′) 6= r(A)
(unless π is the identity function). Using a computer, we could hence generate the indexes of the
non-isomorphic signatures of K6, basically by iterating through all indexes one after another (from
0 to 215 − 1), next deducing, at each step, the indexes of the signatures that are isomorphic to
the considered signature (by computing, for every permutation of the vertex set, the index of the
resulting graph), and, during the course, “marking” those indexes which have not been deduced
while treating a previous index. These marked indexes are basically our list L, as, from every index
r(A) in L, we can easily retrieve A by looking at the binary representation of r(A).

To reduce the list L, we also made use of the following observation. For a signature A of K6,
let A−1 be the signature being the inverse of A, namely the signature obtained by reversing all
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edge signs (all positive edges become negative, and vice-versa). Then we note that if a grid GA

cannot be A-coloured, then, by reversing all edge signs in GA, we obtain a grid GA−1 which cannot
be A−1-coloured. Hence, in L, we can as well keep only one of each r(A), r(A−1).

Implementing the above algorithm, we have ended up with a list of 78 non-isomorphic signatures
of K6 to consider. For every A of these signatures, we have verified the existence of GA, as follows.

Start from GA being a 2-path a1b1c1 with two positive edges, which will be the first column of
GA. Note that, since A is fixed, already there are some possible triplets (α1, β1, γ1) of colours that
can be assigned to a1, b1, c1, respectively, by an A-colouring φ of GA. We denote by C1 the set of
all these possible triplets. Now add a second column with vertices a2, b2, c2 to GA, by just joining
a1, b1, c1 by a signed 2-comb with spine a2b2c2, whose edges are signed in an arbitrary way. If
GA is A-colourable, then the set C2 of possible triplets (α2, β2, γ2) of colours that can be assigned
to a2, b2, c2, when extending φ, should be non-empty. More precisely, for a fixed signature of the
2-comb, and for every (α1, β1, γ1) ∈ C1, set C2 contains those triplets (α2, β2, γ2) such that A has
a signed 2-comb joining α1, β1, γ1, with the corresponding signature, and with spine α2β2γ2. It
is worth emphasizing the fact that the triplets in C2 are quite dependent of the signature of the
2-comb attached to the first column. By repeating this process (i.e. attaching a new signed 2-comb
to the last column of GA), we can get an arbitrarily long signed 3-row grid, and, for the specific
signatures of the used 2-combs, we can iteratively (i.e. on the fly) deduce the triplets of colours in
every Ci.

In order to get a signed 3-row grid that is not A-colourable, we just need to show that, for
specific signatures of the used 2-combs, there is an i such that Ci gets empty. The choice we made,
is to always sign the joining 2-combs, so that next set Ci is of minimum size. Implementing this
strategy through a computer program, we observed that, for every A of the 78 signatures of K6

in L, a non-colourable signed 3-row grid, with the edges from its first column being both positive,
can always be obtained by using at most five joining 2-combs. Hence, we verified the following.

Theorem 5.2. There exists a n0, such that for every n ≥ n0, we have χs(G(3, n)) ≥ 7.

5.2. Upper bounds
Our upper bounds on the signed chromatic number of 3-row grids, rely on the existence of circu-

lant signed graphs with properties analogous to that described in the statements of Proposition 3.1
and Observation 4.4 (but for 3-row grids).

We remind to the reader that, as described in the introduction of this section, we systematically
colour any signed grid from column to column, by essentially extending triplets of colours from
2-comb to 2-comb. In that spirit, the following property directly yields upper bounds on the signed
chromatic number of signed 3-row grids.

Proposition 5.3. Suppose we have a signed graph A such that, for every three distinct vertices
u, v, w of A, and for every set {s1, s2, s3, s4, s5} of {−,+}5, there exists, in A, a 2-comb, joining
u,w, v and with spine w1w2w3, such that σ(uw1) = s1, σ(ww2) = s2, σ(vw3) = s3, σ(w1w2) = s4,
σ(w2w3) = s5. Then every signed grid G(3, n) is A-colourable.

Proof. We prove by induction on n, the number of columns, that every signature G of G(3, n) can
be A-coloured, provided A has the desired property. In case n = 1, we note that G is actually
a signed path on two edges. Since, by our assumption on A, signed graph A has both positive
edges and negative edges, and has positive edges incident to negative edges, it should be clear that
a1, b1, c1 can be coloured.

Assume now that the claim is true for every n up to value i−1, and consider the case n = i. By
the induction hypothesis, there exists an A-colouring φ of the n− 1 first columns of G, which form
a signature of G(3, n− 1). We now extend φ the ith column, i.e. to the vertices ai, bi, ci. To that
aim, consider the signed 2-comb C of G joining ai−1, bi−1, ci−1 with spine aibici. According to the
initial assumption on A, no matter what the triplet (φ(ai−1), φ(bi−1), φ(ci−1)) is, and no matter
what the signs on the edges of C are, we can find, in A, a 2-comb joining φ(ai−1), φ(bi−1), φ(ci−1),
and with the same edge signs as C. Denote its spine by αiβiγi. Then we can simply extend φ to
ai, bi, ci, by setting φ(ai) = αi, φ(bi) = βi, φ(ci) = γi. This concludes the proof.
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Hence, by showing that a signed graph A with small order has the property described in
Proposition 5.3, we immediately get that every signed 3-row grid is A-colourable, thus that its
signed chromatic number is at most |V (A)|. Using again a computer, we have determined that the
smallest circulant signed graphs having that property, have order 10.

Proposition 5.4. The smallest circulant signed graphs C(n, S) having the property described in
Proposition 5.3, have n = 10. An example of a such graph, is C(10, {2, 4}).

From Propositions 5.3 and 5.4, we thus directly get the following.

Theorem 5.5. For every n ≥ 1, we have χs(G(3, n)) ≤ 10.

We now improve the upper bound in Theorem 5.5 down to 9, by showing that every signed 3-row
grid can be coloured by the circulant signed graph C(9, {2, 4}) (illustrated in Figure 4 (right)). The
colouring strategy we use, is again the column-to-column one that we have used earlier. We however
have to be more careful here, because, as indicated by Proposition 5.4, there are situations where
a colouring of the (i− 1)th column cannot be extended to the ith one, namely because C(9, {2, 4})
does not admit all possible kinds of signed 2-combs.

Following Proposition 5.4, we know that C(9, {2, 4}) has bad triplets, namely triplets (α, β, γ)
of colours such that C(9, {2, 4}) has no 2-comb, with a particular signature, joining α, β, γ. Hence,
when colouring a new column of a signed 3-row grid, we should avoid getting a bad triplet, as it
might then not be possible to extend the partial colouring to the next column.

Using a computer program to enumerate all 3-element sets of colours (α, β, γ) and, for ev-
ery signature, all signed 2-combs joining α, β, γ in C(9, {2, 4}), we came up with the following
characterization of the bad triplets in C(9, {2, 4}).

Observation 5.6. A triplet (α, β, γ) of C(9, {2, 4}) is bad, if and only if (β, γ) = (α + 2, α + 4),
(β, γ) = (α− 2, α− 4), (β, γ) = (α+ 3, α+ 6) or (β, γ) = (α− 3, α− 6), where the operations are
understood modulo 9.

When colouring a column, we should as well avoid using a non-bad triplet (α, β, γ) of colours
such that, for a particular fixed signature, all signed 2-combs with that signature, joining α, β, γ
in C(9, {2, 4}), have a bad spine, i.e. a spine α′β′γ′ such that (α′, β′, γ′) is bad. We call such a
triplet dangerous. Once again, the dangerous triplets of C(9, {2, 4}) can easily be generated using
a computer, and, hence, characterized.

Observation 5.7. A non-bad triplet (α, β, γ) of C(9, {2, 4}) is dangerous, if and only if (β, γ) =
(α + 2, α + 5), (β, γ) = (α − 2, α − 5), (β, γ) = (α + 2, α + 6), (β, γ) = (α − 2, α − 6), (β, γ) =
(α+ 3, α+ 5), (β, γ) = (α− 3, α− 5), (β, γ) = (α+ 4, α+ 6), or (β, γ) = (α− 4, α− 6), where the
operations are understood modulo 9.

One should of course be cautious with non-bad and non-dangerous triplets (α, β, γ) of colours
such that, for some signature, all signed 2-combs with that signature, joining α, β, γ in C(9, {2, 4}),
have a bad or dangerous spine. However, we checked, using a computer, that every non-bad and
non-dangerous triplet (α, β, γ) is good, in the sense that, in C(9, {2, 4}), for every signature there
is a signed 2-comb with that signature, joining α, β, γ, and with a good spine, i.e. a spine α′β′γ′
such that (α′, β′, γ′) is good.

Observation 5.8. Every non-bad and non-dangerous triplet is good.

We are now ready to improve the bound in Theorem 5.5.

Theorem 5.9. For every n ≥ 1, we have χs(G(3, n)) ≤ 9.

Proof. We actually prove, by induction on n, that every signature G of G(3, n) can be coloured
by C(9, {2, 4}), implying the result. The colouring strategy we use, is again the column-to-column
strategy that we have been using so far, but restricted to good triplets of colours. More precisely,
we show that the columns of G can be coloured one after another, in such a way that the triplets
of colours, assigned by the colouring φ, are all good.

As a base case, assume n = 1. In case a1b1 and b1c1 are both positive, we can set e.g. φ(a1) = 0,
φ(b1) = 4, φ(c1) = 0. If a1b1 and b1c1 are both negative, we can here set e.g. φ(a1) = 0, φ(b1) = 1,
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φ(c1) = 0. Finally, if, say, a1b1 is positive while b1c1 is negative, we can set e.g. φ(a1) = 0,
φ(b1) = 2, φ(c1) = 1. In every case, we get that (φ(a1), φ(b1), φ(c1)) is a good triplet, according to
Observation 5.8, which concludes this case.

Assume now that the claim is true for every n up to some value i − 1, and consider the next
step n = i. By the induction hypothesis, we can colour the i− 1 first columns of G, as they form
a signature of G(3, n − 1), in such a way that all triplets of colours are good. Let φ be such a
colouring. We now extend φ to the ith column of G, namely to its vertices ai, bi, ci, in a good way.
To that aim, consider, in G, the signed comb C joining ai−1, bi−1, ci−1 with spine aibici. According
to the definition of a good triplet, and because (φ(ai−1), φ(bi−1), φ(ci−1)) is good, there has to be,
in C(9, {2, 4}), a signed comb with the same edge signs as C, joining (φ(ai−1), φ(bi−1), φ(ci−1)),
and with a good spine αiβiγi, i.e. (αi, βi, γi) is a good triplet. So we can extend φ to ai, bi, ci
by just setting φ(ai) = αi, φ(bi) = βi, φ(ci) = γi. This proves the inductive step, and, hence, the
claim.

6. Conclusion

In this article, we have initiated the study of the signed chromatic number of grids, our main
goal being to compare how the oriented and signed chromatic numbers behave in these graphs. As
a conclusion, we first summarize and discuss our results, independently of our original motivation,
before commenting on the connexion between the two chromatic parameters.

Concerning the signed chromatic number of grids, we have provided several bounds for both
general grids and 2- or 3-row grids. We have notably shown that the maximum signed chromatic
number of a grid lies in between 7 and 12. For 2-row grids, we managed to completely determine
their signed chromatic number, while, for 3-row grids, we have obtained partial results.

In order to establish lower bounds on the signed chromatic number, it is necessary to prove
that some signed grid cannot be A-coloured by any A being a signature of some complete graph.
Due to the number of signatures and of possible colourings to consider, computers are useful tools
in this context. Our experimentations, though, tend to show that, on small instances, determining,
via a computer, the signed chromatic number of a grid is less tractable than computing its oriented
chromatic number. Concerning 3-row grids, we did not manage to show that they have signed
chromatic number at most 7, nor to disprove it. However, applying the exact same procedure
from Section 5.1 on non-isomorphic signatures of K7, we managed to reduce the list L to only 44
potential colouring signatures of K7 to consider. It might be that one of these 44 candidates can
colour every signed 3-row grid.

In order to establish upper bounds, we have decided to design colourings by circulant signed
graphs only, as we thought the regular and symmetric structure of these graphs should grant
convenient properties. It might be, though, that some of our upper bounds can easily be improved,
by just considering colourings by other kinds of signed graphs. However, it is worth mentioning
that, concerning the colouring strategies we have designed, we did our best to make sure that these
strategies could not be easily applied with smaller circulant signed graphs.

Concerning the relation between the oriented and signed chromatic numbers, our results show
that these two parameters are quite close for grids. This is mainly established by the lower and
upper bounds we know on the maximum values of these parameters for grids: while it is known
that the maximum oriented chromatic number of a grid lies in between 8 and 11, we have shown
that the maximum signed chromatic number of a grid lies in between 7 and 12.

Some disparities, though, are worth mentioning. For 2-row grids, while the oriented chromatic
number is 6 in general, the signed chromatic number is 5 in general. We still do not know whether
3-row grids with signed chromatic number 8 exist, but, if this is the case, that would be quite
interesting, as these grids have oriented chromatic number at most 7. In that spirit, it could
as well be interesting considering 4-row grids, which have oriented chromatic number at most 7,
according to [6].
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