A Hybrid High-Order method for the steady incompressible Navier--Stokes problem

Daniele Antonio Di Pietro 1 Stella Krell 2, 3
3 COFFEE - COmplex Flows For Energy and Environment
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR7351
Abstract : In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier--Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the $L^2$-norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree $k\ge 0$ at mesh elements and faces are used, both quantities are proved to converge as $h^{k+1}$ (with $h$ denoting the meshsize).
Type de document :
Article dans une revue
Journal of Scientific Computing, Springer Verlag, 2018, 74 (3), pp.1677-1705. 〈10.1007/s10915-017-0512-x〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01349519
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : vendredi 13 janvier 2017 - 10:12:59
Dernière modification le : mercredi 12 décembre 2018 - 15:30:17

Fichier

nsho.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Daniele Antonio Di Pietro, Stella Krell. A Hybrid High-Order method for the steady incompressible Navier--Stokes problem. Journal of Scientific Computing, Springer Verlag, 2018, 74 (3), pp.1677-1705. 〈10.1007/s10915-017-0512-x〉. 〈hal-01349519v2〉

Partager

Métriques

Consultations de la notice

717

Téléchargements de fichiers

137