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Abstract

We investigate the asymptotic behavior of solutions to a semilinear heat equation with
homogeneous Neumann boundary conditions.

It was recently shown that the nontrivial kernel of the linear part leads to the coex-
istence of fast solutions decaying to 0 exponentially (as time goes to infinity), and slow
solutions decaying to 0 as negative powers of t.

Here we provide a characterization of slow/fast solutions in terms of their sign, and
we show that the set of initial data giving rise to fast solutions is a graph of codimension
one in the phase space.

Mathematics Subject Classification 2010 (MSC2010): 35K58, 35K90, 35B40.
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1 Introduction

Let Ω ⊆ R
n be a bounded connected domain. In this paper we consider the semilinear

heat equation
ut −∆u+ |u|pu = 0 (1.1)

with homogeneous Neumann boundary conditions on ∂Ω.
The asymptotic behavior of solutions, and in particular their decay rate and asymp-

totic profile as t → +∞, has been investigated in the last decade by the third author
and collaborators. The starting observation is that the Neumann Laplacian, namely the
linear operator associated to (1.1), has a nontrivial kernel consisting of all constant func-
tions. This leads to the coexistence of solutions with different decay rates. In particular,
all nonzero solutions to (1.1) are either fast solutions that decay exponentially, or slow
solutions with a decay rate proportional to t−1/p. This is the so-called null-slow-fast
alternative, and was observed for the first time in [1] (see also [3]). Similar results have
been obtained in [2, 8] for solutions to semilinear heat equations such as

ut −∆u+ |u|pu− λ1u = 0

with homogeneous Dirichlet boundary conditions. In the concrete model (1.1), as well
as in the Dirichlet case, it has been shown earlier in [1, 2, 8] that all positive solutions
are slow. In this paper we limit ourselves to the model (1.1), and we investigate more
completely the sets of initial data giving rise to slow/fast solutions. We provide two
results.

(1) In Theorem 3.1 we characterize fast solutions as those solutions which assume
both positive and negative values for every t ≥ 0. What we actually prove is
the contrapositive, namely that slow solutions are either eventually positive or
eventually negative. This motivates us to introduce the notion of positive-slow
and negative-slow solutions.

(2) In Theorem 3.2 we describe the set of initial data giving rise to slow/fast solutions.
We show that in the phase space L2(Ω) there are two nonempty open sets of initial
data originating positive-slow and negative slow-solutions, respectively. These two
open sets are separated by the graph of a continuous function, and all initial data
in this graph give rise to a fast (or null) solution.

Our characterization of slow/fast solutions in terms of their sign follows from com-
parison principles and the construction of suitable subsolutions and supersolutions.

The characterization of Theorem 3.1 is the fundamental tool in the proof of The-
orem 3.2. Indeed it implies that “being the initial datum of a positive/negative slow
solution” is an open condition. At this point a simple connectedness argument implies
that something different should exist in between, and by the null-slow-fast alternative
the only remaining option is a fast or null solution.

This paper is organized as follows. In order to make the presentation as self-contained
as possible, in section 2 we collect all we need concerning existence, regularity and decay
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for solutions to (1.1). In section 3 we state our main results. In section 4 we provide the
proofs. The final section 5 is devoted to some comments on possible extensions of the
results.

2 Basic tools and previous results

Equation (1.1) has been deeply investigated in mathematical literature. For the conve-
nience of the reader, we collect in this section the results that are needed in the sequel.

To begin with, we observe that (1.1) can be interpreted as the gradient flow in L2(Ω)
of the convex functional defined by

Fp(u) :=











1

2

∫

Ω

|∇u(x)|2 dx+
1

p+ 2

∫

Ω

|u(x)|p+2 dx if u ∈ H1(Ω) ∩ Lp+2(Ω),

+∞ otherwise.

Assuming that the boundary of Ω is C2, the subdifferential B of Fp is the operator
defined by Bu := −∆u+ |u|pu in the domain

D(B) :=
{

u ∈ H2(Ω) ∩ L2p+2(Ω) : ∂u/∂n = 0 on ∂Ω
}

.

As a consequence of [4], the operator B generates a contraction semigroup on L2(Ω).
This provides existence, uniqueness, and continuous dependence on initial conditions of
a weak solution u ∈ C0 ([0,+∞), L2(Ω)) of (1.1) for any initial condition u0 ∈ L2(Ω).
In the next statements we collect some well-known properties which shall be used in the
proofs of our main results.

Theorem A (Regularity). Let Ω ⊆ R
n be a bounded open set with boundary of class C2,

and let p be a positive real number. Let u(t, x) be the unique solution to equation (1.1)
with homogeneous Neumann boundary conditions and initial datum u0 ∈ L2(Ω), as de-
fined previously.

Then it turns out that

u ∈ W 1,∞
(

[δ,+∞), L2(Ω)
)

∩ L∞
(

[δ,+∞), H2(Ω) ∩ C(Ω)
)

∀δ > 0. (2.1)

Moreover, the solution satisfies the homogeneous Neumann boundary conditions in
the classical sense for every t > 0.

The second result concerns the comparison between two solutions with different initial
data. From the general semigroup theory we know that solutions depend continuously
on initial data in L2(Ω). Here we need more, namely that the semigroup preserves
the order, and that one can estimate the norm in L∞(Ω) of the difference between two
solutions at positive times in terms of the norm in L2(Ω) of the difference between initial
data.
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Theorem B (Comparison between two solutions). Let Ω and p be as in Theorem A.
Let u(t, x) and v(t, x) be two solutions to (1.1) with homogeneous Neumann boundary
conditions and initial data u0 and v0, respectively.

Then the following statements hold true.

(1) (Order preservation) If u0(x) ≥ v0(x) for almost every x ∈ Ω, then u(t, x) ≥ v(t, x)
for every t > 0 and every x ∈ Ω.

(2) (Continuous dependence L2(Ω) → L∞(Ω)) There exists a functionM1 : (0,+∞) →
(0,+∞) such that

|u(t, x)− v(t, x)| ≤M1(t)‖u0 − v0‖L2(Ω) ∀t > 0, ∀x ∈ Ω. (2.2)

Although the estimate (2.2) is rather classical and variants have been used in vari-
ous contexts, for the sake of completeness we provide a sketch of proof under the sole
assumption that a Sobolev-like imbedding H1(Ω) ⊆ Lq(Ω) is satisfied for some q > 2.

Lemma 2.1. Let us assume that there exists q > 2 such that H1(Ω) ⊆ Lq(Ω) with
continuous embedding, namely there exists a constant K0 such that

‖w‖Lq(Ω) ≤ K0‖w‖H1(Ω) ∀w ∈ H1(Ω). (2.3)

Let T ∈ (0, 1), let c ∈ L∞((0, T )× Ω) be a nonnegative function, and let

z ∈ W 1,∞
(

(0, T ), L2(Ω)
)

∩ L∞
(

(0, T ), H2(Ω) ∩ L∞(Ω)
)

be a solution of
zt −∆z + c(t, x)z = 0 (2.4)

with homogeneous Neumann boundary conditions.
Then, setting β := q/(2q − 4), it turns out that

‖z(t, x)‖L∞(Ω) ≤
4β

2

·K2β
0

tβ
‖z(0, x)‖L2(Ω) ∀t ∈ (0, T ]. (2.5)

Proof Let r be any nonnegative real number. Let us multiply (2.4) by |z|2rz and let us
integrate over Ω. After integrating by parts the term |z|2rz∆z, and recalling that c(t, x)
is nonnegative, we obtain that

1

2r + 2

d

dt

∫

Ω

|z|2r+2 dx+ (2r + 1)

∫

Ω

|z|2r|∇z|2 dx = −

∫

Ω

c(t, x)|z|2r+2 dx ≤ 0. (2.6)

This implies in particular that

the function t→ ‖z(t, x)‖Lα(Ω) is nonincreasing for every α ≥ 2. (2.7)

Now we introduce the function ψr(σ) := |σ|rσ, and we observe that

∇[ψr(z)] = (r + 1)|z|r∇z.
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As a consequence, (2.6) can be rewritten as

1

2r + 2

d

dt

(

‖z‖2r+2
L2r+2(Ω)

)

+
2r + 1

(r + 1)2
‖∇[ψr(z)]‖

2
L2(Ω) ≤ 0.

Given any τ ∈ (0, T ], integrating in [0, τ ] we deduce that

∫ τ

0

‖∇[ψr(z(s, x))]‖
2
L2(Ω) ds ≤

1

2
‖z(0, x)‖2r+2

L2r+2(Ω). (2.8)

On the other hand, from (2.7) with α := 2r + 2, we obtain also that

∫ τ

0

‖ψr(z(s, x))‖
2
L2(Ω) ds ≤ τ‖z(0, x)‖2r+2

L2r+2(Ω). (2.9)

Adding (2.8) and (2.9) we conclude that

∫ τ

0

‖ψr(z(s, x))‖
2
H1(Ω) ds ≤

(

τ +
1

2

)

‖z(0, x)‖2r+2
L2r+2(Ω) ∀τ ∈ (0, T ]. (2.10)

Now we exploit the continuous imbedding (2.3). From (2.7) with α := (r + 1)q we
obtain that

τ‖ψr(z(τ, x))‖
2
Lq(Ω) ≤

∫ τ

0

‖ψr(z(s, x))‖
2
Lq(Ω) ds

≤ K2
0

∫ τ

0

‖ψr(z(s, x))‖
2
H1(Ω) ds

≤ K2
0

(

τ +
1

2

)

‖z(0, x)‖2r+2
L2r+2(Ω),

and hence

‖ψr(z(τ, x))‖
2
Lq(Ω) ≤ K2

0

(

1 +
1

2τ

)

‖z(0, x)‖2r+2
L2r+2(Ω) ∀τ ∈ (0, T ].

Setting α := 2r + 2 and λ := q/2, this can be written in the more suggestive form

‖z(τ, x)‖Lλα(Ω) ≤

[

K2
0

(

1 +
1

2τ

)]1/α

‖z(0, x)‖Lα(Ω) ∀τ ∈ (0, T ].

Due to the time-translation invariance, this implies also that

‖z(θ + τ, x)‖Lλα(Ω) ≤

[

K2
0

(

1 +
1

2τ

)]1/α

‖z(θ, x)‖Lα(Ω) (2.11)

whenever 0 ≤ θ < θ + τ ≤ T .
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This is the starting point of a classical iteration procedure. Given any t ∈ (0, T ], for
every n ∈ N we set

tn :=

(

1−
1

2n

)

t, λn := 2λn,

and from (2.11) with θ := tn, τ := tn+1 − tn, and α := λn we deduce that

‖z(tn+1, x)‖Lλn+1(Ω) ≤

[

K2
0

(

1 +
2n

t

)]1/λn

‖z(tn, x)‖Lλn(Ω) ∀n ∈ N.

Since t ≤ 1, this implies the simpler formula

‖z(tn+1, x)‖Lλn+1(Ω) ≤

[

K2
0 · 2

n+1

t

]1/λn

‖z(tn, x)‖Lλn(Ω) ∀n ∈ N.

At this point an easy induction yields

‖z(tn, x)‖Lλn(Ω) ≤ 2γn
[

K2
0

t

]βn

‖z(0, x)‖L2(Ω) ∀n ∈ N, (2.12)

where

βn :=
n−1
∑

k=0

1

λk
≤

∞
∑

k=0

1

2λk
=

1

2

λ

λ− 1
=

q

2(q − 2)

and

γn :=

n−1
∑

k=0

k + 1

λk
≤

∞
∑

k=0

k + 1

2λk
=

1

2

λ2

(λ− 1)2
=

q2

2(q − 2)2
.

Letting n→ +∞ in (2.12), we obtain (2.5). �

We are now ready to prove estimate (2.2). We consider first the case where u0 and v0
are of class C2 with compact support in Ω. In this case u, v and z := u− v are bounded
on (0, t) with values in H2(Ω) ∩ L∞(Ω), and z satisfies (2.4) with

c(t, x) :=
|u|pu− |v|pv

u− v
≥ 0

with the convention that the quotient is 0 whenever the denominator vanishes. Moreover,
the continuous embedding H1(Ω) ⊆ Lq(Ω) holds true with any q ≥ 2 if n ≤ 2, and with
q = 2∗ := 2n/(n − 2) if n ≥ 3. Therefore, we are in a position to apply Lemma 2.1,
from which we obtain (2.2) with a function M1(t) independent of the initial data. At
this point, the result for general initial data follows from a density argument. �

The next statement describes all possible decay rates and asymptotic profiles for
solutions to (1.1). We refer to [1, Theorem 1.3] and [5, Theorem 4.4] for further details
and proofs.
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Theorem C (Classification of decay rates). Let Ω and p be as in Theorem A and assume,
in addition, that Ω is connected. Let u(t, x) be any solution to (1.1) with homogeneous
Neumann boundary conditions and initial datum in L2(Ω).

Then one and only one of the following statements apply to u(t, x).

(1) (Null solution) The solution is the null solution u(t, x) ≡ 0.

(2) (Slow solutions) There exist t0 > 0 and M2 ≥ 0 such that

∣

∣

∣

∣

|u(t, x)| −
1

(pt)1/p

∣

∣

∣

∣

≤
M2

t1+1/p
∀t ≥ t0, ∀x ∈ Ω.

(3) (Spectral fast solutions) There exist an eigenvalue λ > 0 of the Neumann Lapla-
cian, and a corresponding eigenfunction ϕλ(x), such that

lim
t→+∞

∥

∥u(t, x)− ϕλ(x)e
−λt

∥

∥

L2(Ω)
eγt = 0

for some γ > λ.

3 Statements

In the first result of this paper we characterize slow solutions in terms of sign.

Theorem 3.1 (Characterization of slow solutions). Let n be a positive integer, let Ω ⊆
R

n be a bounded connected open set with C2 boundary, and let p be a positive real
number. Let u(t, x) be a solution to equation (1.1) with homogeneous Neumann boundary
conditions.

Then the following three statements are equivalent.

(i) There exist t0 > 0 and M3 ≥ 0 such that

∣

∣

∣

∣

|u(t, x)| −
1

(pt)1/p

∣

∣

∣

∣

≤
M3

t1+1/p
∀t ≥ t0, ∀x ∈ Ω. (3.1)

(ii) There exist t0 > 0 and m : [t0,+∞) → (0,+∞) such that

|u(t, x)| ≥ m(t) ∀t ≥ t0, ∀x ∈ Ω. (3.2)

(iii) There exists t0 ≥ 0 such that either u(t0, x) ≥ 0 for almost every x ∈ Ω or
u(t0, x) ≤ 0 for almost every x ∈ Ω, but u(t0, x) is not identically 0 in Ω (in the
almost everywhere sense).

Theorem 3.1 above implies that there are only two types of slow solutions:

• positive-slow solutions, which are eventually positive and decay as (pt)−1/p,
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• negative-slow solutions, which are eventually negative and decay as −(pt)−1/p.

Moreover, statement (iii) implies that fast solutions are necessarily sign changing
functions for every t ≥ 0.

The main result of this paper concerns the structure of slow/fast solutions. We show
that, in the phase space L2(Ω), positive-slow and negative-slow solutions are separated
by a manifold of codimension one consisting of fast solutions. As a consequence, the
set of initial data generating slow solutions is open and dense in L2(Ω). The separating
manifold is the graph of a continuous function Φ defined in subspace N⊥ orthogonal to
constant functions (which are the kernel of the Neumann Laplacian). The function Φ
turns out to be Lipschitz continuous when restricted to L∞(Ω).

Theorem 3.2 (Structure of slow/fast solutions). Let Ω and p be as in Theorem 3.1.
Let us consider the space

N⊥ :=

{

w ∈ L2(Ω) :

∫

Ω

w(x) dx = 0

}

.

Then there exists a continuous function Φ : N⊥ → R with the following property.
For every w0 ∈ N⊥, the solution u(t, x) to equation (1.1) with homogeneous Neumann
boundary conditions and initial datum u(0, x) = w0(x) + k is

• positive-slow if k > Φ(w0),

• fast if k = Φ(w0) (or null if w0 = 0, in which case also Φ(w0) = 0),

• negative-slow if k < Φ(w0).

Moreover, the function Φ is 1-Lipschitz continuous if restricted to L∞(Ω), namely

|Φ(w1)− Φ(w2)| ≤ ‖w1 − w2‖L∞(Ω) ∀(w1, w2) ∈
[

N⊥ ∩ L∞(Ω)
]2
.

Remark 3.3. The projections of a function u0 ∈ L2(Ω) on the kernel of the Neumann
Laplacian and on the orthogonal space N⊥ are given, respectively, by

∫

Ω

u0(x) dx, u0(x)−

∫

Ω

u0(x) dx.

Therefore, the result of Theorem 3.2 above can be rephrased by saying that the
solution to (1.1) with some initial datum u0 6= 0 is positive-slow, fast, or negative-slow
according to the sign of

∫

Ω

u0(x) dx− Φ

(

u0(x)−

∫

Ω

u0(x) dx

)

.
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4 Proofs

To begin with, we recall that for every p > 0 there exists a constant Kp such that
∣

∣|a+ b|p(a+ b)− |a|pa
∣

∣ ≤ Kp (|a|
p + |b|p) |b| ∀(a, b) ∈ R

2. (4.1)

This inequality follows from the mean value theorem applied to the function |x|px.

Lemma 4.1. Let n, Ω, and p be as in Theorem 3.1. Let v0 and w0 be two functions
in L2(Ω) such that v0(x) ≥ w0(x) for almost every x ∈ Ω, and v0(x) > w0(x) on a set
of positive measure. Let v and w be the solutions to equation (1.1) with homogeneous
Neumann boundary conditions and initial data v0 and w0, respectively.

Let us assume that w is a fast or null solution in the sense of Theorem C.
Then v is a slow solution in the sense of Theorem C.

Proof Let z(t, x) := v(t, x) − w(t, x) denote the difference, which is a nonnegative
function because of statement (1) of Theorem B, and satisfies

zt = ∆z −
(

|w + z|p(w + z)− |w|pw
)

.

Applying inequality (4.1) with a := w(t, x) and b := z(t, x), we can estimate the
nonlinear term in the right-hand side, and obtain that

zt ≥ ∆z −Kp (|z|
p + |w|p) z.

Let us consider now the function I : [0,+∞) → [0,+∞) defined by

I(t) :=

∫

Ω

z(t, x) dx ∀t ≥ 0.

Our assumption on v0 and w0 implies that I(0) > 0. Since the function I(t) is
continuous in [0,+∞) (due to the continuity of v and w with values in L2(Ω)), there
exists δ > 0 such that I(δ) > 0.

Now we argue by contradiction. Let us assume that v, as well as w, is not a slow
solution. By Theorem C, this implies that z decays exponentially to 0 in L2(Ω), and
hence also in L∞(Ω) because of statement (2) of Theorem B, and therefore there exist
constants ν > 0 and Cδ > 0 such that

zt ≥ ∆z − Cδe
−νtz ∀(t, x) ∈ [δ,+∞)× Ω.

Integrating over Ω we find that

I ′(t) ≥ −Cδe
−νtI(t) ∀t ≥ δ,

and hence

I(t) ≥ I(δ) exp

(

−Cδ

∫ +∞

δ

e−νs ds

)

≥ I(δ) exp(−Cδ/ν) ∀t ≥ δ.

This contradicts the fact that z tends to 0 in L2(Ω). �
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Proof of Theorem 3.1

Implications (i) ⇒ (ii) ⇒ (iii) are almost trivial.
As for (iii) ⇒ (i), assuming for instance the positive sign, it is enough to apply

Lemma 4.1 with w(t, x) := 0 and v(t, x) := u(t+ t0, x). �

Proof of Theorem 3.2

In this proof we deal with many different initial conditions. For this reason we adopt
the semigroup notation, namely we write St(v0) or [St(v0)](x) in order to denote the
solution at time t which has v0 as initial condition.

Existence and uniqueness

For every w0 ∈ L2(Ω), let K+(w0) denote the set of real numbers k for which the
solution with initial datum w0(x) + k is positive-slow, and let K−(w0) denote the set of
real numbers k for which the solution is negative-slow.

The main point is proving that K+(w0) and K−(w0) are, respectively, an open right
half-line and an open left half-line, and this two half-lines are separated by a unique
element. When w0 ∈ N⊥, this separator is the value Φ(w0) that we are looking for. We
prove these claims through several steps.

Step 1 We prove that K+(w0) and K−(w0) are nonempty for every w0 ∈ L2(Ω).
To this end, we concentrate on K+(w0), since the argument for K−(w0) is symmetric.

Let us choose two positive constants m0 and t0, and let us set

m1 :=
m0

2 (1 + pmp
0t0)

1/p
, δ :=

m1

M1(t0)
,

where M1(t0) is the constant which appears in inequality (2.2).
Let us choose v0 ∈ C0(Ω) such that ‖w0 − v0‖L2(Ω) ≤ δ (this is possible because

C0(Ω) is dense in L2(Ω)). Due to boundedness of v0, there exists k0 ∈ R such that

v0(x) + k0 ≥ m0 ∀x ∈ Ω.

Now we claim that

[St(v0 + k0)] (x) ≥
m0

(1 + pmp
0t)

1/p
∀t ≥ 0, ∀x ∈ Ω.

This inequality follows from the usual comparison principle because it is true when
t = 0, and in addition both the left-hand and the right-hand side are solutions to (1.1)
with homogeneous Neumann boundary conditions. Setting t = t0, and recalling our
definition of m1, we obtain that

[St0(v0 + k0)] (x) ≥ 2m1 ∀x ∈ Ω. (4.2)
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On the other hand, statement (2) of Theorem B applied to initial data w0 + k0 and
v0 + k0 implies that

| [St0(w0 + k0)] (x)− [St0(v0 + k0)] (x)| ≤M1(t0)‖w0 − v0‖L2(Ω) ≤ m1 (4.3)

for every x ∈ Ω. From (4.2) and (4.3) it follows that

[St0(w0 + k0)] (x) ≥ m1 ∀x ∈ Ω.

Thanks to Theorem 3.1, this is enough to conclude that the solution with initial
condition w0(x) + k0 is positive-slow, and hence k0 ∈ K+(w0).

Step 2 We prove that K+(w0) is an open right half-line, and analogously K−(w0)
is an open left half-line.

Let us consider K+(w0) (the argument for K−(w0) is symmetric). It is a right half-line
because, if w0(x) + k0 gives rise to a positive-slow solution u(t, x), then every solution
with initial datum w0(x)+k with k > k0 is greater than u(t, x), and hence it is positive-
slow as well.

It remains to show that K+(w0) is an open set. Let us assume that k0 ∈ K+(w0),
so that the solution u(t, x) with initial datum w0(x) + k0 is positive-slow. Due to Theo-
rem 3.1, it turns out that

[St0(w0 + k0)] (x) ≥ m0 ∀x ∈ Ω

for suitable constants t0 > 0 and m0 > 0. Applying statement (2) of Theorem B as in
the previous step, we obtain that

[St0(w0 + k)] (x) ≥
m0

2
∀x ∈ Ω

provided that k is close enough to k0. Applying Theorem 3.1 once again, we can conclude
that all these neighboring solutions are positive-slow as well.

Step 3 The structure of K+(w0) and K−(w0) implies that

supK−(w0) ≤ inf K+(w0), (4.4)

and any k in between (endpoints included) lies neither in K−(w0) nor in K+(w0). Due to
the null-slow-fast alternative of Theorem C, the corresponding solutions are necessarily
fast or null. Finally, as a consequence of Lemma 4.1, we do have equality in (4.4), and
hence for every w0 ∈ L2(Ω) there exists a unique k such that w0(x) + k generates a fast
(or null) solution.
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Continuity

We show that the map w0 → Φ(w0) is continuous with respect to the norm of L2(Ω),
namely for every w0 ∈ N⊥ and every ε > 0 there exists δ > 0 such that

Φ(w0)− ε ≤ Φ(v0) ≤ Φ(w0) + ε (4.5)

for every v0 ∈ N⊥ with ‖v0 − w0‖L2(Ω) ≤ δ.
Let us consider the solution with initial condition w0(x)+ (Φ(w0)+ ε). It is positive-

slow, and hence from Theorem 3.1 we know that

[St0(w0 + (Φ(w0) + ε))] (x) ≥ m0 ∀x ∈ Ω

for suitable constants t0 > 0 and m0 > 0. Applying statement (2) of Theorem B as in
the existence part, we deduce that

[St0(v0 + (Φ(w0) + ε))] (x) ≥
m0

2
∀x ∈ Ω

provided that ‖v0 − w0‖L2(Ω) is small enough. Applying Theorem 3.1 once again, we
deduce that the solution with initial condition v0(x) + (Φ(w0) + ε) is positive-slow as
well. It follows that Φ(w0) + ε ∈ K+(v0), and therefore Φ(v0) ≤ Φ(w0) + ε.

This proves that the inequality on the right in (4.5) holds true for every v0 ∈ N⊥

which is close enough to w0 with respect to the norm of L2(Ω). A symmetric argument
applies to the inequality on the left.

Lipschitz continuity with respect to the uniform norm

We show that the map w1 → Φ(w1) restricted to L∞(Ω) is Lipschitz continuous with
Lipschitz constant equal to 1. To this end, we take any w1 and w2 in N

⊥ ∩L∞(Ω), and
from the definition of L∞(Ω) we deduce that

w1(x) + (Φ(w1) + ε) ≤ w2(x) +
(

‖w1 − w2‖L∞(Ω) + Φ(w1) + ε
)

for every ε > 0 and almost every x ∈ Ω. Since the solution with initial datum equal to
the left-hand side is positive-slow, the solution with initial datum equal to the right-hand
side is positive-slow as well, which proves that

‖w1 − w2‖L∞(Ω) + Φ(w1) + ε ∈ K+(w2).

In an analogous way we obtain that

−‖w1 − w2‖L∞(Ω) + Φ(w1)− ε ∈ K−(w2).

Since Φ(w2) separates K
−(w2) and K+(w2), letting ε→ 0+ we conclude that

Φ(w1)− ‖w1 − w2‖L∞(Ω) ≤ Φ(w2) ≤ Φ(w1) + ‖w1 − w2‖L∞(Ω),

which completes the proof. �
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5 Additional results and possible extensions

In this section we describe some additional properties and research directions.

Strong positivity Under the C2 regularity assumption on ∂Ω which allowed us to
set properly the problem, more can be said about the behavior of solutions. Actually,
an application of the strong minimum principle gives that for any non-negative initial
value u0 ∈ L2(Ω) which is positive on a set of positive measure, the solution of (1.1) is
uniformly (with respect to x ∈ Ω) positive for all positive times. This of course means
that right after the first time at which a slow solution has a constant sign, it becomes
strictly above a positive (time depending) constant or strictly below a time depending
negative constant.

Relaxed regularity In principle, in order for (1.1) to be properly set in a reason-
able sense (for instance variational or distributional), a C1 or even Lipschitz regularity
assumption on ∂Ω seems to be enough. In such a case, the Sobolev embedding theorem
would be applicable, the difficulty might be that the solution does not need to be con-
tinuous up to the boundary for t > 0. The relevant regularity class for solutions would
then be

W 1,∞
(

[δ,+∞), L2(Ω)
)

∩ L∞
(

[δ,+∞), H1(Ω) ∩ L∞(Ω) ∩ C(Ω)
)

,

since interior regularity is always true. This is enough to state properly, mutatis mutan-
dis, our various results.

More general nonlinearities For the sake of simplicity, we presented our results for
the equation with the model nonlinearity |u|pu. Nevertheless, the theory can be extended
with little effort to more general nonlinear terms f(u(t)). The essential assumption here
is that f : R → R is an increasing function such that f(x) ∼ |x|px and f ′(x) ∼ (p+1)|x|p

as x → 0. One can even assume monotonicity just in a neighborhood of the origin, but
of course in that case one obtains a description of solutions only for initial data whose
norm in L∞(Ω) is small enough.

The Dirichlet case Many results for concrete models have been unified in [5] by
developing an abstract theory for evolution inequalities of the form

|u′(t) + Au(t)|H ≤ K0

(

|u(t)|1+p
H + |A1/2u(t)|1+q

H

)

∀t ≥ 0, (5.6)

where A is a self-adjoint nonnegative operator with discrete spectrum in a Hilbert space
H , and K0, p, q are positive real numbers. A full description of possible decay rates
was provided, showing that all nonzero solutions to (5.6) that decay to 0 are either
exponentially fast as solutions to the linearized equation u′(t) + Au(t) = 0, or slow as
solutions to the ordinary differential inequality |u′(t)| ≤ K0|u(t)|

1+p. By relying on this
kind of general techniques, it will be possible to extend this theory to more general
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parabolic partial differential equations whose linear part has a nontrivial kernel, for
instance the problem “at resonance”

ut −∆u+ |u|pu− λ1u = 0

with homogeneous Dirichlet boundary conditions. In the present paper we decided to
limit ourselves to the model example (1.1) in which some of the arguments appear
simpler. The other cases will be studied elsewhere.

Second order equations It might be interesting to look for a concrete realization of
the slow-fast alternative for second order evolution equations with dissipative terms, in
the same way as the results of [5] were extended in [6, 7]. However this would require
completely new ideas, since both the regularizing effect and the comparison principles
are specific to parabolic problems and even in the simple case of the ordinary differential
equation

u′′ + u′ + u3 = 0

the set of fast solutions has already a rather complicated shape. Moreover, in that
case, all non-trivial solutions (including exponentially decaying ones) are asymptotically
signed, so that even for the hyperbolic problem

utt + ut −∆u+ u3 = 0

with Neumann homogeneous boundary conditions, the slow character is not equivalent
to the existence of a constant sign for t large.
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